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Abstract. With words as nodes, and a link exits between two neighboring words, the
weighted directed English and Chinese written human language networks are con-
structed from one English novel and two Chinese ones. We hereby analyze in detail
the topological structure of them, in order to clarify their similar and different statis-
tical properties. The empirical results show that the English and Chinese language
networks all possess the shifted power law (SPL) degree distribution, the small-world
property and the hierarchical structure, the connections among the words have posi-
tive assortativity coefficient and reciprocal characteristics. We also investigate the fea-
tures of the strength and the centrality, which describe the importance of a specific
word. Furthermore, considering the growth properties of the language networks and
part of topological property, we find that the English written human language network
grows slower than the Chinese one, which implies different mechanisms of the English
and Chinese languages.
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1 Introduction

The past few years have witnessed people’s great interest with regard to the complex
networks. By investigating many real world networks, the small-world behavior [1, 2]
and the scale-free property [3] were successfully confirmed, typical examples comprise
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the World Wide Web [4], the collaboration network [5], the public transportation net-
works [6] and the graph of human language [7, 8], etc. As well known, the characteri-
zation of the topological structure [9–11] of a network is the basic factor to analyze its
intrinsic functions and dynamics [12–16]. These empirical analyses have inspired people
to probe the universality of the real world systems, and thus to provide an appropriate
framework [17, 18] for developing techniques and models of the complex networks.

Composed of a number of words, novels and poems are simply normal examples of
written human language networks in nature, and thus can be studied from the aspect of
the complex network theory. Caldeira and Lobao [19] study the structure of meaningful
concepts in written texts, they find the small-world effect as well as the scale-free struc-
tures. Li and Zhou [20] emphasize the Chinese character structure, supposing that the
radical is the vertex and two vertices are linked if they can form a character or a part
of it. Their work shows that the character networks also display the small-word prop-
erty and the non-Poisson distribution. Masucci and Rodgers [21] investigate the English
novel named 1984, they find the existence of different functional classes of vertices, the
significance of the second order vertex correlations in the network architecture.

The previous works are of great importance to understand the nature of the written
human language networks. However, to our best knowledge, they just concentrate on
one language, and there are no comparisons about the characteristics of different lan-
guages. Therefore, in this paper, our main purpose is to investigate the similarities and
differences between English and Chinese written human language networks. We select
three novels [22] as our empirical objects, which include a Chinese one named “A Q Zheng
Zhuan” (AQC) written by Lu Xun in 1921, the English version “The true story of Ah‘Q”
(AQE) translated by Yang Hsien-yi in 1960, and another Chinese one entitled “Kun Lun
Shang” (KLS) written by Bi Shumin in 1986.

In our studies, word represents the vertex, an edge exists between two vertices if they
are neighbors, and the edge directs from the former word to the latter one. Neglecting the
punctuation marks and the paragraph gaps, we construct the weighted directed English
and Chinese written human language networks, the system sizes are 21118, 17204, 23270,
the number of different words are 1553, 2661, 2048 for these three networks respectively.

The whole text is organized as follows: we show the topological property of the net-
works such as degree distribution and clustering in Section 2. Section 3 presents the
weighted network. Section 4 depicts the centrality and betweenness measures. In Sec-
tion 5, we exhibits the growth properties of the networks. Conclusion and discussion are
given in Section 6.

2 The topology of network

The foremost quantity that describes the characteristic of the network is the degree dis-
tribution. In order to reduce the statistical errors arising from the limited system size, we
introduce the Pareto distribution, which is regarded as the same thing as Zipf, power-
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Figure 1: The cumulative distributions of in-degree, out-degree and all-degree for (a) AQC, (b) AQE, (c) KLS,
respectively. (d) The cumulative distribution about the all-degree of the three networks. αd, ηd, αu, ηu stand for
the directed and undirected networks, αC, ηC, αE, ηE stand for the Chinese and the English language networks
respectively.

law distribution [23]. We represent kin and kout as the incoming and outgoing degree of
a given node, and kall as the degree when we do not distinguish incoming and outgoing.
We show the cumulative in degree, out degree and all degree distributions of the three
networks in Fig. 1.

The distributions show the so-called shifted power law (SPL) function form [24],
which is analytically deduced partially by the random selection and partially by linear
preferential principle, as this format:

P(>k)∝ (k+α)−η , (2.1)

where 0<α<∞, for α=0, the SPL shows a power law distribution, while α→∞, the SPL
tends to an exponential distribution, the typical SPL functions can be shown only with
values of α between 1 and 100 [5].

From Fig. 1(a)(b)(c), we find that the in-degree and out-degree distributions are al-
most consistent with each other, while great deviations exist in the undirected degree
distributions. This is a prominent distinction, since most of the directed and undirected
degree distributions of many other real world networks lap over with each other.

As well known, due to the strict grammar rules and matching relations, the lan-
guage networks are directed ones, and they are not bidirectional, so this extraordinary
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Table 1: The probabilities of the in degree, out degree and all degree of the three networks.

AQE AQC KLS
k Pin Pout Pall Pin Pout Pall Pin Pout Pall

1 0.588 0.569 0.000 0.372 0.367 0.000 0.364 0.361 0.000
2 0.164 0.159 0.540 0.158 0.178 0.321 0.168 0.171 0.331
3 0.074 0.077 0.051 0.106 0.099 0.054 0.094 0.092 0.045
4 0.042 0.042 0.127 0.071 0.064 0.129 0.067 0.072 0.133
5 0.025 0.026 0.032 0.048 0.047 0.046 0.046 0.037 0.030
6 0.016 0.021 0.052 0.032 0.037 0.062 0.035 0.045 0.056
7 0.017 0.015 0.019 0.029 0.027 0.035 0.035 0.031 0.026
8 0.009 0.014 0.026 0.019 0.027 0.034 0.024 0.026 0.047
9 0.005 0.006 0.011 0.017 0.018 0.030 0.017 0.017 0.025

10 0.007 0.008 0.014 0.016 0.014 0.021 0.015 0.016 0.032

Table 2: The fundamental parameters of the three language networks.

AQE AQC KLS
N 2661 1553 2048
〈k〉 7.878 12.546 12.474
C 0.315 0.256 0.186

Crand 0.00296 0.008 0.006
L 3.372 3.079 3.548

Lrand 7.885 7.340 7.623
r 0.114 0.012 0.096
ρ -0.015 -0.005 -0.010

and unique property results in the imbalance between the undirected degree distribution
and the directed ones. For the whole network, the in degree and out degree of different
words obey the principle of equality and mutual benefit, when the in degree of a word
grows, the out degree of its neighboring word will grow correspondingly, therefore this
inevitably leads to consistency of the cumulative in degree and out degree distributions.
Table 1 intuitionally depicts the characteristic of the directed and undirected degree dis-
tribution, and confirms the above conclusions.

In Fig. 1(d), the degree distributions of the two Chinese language networks coincide
with each other, while the degree distribution of the English one is different, though the
story of the English novel AQE and the Chinese one AQC are the same, which may be
attributed to the different vocabulary size and the grammar rules of different languages.

The assortative and reciprocity properties of the network can measure the degree cor-
relations of the network:

The assortativity coefficient r shows whether nodes of high degree connect to the
nodes of high degree or low degree. From Table 2, the assortativity coefficients r of the
three networks are all greater than 0, which means the language networks are all assor-
tative networks, vertices of high degree tend to connect with vertices of the same kind,
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Table 3: The frequencies (Fre) of the top ten binary structure.

AQE AQC KLS

structure Fre structure Fre structure Fre

Ah Q 279 � Q 275 �� 61
of the 80 �� 92 �� 60

he had 76 �� 61 �� 54
in the 75 �� 53 �� 43
to the 66 �� 46 �� 36

he was 53 �� 45 �� 33
it was 37 �� 45 �� 32
to be 33 �� 43 �� 27

had been 32 �� 41 �� 26
did not 29 �� 39 �� 24

hence the positive correlations exist in the degree. Generally the social networks are the
assortativity ones [25] and our empirical analysis confirms this conclusion.

While the reciprocity property [26] of the degree reflects whether the in-degree equals
the out-degree of a given node, the reciprocity coefficient ρ indicates this trend of the
whole network. In Table 2, the reciprocity coefficients ρ are all close to 0, which indi-
cates the written human language networks are not balanced in connecting and being
connected, since there exists so many binary structures in the language networks, they
appear as a whole in the daily use. Table 3 lists the most frequent binary structure in the
three networks, take ‘it was’ for example, there’s just one arrow point from ’it’ to ’was’,
for ‘it’, its out degree will not grow as quickly as its in degree, while for ‘was’, its in de-
gree will grow much slower than its out degree, and this results in the disproportion of
the in degree and out degree of a specific word.

The results of the clustering coefficients C are shown in Table 2, we can find that all
of them are less than 0.32, which suggests only a few triangles present in the language
networks, and this should be attributed to the selectiveness of syntax structures. For
comparison, random graphs of the same average degree 〈k〉 and the same nodes N are
investigated, it is manifest that the average clustering coefficient of the language net-
works is much greater than that of the random graphs.

Furthermore, we analyze the clustering spectrum in Fig. 2(a), which shows the em-
pirical degree-dependent clustering coefficient follows the pow-law decay 〈C(k)〉∼k−1.0.
This indicates there exists the hierarchical and modular structure [27] in the language
networks, which is universal for many other real world networks.

The path length distribution is presented in Fig. 2(b). Comparing with the corre-
sponding random graph, Lrand = lnk/lnN, we find the average shortest-path lengths of
the written human language networks are much smaller than that of the random graph.
Some fundamental parameters of the three language networks are listed in Table 2. The
high average clustering coefficient and the small average shortest-path length indicate
the small-world property of the language networks.
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Figure 2: (a)The degree-dependent clustering coefficient 〈C(k)〉 as a function of the degree k. (b) The path
length distribution.

3 The weighted network

In this part, we investigate the representation of weighted version, the weight of an edge
is defined as the frequency of a connection appearing in the whole network, while the
strength of a vertex (the sum of the weight values of all edges passing through it) denotes
the frequency of a word appearing in the network. The weight and the strength can pro-
vide information about the importance of the edges and the words. Taking the Chinese
language for example, the Chinese word vocabulary in common use has no more than
three thousand, whereas they can constitute many novels with much more larger size,
due to the property of strength, which is defined as Si =∑jWij, where Wij represents the
weighted matrix of the language networks. We find the strength distributions exhibit
the same properties as that of the degree distribution, that is, the strength distributions
of two Chinese language networks coincide with each other and differ from the English
one. From Fig. 3(a), it is found that all of them follow SPL function form:

P(>s)∝ (s+β)−γ. (3.1)

Resorting to the original data, we find that vertices with large strength tend to form
the binary structures, and are likely to constitute the phrases or the short sentences (Table
3).

We depict the relationship of the average strength 〈s(k)〉 as a function of degree k in
Fig. 3(b), and find that it follows a power-law, with the format 〈s(k)〉 ∼ k1.15. It implies
the larger the degree, the larger the strength and the more important the word in the net-
work. To be specific, we list the top ten words with large degree and their corresponding
strength in Table 4. We find that words of large degree and strength have the same mean-
ings and functions in the two different languages, most of which are the adjectives and
the conjunctions.
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Figure 3: (a)The cumulative strength distribution of the three networks. (b)Average strength 〈s(k)〉 as a
function of the degree k of nodes. βC, γC, βE, γE stand for the Chinese and the English language networks.

Table 4: Words of the top ten degrees.
Table 4: words of the top ten degrees

AQE AQC KLS

i ki si i ki si i ki si

the 651 880 � 668 745 � 790 788
and 476 369 � 438 476 � 431 411
to 465 514 � 345 385 � 384 535
a 395 370 � 268 317 � 343 326
of 361 331 � 267 348 � 254 188
he 355 451 � 261 307 � 251 199
his 282 280 � 202 188 � 247 242
was 274 317 � 201 195 � 244 219
in 267 251 � 186 255 � 226 173
it 198 173 � 183 197 � 203 171

4 Centrality and betweenness

In order to shed more light on understanding the structural properties of the networks,
we employ centrality and betweenness to quantify the importance of a word. The be-
tweenness [28] bi is defined as the probability of the shortest paths connecting any two
words that involve a connection with the word i. We plot the cumulative distribution of
the betweenness in Fig. 4, which follows the power-law decay, P(>b)∼b−1.16.

The average normalized betweenness 〈b(k)〉 as a function of degree k is analyzed in
Fig. 5(a), we can find that 〈b(k)〉∼ k1.33, which indicates words with large degree corre-
spondingly have large betweenness, highly connected words are also the most central
words.

The convenience of a given node to reach many other nodes in the network also re-
flects its centrality. We defined Li as the average shortest path length from a certain vertex
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i to all other vertices as the follows: Li =(∑j 6=i Lij)/(N−1), where Lij is the shortest path
length between words i and j, a small value of Li implies that it is convenient for the word
i to connect with the other words in the network. Fig. 5(b) shows 〈L(k)〉 as a function of
degree k, with the form 〈L(k)〉 ∼ k−0.096, which can be easily understood for the reason
that words with larger degree have shorter path length to go to many other words.

5 Growth property

The language network is an accelerated growing network, for the number of edges grows
faster than the number of vertices. We define t as the time step when a new word is
added to the text and N(t) is the total number of words in the text, we find the empirical
growing properties [21] of the three networks behave as:

N(t)∼ tλ. (5.1)

More specifically, t represents the number of different words used to comprise the
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text or the used vocabulary size, while N(t) represents the total text size. Fig. 6(a) shows
the growth of AQE in log-log scale, with the power law form N(t)∼ t2.8. For comparison,
we show the growing functions of the three networks in linear scale in Fig. 6(b), which
shows the two Chinese language networks grow faster than the English one. This can
be interpreted in the following way. Firstly, the vocabulary of the English language is
much larger than that of the Chinese which lead to the large adding probability of the
next new word for the English language. Secondly, the more flexible of the English word
connections yield the slower growth of English language network.

6 Conclusion and discussion

In this paper, we implement an empirical analysis of the English and Chinese written
human language networks. The empirical results show that the cumulative degree and
strength distributions all follow the shifted power law function format, there exists hier-
archical structure and small-world effect in the language networks, and the degrees are
positively correlated. Moreover, large degree nodes are usually the center node according
to the betweenness and centrality measure.

Furthermore, we find that the degree distributions with and without direction consid-
eration are different for these two language networks. Secondly, the degree and strength
distributions vary for different languages and have no relationship with the content. In
addition, the English language network grows slower than the Chinese one. We explain
this as the different mechanisms of the English and Chinese languages and future work
will try to work on these mechanisms.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant
Nos. 10647125, 10635020, 10975057 and 10975062) and the Programme of Introducing
Talents of Discipline to Universities under Grant No. B08033.



D. Wang, R. Wang and X. Cai / Commun. Comput. Phys., 8 (2010), pp. 690-700 699

References

[1] D.J. Watts, S.H. Strogatz, Collective dynamics of ’small-world’ networks, Nature 393 (1998)
440.

[2] L. Guo, X. Cai, Opinion Dynamics of Sznajd Model on Small-World Network, Commun.
Comput. Phys 6 (2009) 586.

[3] A.L. Barabasi, R. Albert, Emergence of Scaling in Random Networks, Science 286 (1999) 509.
[4] A.L. Barabasi, R. Albert, Mean-field theory for scale-free random networks, Physica A 272

(1999) 173.
[5] H. Chang, B.B. Su, Y.P. Zhou, D.R. He, Assortativity and act degree distribution of some

collaboration networks, Physica A 383 (2007) 687.
[6] R. Wang, X. Cai, Hierarchical Structure, Disassortativity and Information Measures of the

US Flight Network, Chin. Phys. Lett 22 (2005) 2715.
[7] J.Y. Ke, T. Gong and W.S.Y. Wang, Language Change and Social Networks, Commun. Com-

put. Phys 3 (2009) 935.
[8] R.Ferrer i Cancho, R.V. Sole, The small world of human language, Proc. R. Soc. Lond.B 268

(2001) 2261.
[9] X.L. Yu, Z.H. Li, D.M. Zhang, F. Liang, X.Y. Wang and X. Wu, The topology of an accelerated

growth network, J. Phys. A: Math. Gen 39 (2006) 14343.
[10] Q. Liu, J.Q. Fang and Y. Li, Synchronization and Control of Halo-Chaos in Beam Transport

Network with Small World Topology, Comman. Theor. Phys 47 (2007) 752.
[11] W.X. Wang, B.H. Wang, B. Hu, G. Yan, and Q. Ou, General Dynamics of Topology and Traffic

on Weighted Technological Networks, Phys. Rev. Lett 94 (2005) 188702.
[12] L. Guo, and X. Cai, Continuous Opinion Dynamics in Complex Networks, Commun. Com-

put. Phys 5 (2009) 1045.
[13] Y.P. Yin, D.M. Zhang, G.J. Pan, M.H. He and J. Tan, Sandpile on scale-free networks with

assortative mixing, Phys. Scr 76 (2007) 606.
[14] Y.Z. Zhou, J. Zhou and Z.H. Liu, Influence of network topology on the abnormal phase

order, Europhys. Lett 84 (2008) 60001.
[15] X.B. Lu, X.F. Wang, J.Q. Fang, Topological transition features and synchronizability of a

weighted hybrid preferential network, Physica A 371 (2006) 841.
[16] C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Reviews of

Modern Physics 81 (2009) 591.
[17] Z.H. Liu and B. Hu, Epidemic spreading in community networks, Europhys. Lett. 72 (2005)

315.
[18] W.X. Wang, B.H. Wang, C.Y. Yin, Y.B. Xie, T. Zhou, Traffic dynamics based on local routing

protocol on a scale-free network, Phys. Rev. E 73 (2006) 026111.
[19] S.M.G. Caldeira, T.C. Petit Lobao, R.F.S. Andrade, A. Neme and J.G.V. Miranda , The net-

work of concepts in written texts, Eur. Phys. J. B 49 (2006) 523.
[20] J.Y. Li, J. Zhou, Chinese character structure analysis based on complex networks, Physica A

380 (2007) 629.
[21] A.P. Masucci, G.J. Rodgers, Network properties of written human language, Phys. Rev. E 74

(2006) 026102.
[22] www.cuiweiju.com, www.marxists.org.

[23] M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law, arXiv: cond-mat/0412004.
[24] Y.Z. Chen, D.R. He, A study on some urban bus transport networks, Physica A 376 (2007)

747.



700 D. Wang, R. Wang and X. Cai / Commun. Comput. Phys., 8 (2010), pp. 690-700

[25] M.E.J. Newman, Assortative Mixing in Networks, Phys. Rev. Lett 89 (2002) 208701.
[26] D. Garlaschelli, M.I. Loffredo, Patterns of Link Reciprocity in Directed Networks, Phys. Rev.

Lett 93 (2004) 268701.
[27] E. Ravasz, A.L. Barabasi, Hierarchical organization in complex networks, Phys. Rev. E 67

(2003) 026112.
[28] M.E.J. Newman, Scientific collaboration networks. II. Shortest paths, weighted networks,

and centrality, Phys. Rev. E 64 (2001) 016132.


