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Abstract. This article is concerned with the numerical detection of bifurcation points
of nonlinear partial differential equations as some parameter of interest is varied. In
particular, we study in detail the numerical approximation of the Bratu problem, based
on exploiting the symmetric version of the interior penalty discontinuous Galerkin
finite element method. A framework for a posteriori control of the discretization error
in the computed critical parameter value is developed based upon the application of
the dual weighted residual (DWR) approach. Numerical experiments are presented to
highlight the practical performance of the proposed a posteriori error estimator.
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1 Introduction

Understanding the nature of solutions to nonlinear partial differential equations (PDEs)
remains one of the greatest challenges in modern scientific computing. Some funda-
mental questions include: ”How many solutions exist as some parameter of interest is
varied?”; ”Are the solutions linearly stable?”; and ”At what critical parameter value does
a bifurcation occur?”. In this article we consider the latter question and in particular
address the issue concerning the accuracy of the computed critical value by means of
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a posteriori error estimation. For this purpose we investigate the Bratu problem, see,
for example, Wazwaz [35], which can be viewed as a model of some phenomenon ex-
hibiting diffusion with exponential growth. Although the Bratu problem is essentially of
academic interest, it serves as an excellent model situation in which to demonstrate the
computational approach developed in this article, as it contains many of the key features
inherent in the study of more general nonlinear PDEs of practical interest.

In the numerical study of nonlinear PDEs, the estimation of the critical parameter
at which a bifurcation may occur can be performed by discretizing a suitable extended
system of PDEs; see, for example, Seydel et al. [30, 31] and Moore and Spence [28]. In
essence, this process involves determining the parameter value and associated solution
at which the Jacobian of the underlying nonlinear PDE has a zero eigenvalue. For the
discretization of the extended system we propose to exploit the symmetric version of
the interior penalty discontinuous Galerkin (DG) method; see, for example, [2] where a
unified analysis of a number of DG methods is presented. Our use of a DG method is
primarily due to the benefits in terms of the ease of implementation of automatic mesh
adaptation procedures.

Over the past few decades, tremendous progress has been made in the area of a pos-
teriori error estimation and adaptive finite element approximation of partial differential
equations; for a review of some of the main developments in the subject we refer to the
recent monographs [1, 32, 34], and the articles [5, 15]. Despite a number of significant
advances in the field, much of the research to date has focused on source problems. In
the context of eigenvalue error estimation for determining whether a solution to a PDE is
linearly stable or not, we mention the recent articles [13,14,25,29] for the finite element ap-
proximation of second-order self-adjoint elliptic eigenvalue problems. For related work,
based on considering the eigenvalue problem as a parameter-dependent nonlinear equa-
tion, see Verfürth [33, 34], for example, while convergent adaptive algorithms for eigen-
value problems have been analysed in [7,17]. More recently, in the article [11], we consid-
ered the a posteriori estimation of the error in the leading eigenvalue for the hydrodynamic
stability problem. In particular, we employed a dual weighted residual (DWR) a posteriori
error estimator, see [4, 16, 21], for example, specifically tailored to assess the accuracy of
the computed leading eigenvalue. Here, the discretization error stemming from both the
numerical approximation of the steady incompressible Navier-Stokes equations, as well
as the error arising from the approximation of the corresponding eigenvalue problem it-
self was controlled. The purpose of this article is to consider the natural extension of these
ideas to bifurcation problems. More precisely, we derive computable a posteriori bounds
on the error in the DG approximation of the critical parameter value for the Bratu prob-
lem, based on exploiting the general DWR methodology. Additionally, we extend the
ideas presented in Moore & Spence [28] to develop an efficient solution algorithm for
both the underlying primal and dual problems to the DG setting.

Rigorous proofs of the existence of bifurcation points in continuous systems, such as
the Bratu problem in 2 or more dimensions, are extremely difficult. Indeed one of the
primary motivations for developing numerical methods for such problems is that they
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are beyond the reach of current analytical approaches. What is usually done theoretically
is to assume that a particular bifurcation point exists in the continuous problem and then
show that the discretised problem has the same type of bifurcation for a nearby parame-
ter value, which converges to the exact value as the mesh is refined. To our knowledge,
this kind of analysis has not yet been carried out for DG methods applied to bifurcation
problems and is the topic of reference [10]. However, what one would really like is a the-
orem that says if a bifurcation is present in the discretised problem and certain additional
(and computable) conditions are satisfied then the continuous problems also has such a
bifurcation. Such results are not available at present and are likely to be very difficult to
obtain. Current practice in this area is to compute bifurcations for the discretised prob-
lem and then infer their presence in the continuous problem. In applying a posteriori
error estimation to bifurcation problems, for the first time, we are taking a significant
step towards the goal of establishing rigorously the existence of bifurcation points for
the continuous problem, but we fully acknowledge that much still remains to be done in
terms of rigorous analysis.

The article is structured as follows. In the next section we discuss the calculation of
simple fold points, specifically we shall be interested in quadratic fold points. In Sec-
tion 3 we then recall the DWR error estimation technique applied to a general Galerkin
finite element method and propose its application for the control of the error in the com-
puted critical parameter. Computation of critical parameters involves the solution of an
extended system for the base solution, null-function and the critical parameter; similarly,
the error estimation involves the computation of an associated dual solution which satis-
fies a corresponding adjoint extended system. In Section 4 we therefore discuss how the
solution of these extended systems may be computed in an efficient manner. The Bratu
problem and its DG discretization are presented in Section 5 and an error representation
formula for the error in the computed critical parameter is developed. Numerical exper-
iments for the Bratu problem in one- and two-dimensions are then carried out in Section
6 before we draw some conclusions in Section 7.

2 Calculation of simple fold points

Following the discussion presented in [12], we consider a nonlinear problem of the form

F(u,λ)=0, (2.1)

where F is a map from V×R →V, for some Banach space V, with norm ‖·‖. For the
purpose of this article, we shall primarily be concerned with the case when F is a partial
differential operator defined over a given computational domain Ω, subject to appropri-
ate boundary/initial conditions. We assume that F is smooth, that is

F :V×R→V,

is a C3 mapping. In applications, it is often of interest to compute paths or branches of
solutions of (2.1), where λ is some distinguished parameter, e.g., the flow rate or Reynolds
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number, and u is a state variable, e.g., the temperature or velocity field. We denote the
Fréchet derivative of F with respect to u at a fixed point (w,χ)∈V×R, by F′

u(w,χ;·) and
similarly the derivative with respect to λ by F′

λ(w,χ). Here and throughout the paper,
we use the convention that in semi-linear forms such as F′

u(·,·;·), the form is linear with
respect to all arguments to the right of the semicolon. We will assume that

F′
u(u,λ;·) :V→V,

is Fredholm of index 0 for all (u,λ)∈V×R. For convenience, at a given point (u0,λ0), we
define

F0 = F(u0,λ0), F0
u(·)= F′

u(u0,λ0;·), and F0
λ = F′

λ(u0,λ0).

Higher order Fréchet derivatives are expressed in much the same way, for example,
the Fréchet derivative of F′

u(w,χ;·) with respect to u at a fixed point v is denoted by
F′′

uu(w,χ;·,v), and similarly, at a given point (u0,φ0,λ0), we define

F0
uuφ0(·)= F′′

uu(u0,λ0;·,φ0), and F0
uλφ0 = F′′

uλ(u0,λ0;φ0).

We define the set S by

S :=
{

(u,λ)∈V×R : F(u,λ)=0
}

.

If (u0,λ0)∈ S with F0
u an isomorphism on V, then the Implicit Function Theorem (IFT)

ensures the existence of a unique smooth path of solutions u(λ)∈C3, satisfying

F
(

u(λ),λ
)

=0,

for λ in a neighbourhood of λ0, with F′
u(u,λ;·) an isomorphism. In this article we consider

only the case of simple singular points, i.e., where (u0,λ0) satisfies

F0 =0, and dimker(F0
u)=1. (2.2)

Furthermore, these singular points will be quadratic fold points and thus, denoting by V ′

the dual space of V and by 〈·,·〉 the duality pairing between the spaces V and V ′, the
additional side constraints

〈F0
λ,ψ0〉 6=0, and 〈F0

uuφ0(φ0),ψ0〉 6=0, (2.3)

will also hold, for any ψ0∈ker((F0
u)′). For notational simplicity, in the sequel we suppress

the superscript ”0”, when it is clear from the context that the solution under consideration
is indeed a singular (quadratic fold) point of (2.1). With this in mind, to determine the
quadratic fold point of (2.1), we seek to compute a solution of the following extended
system: find

u=(u,φ,λ)∈V=V×V×R,
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such that

T(u)≡




F(u,λ)
F′

u(u,λ;φ)
〈φ,c〉−1



=0, (2.4)

where c∈V ′ is some chosen functional, which satisfies 〈φ,c〉 6=0, for φ∈ker(F′
u(u,λ;·)), see

[28, 30, 31]. The equation 〈φ,c〉−1=0 acts to normalise the nullfunction φ, thus ensuring
that, if a solution to (2.4) exists at some λ, the solution is unique.

The following lemma will prove useful.

Lemma 2.1 (”ABCD” Lemma). Keller, [24, Lemma 2.8]. Let V be a Banach space and con-
sider the linear operator M :V×R→V×R of the form

M=

(

A b
〈·,c〉 d

)

, (2.5)

where A :V→V, b∈V\{0}, c∈V ′\{0}, d∈R. Then
1. If A is an isomorphism on V, then M is an isomorphism on V×R if and only if

d−〈A−1b,c〉 6=0.

2. If dimker(A)=codimRange(A)=1, then M is an isomorphism if and only if

(a) 〈b,ψ〉 6=0, ∀ψ∈ker(A′)\{0},

(b) 〈φ,c〉 6=0, ∀φ∈ker(A)\{0}.

3. If dimker(A)≥2, then M is singular.

3 A posteriori error estimation

In this section we develop a general theoretical framework for the derivation of com-
putable a posteriori estimates for the error in the computed bifurcation point when the
extended system (2.4) is numerically approximated by a general Galerkin finite element
method. To this end, we exploit the duality-based a posteriori error estimation techniques
developed by C. Johnson and R. Rannacher and their collaborators. For a detailed dis-
cussion, we refer to the series of articles [5, 15, 23, 26], and the references cited therein.

We begin by first introducing a suitable finite element approximation of the bifur-
cation problem (2.4). To this end, we consider a sequence of finite element spaces Sh,p

consisting of piecewise polynomial functions of degree p on a partition Th, of granularity
h. The Galerkin finite element approximation consists of finding the triple

uh =(uh,φh,λh)∈Sh,p =Sh,p×Sh,p×R,

such that

N (uh;vh)≡N̂ (uh,λh;vh)+N̂ ′
u(uh,λh;φh,ϕh)+χh

(

(c,φh)−1
)

=0, ∀vh∈Sh,p, (3.1)
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where vh =(vh,ϕh,χh), N̂ (·;·) is the semi-linear form associated with the discretization of
the underlying partial differential equation (2.1) and N̂ ′

u(·,·;·,·) is the Jacobian of N̂ (·,·;·)
with respect to u. Further, we assume that (uh,φh,λh) also satisfies the properties of a
quadratic fold point, i.e.,

N̂ ′
λ(uh,λh;ψh) 6=0, N̂ ′′

uu(uh,λh;φh,φh,ψh) 6=0, (3.2)

where ψh ∈ ker
(

N̂ ′
u(uh,λh;·,ϕh)

)

for all ϕh ∈ Sh,p. Finally, we also assume that (3.1) is a
consistent discretization of (2.4); namely that the analytical solution u = (u,φ,λ) to (2.4)
satisfies

N (u;vh)=0, ∀vh∈Sh,p, (3.3)

and moreover, we assume that, as the mesh is refined, uh converges to u with respect to
some appropriate norm. These assumptions are very reasonable; indeed, for a continuous
problem exhibiting a simple singular point (u0,λ0)∈V×R, Brezzi et al. [6] showed that
a numerical discretization of the problem (such as the standard conforming Galerkin
finite element method), which approximates functions in V with functions in a finite
dimensional subspace Vh⊂V, will also possess a simple singular point (u0

h,λ0
h)∈Vh×R in

a neighbourhood of (u0,λ0), and furthermore (u0
h,λ0

h)→ (u0,λ0), as h→0. For analogous
results for problems with simple singular points in the context of discontinuous Galerkin
methods (where Vh 6⊂V) we refer the reader to [10].

Remark 3.1. We remark that, in a slight variation to the standard approach of the loca-
tion of critical parameters, we have recast the equation (c,φh)−1 = 0 in the weak form
χh

(

(c,φh)−1
)

=0, for all χh ∈R. As R = span{1}, this has no effect when calculating the
approximate critical parameter, but this formulation is required for the error estimation
which follows.

3.1 DWR approach for functionals

For a linear target functional of practical interest J : V → R, we briefly outline the key
steps involved in estimating the approximation error J(u)− J(uh) employing the DWR
technique. We write M(·,·;·,·) to denote the mean value linearization of N (·;·), defined
by

M(u,uh;u−uh,w)=N (u;w)−N (uh;w)

=
∫ 1

0
N ′

u

(

θu+(1−θ)uh;u−uh,w
)

dθ, (3.4)

for some w∈V. We now introduce the following (formal) dual problem: find z∈V, such
that

M(u,uh;w,z)= J(w), ∀w∈V. (3.5)
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We assume that (3.5) possesses a unique solution. This assumption is, of course, depen-
dent on both the definition of M(u,uh;·,·) and the target functional under consideration.
We point out that well-posedness of the underlying primal problem does not automati-
cally imply the well-posedness of the corresponding dual problem. Indeed, this must be
verified for the problem at hand; this is a particularly pertinent issue when considering
first-order hyperbolic conservation laws, see, for example, the discussion in [20]. For the
proceeding error analysis, we assume that (3.5) is well-posed. By using the linearity of
J(·), combining (3.4) and (3.5) and using the consistency condition (3.3) we arrive at the
following error representation formula

J(u)− J(uh)= J(u−uh)=M(u,uh;u−uh,z)

=M(u,uh;u−uh,z−zh)

=−N (uh,z−zh), ∀zh ∈Sh,p. (3.6)

As it stands, the error representation formula (3.6) is still non-computable, since z is un-
known. Instead, we must seek a finite dimensional approximation ẑh to z. Unfortunately
it is not possible to seek ẑh ∈Sh,p, otherwise the resulting error representation would be
identically zero due to (3.1). A number of possible alternatives exist. The first involves
keeping the degree p of the approximating polynomial the same as that for uh, but com-
puting ẑh on a sequence of dual finite element meshes T̂ĥ which, in general, differ from
the ”primal meshes” Th. Alternatively ẑh ∈Sh, p̂ may be computed using polynomials of
degree p̂ > p on the same finite element mesh Th employed for the primal problem. A
variant of this second approach is to compute the approximate dual solution using the
same polynomial degree p as used for the primal problem and to extrapolate the result-
ing approximate dual solution ẑh. Although this latter approach is the cheapest of the
three methods, and is still capable of producing adaptively refined meshes specifically
tailored to the selected target functional, the quality of the resulting approximate error
representation formula may be poor, cf. [19], for example. On the basis of numerical ex-
perimentation ( [19]), we favour the second approach due to its computational simplicity
of implementation.

In our case, we are interested in controlling the error in the critical bifurcation pa-
rameter and hence the target functional of interest is simply J(u)= λ. The linearization
performed in (3.4) is carried out at a convex combination of u and uh, however, as u is not
available we linearize only about our approximate solution uh and thereby the integral in
(3.4) is redundant. Hence, the (approximate) dual problem, attained by linearizing about
uh, for the estimation of the error in the computed critical parameter is defined by: find
ẑh =(zu,zφ,zλ)∈Sh, p̂, such that

N̂ ′
u(uh,λh;vh,zu)+N̂ ′

λ(uh,λh;zu)χh+N̂ ′′
uu(uh,λh;vh,φh,zφ)

+N̂ ′
u(uh,λh;ϕh,zφ)+N̂ ′′

uλ(uh,λh;φh,zφ)χh+zλ(c,ϕh)=1, ∀vh∈Sh, p̂, (3.7)

where vh =(vh,ϕh,χh).
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4 Solution procedure

In this section we discuss how to solve the primal and dual problems in an efficient
manner by reducing the extended problems to a succession of smaller ones, cf. [28].

4.1 Primal problem

To determine the numerical solution uh to the nonlinear system of equations (3.1), we
employ a damped Newton method. This nonlinear iteration generates a sequence of
approximations un

h , n = 1,2,··· , to the actual numerical solution uh using the following
algorithm. Given an iterate un

h , the update dn
h = (dun

h ,dφn
h ,dλn

h), for un
h to get to the next

iterate

un+1
h =un

h +ωndn
h , 0<ωn ≤1,

is defined by: find dn
h , such that

N̂ ′
u(un

h ,λn
h ;dun

h ,vh)+N̂ ′
λ(un

h ,λn
h ;vh)dλn

h = rn
1 (vh), (4.1a)

N̂ ′′
uu(un

h ,λn
h ;dun

h ,φn
h ,ϕh)+N̂ ′

u(un
h ,λn

h ;dφn
h ,ϕh)+N̂ ′′

uλ(un
h ,λn

h ;φn
h ,ϕh)dλn

h = rn
2 (ϕh), (4.1b)

χh(dφn
h ,c)= rn

3 (χh), (4.1c)

for all vh =(vh,ϕh,χh)∈Sh,p. Here, rn
1 (·), rn

2 (·) and rn
3 (·) are residuals given, respectively,

by

rn
1 (vh)=−N̂ (un

h ,λn
h ;vh), rn

2 (ϕh)=−N̂ ′
u(un

h ,λn
h ;φn

h ,ϕh), rn
3 (χh)=−χh

(

(φn
h ,c)−1

)

.

Furthermore, the step length ωn is automatically selected to ensure that the l2-norm of
the residual of the underlying approximation is reduced at each Newton step. If the finite
element space Sh,p is of dimension N, then the system defined in (4.1) is of size 2N+1,
which may be extremely large for problems of engineering interest. Instead, we would
like to reduce it to a collection of smaller problems, though, we point out that, a block
LU-decomposition is not applicable since it will lead to the inversion of N̂ ′

u(un
h ,λn

h ;·,·),
which is singular at the bifurcation point. Instead, we follow the proceeding steps: we
assume a Galerkin type approximation of uh, in which case

un
h =

N

∑
i=1

Un
i ϕi, φn

h =
N

∑
i=1

Φn
i ϕi, dun

h =
N

∑
i=1

dUn
i ϕi, dφn

h =
N

∑
i=1

dΦn
i ϕi,

where {ϕi}N
i=1 is the set of linearly independent finite element basis functions which span

Sh,p. We let

φn
h ={Φi}N

i=1, dun
h ={dUn

i }N
i=1, dφn

h ={dΦn
i }N

i=1,

and in an abuse of notation, we can rewrite (4.1) as




Fn
u 0 Fn

λ
Fn

uu Fn
u Fn

uλ

0⊤ l⊤ 0









dun
h

dφn
h

dλn
h



=





rn
1

rn
2

rn
3



, (4.2)
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where the matrices Fn
u and Fn

uu are given, respectively, by

{Fn
u}N

i,j=1 =
{N̂ ′

u(un
h ,λn

h ;ϕi,ϕj)
}N

i,j=1
, {Fn

uu}N
i,j=1 =

{N̂ ′′
uu(un

h ,λn
h ;ϕi,φ

n
h ,ϕj)

}N

i,j=1
,

and the vectors Fn
λ and Fn

uλ are given, respectively, by

{Fn
λ }N

i=1 =
{

N̂ ′
λ(un

h ,λn
h ;ϕi)

}N

i=1
, {Fn

uλ}N
i=1 =

{

N̂ ′′
uλ(un

h ,λn
h ;φn

h ,ϕi)
}N

i=1
.

Finally, l is the vector given by

{l}N
i=1 =(ϕi,c), {rn

1}N
i=1 = rn

1 (ϕi),

and so on. We introduce the auxiliary variable µ = l⊤dun
h , and consider the following

equation
[

Fn
u Fn

λ

l⊤ 0

][

dun
h

dλn
h

]

=

[

rn
1

µ

]

≡
[

rn
1

0

]

+

[

0
1

]

µ. (4.3)

Using Lemma 2.1 and the conditions of a quadratic fold point (2.2) and (2.3), we see that,
even at the fold point, the matrix in (4.3) is non-singular. Hence, the following holds

[

dun
h

dλn
h

]

=

[

a
α

]

+

[

b
β

]

µ, (4.4)

where
[

a
α

]

=

[

Fn
u Fn

λ

l⊤ 0

]−1[

rn
1

0

]

,

[

b
β

]

=

[

Fn
u Fn

λ

l⊤ 0

]−1[

0

1

]

.

Using (4.4), the second and third equations of (4.2) can then be rewritten as
[

Fn
u Fn

λ

l⊤ 0

][

dφn
h

µ

]

=

[

rn
2 +Fn

λ µ−Fn
uλdλn

h−Fn
uudun

h
rn

3

]

≡
[

rn
2 −Fn

uλα−Fn
uua

rn
3

]

+

[

Fn
λ −Fn

uλβ−Fn
uub

0

]

µ,

which in turn implies
[

dφn
h

µ

]

=

[

c
γ

]

+

[

d
δ

]

µ, (4.5)

where
[

c
γ

]

=

[

Fn
u Fn

λ

l⊤ 0

]−1[

rn
2 −Fn

uλα−Fn
uua

rn
3

]

,

and
[

d
δ

]

=

[

Fn
u Fn

λ

l⊤ 0

]−1[

Fn
λ −Fn

uλβ−Fn
uub

0

]

.
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Hence, µ is given in closed form by

µ=
γ

1−δ
,

which can then be used in (4.4) and (4.5) to compute dun
h , dλn

h and dφn
h . It then remains

to show that δ 6=1.

Lemma 4.1. Consider δ as given in (4.5). At a quadratic fold bifurcation point (uh,φh,λh), we
have that δ 6=1.

Proof. We have that
[

Fu Fλ

l⊤ 0

][

b
β

]

=

[

0

1

]

, (4.6)

where the superscript ”n” have been dropped to indicate evaluation at the bifurcation
point. We premultiply the above equation by (ψ⊤

h ,0), where ψh∈ker(Fu)⊤ to obtain

β=0.

Hence, (4.6) becomes
[

Fu Fλ

l⊤ 0

][

b
0

]

=

[

0

1

]

, (4.7)

from which we deduce that b=φh. Furthermore,
[

Fu Fλ

l⊤ 0

][

d
δ

]

=

[

Fλ−Fuuφh

0

]

. (4.8)

Premultiplying this equation by (ψ⊤
h ,0), then gives

ψ⊤
h Fλδ=ψ⊤

h Fλ−ψ⊤
h Fuuφh.

Using the side constraints (3.2), we have

ψ⊤
h Fλ 6=0, ψ⊤

h Fuuφh 6=0,

thus we can be sure that δ is well defined and δ 6=1.

Remark 4.1. A continuity argument shows that in a neighbourhood of (uh,φh,λh), New-
ton’s method can be used in the manner proposed above without the matrices present in
the inner (linear) iteration becoming singular. The solution of the primal problem thus
requires four solves with the same matrix for each Newton iteration.

Remark 4.2. Although we do not do this in our numerical experiments, for simplicity, it
is possible to approximate the second derivatives Fn

uua and Fn
uub using a directional finite

differencing technique. For example,

Fn
uua≈ Fu(un

h +ǫφn
h )a−Fn

ua

ǫ
,

where ǫ= ε
(

ε+‖un
h‖

/

‖φn
h‖

)

, for ε=10−6, and Fu(·) is the matrix, such that
{

Fu(·)
}N

i,j=1
= N̂ ′

u(·,λn
h ;ϕi,ϕj).
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4.2 Dual problem

In this section we outline the numerical procedure employed to compute the solution of
the (approximate) dual problem defined in (3.7). To this end, we first write

zu =
N̂

∑
i=1

Zu,i ϕ̂i, zφ =
N̂

∑
i=1

Zφ,i ϕ̂i,

where {ϕ̂i}N̂
i=1 is the set of linearly independent finite element basis functions, which

span Ŝh, p̂. Defining

zu ={Zu,i}N̂
i=1, zφ ={Zφ,i}N̂

i=1,

we rewrite the dual problem (3.7) as: find the triple (zu,zφ,zλ), such that





(F̂u)⊤ (F̂uu)⊤ 0

0 (F̂u)⊤ l̂

(F̂λ)⊤ (F̂uλ)⊤ 0









zu

zφ

zλ



=





0

0

1



. (4.9)

Here, F̂u is the Jacobi matrix defined on the space Sh, p̂ evaluated at uh, and so on. In
analogy to the solution of the primal problem, we reduce (4.9) to a collection of smaller
matrix problems. First, we introduce an auxiliary variable zµ =(F̂λ)⊤zφ and consider the
set of equations

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

][

zφ

zλ

]

=

[

0

1

]

zµ. (4.10)

Once again, Lemma 2.1 can be used to show that the matrix on the left-hand side of
(4.10) is non-singular at a quadratic fold point. We point out that in this case, as the dual
solution belongs to a finite element space consisting of higher order polynomials than
that used for the numerical approximation of the primal solution, F̂u may not necessarily
be singular, though it is expected to be highly ill-conditioned, particularly as the finite
element mesh is enriched. Hence, we first write

[

zφ

zλ

]

=

[

az

αz

]

zµ, (4.11)

where

[

az

αz

]

=

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

]−1[

0
1

]

.

Thus, the first and third equations of (4.9) can be rewritten as

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

][

zu

zµ

]

=

[

zµ l̂−(F̂uu)⊤zφ

1−(F̂uλ)⊤zφ

]

=

[

0

1

]

+

[

l̂−(F̂uu)⊤az

−(F̂uλ)⊤az

]

zµ.
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Hence,
[

zu

zµ

]

=

[

az

αz

]

+

[

bz

βz

]

zµ, (4.12)

where

[

bz

βz

]

=

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

]−1[

l̂−(F̂uu)⊤az

−(F̂uλ)⊤az

]

.

Therefore,

zµ =
αz

1−βz
,

and (4.11) and (4.12) can be used to calculate zu, zφ and zλ. We now seek to show that
βz 6=1.

Lemma 4.2. Consider βz as defined in (4.12), but with Sh, p̂ =Sh,p, then βz 6=1.

Proof. We have

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

][

bz

βz

]

=

[

l̂−(F̂uu)⊤az

−(F̂uλ)⊤az

]

, (4.13)

and
[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

][

az

αz

]

=

[

0

1

]

. (4.14)

We premultiply (4.13) by ((φh)
⊤,0), with φh the null-function of Fu (and therefore also of

F̂u, as Sh, p̂ =Sh,p), to obtain

βz =1−(φh)
⊤(F̂uu)

⊤az =1−(F̂uuφh)
⊤az.

Hence, we must now show that (F̂uuφh)
⊤az 6= 0. We premultiply (4.14) by ((φh)

⊤,0) to
obtain αz =0, and hence az 6=0, but we must have

(F̂u)
⊤az =0,

or in other words, az is in the null-space of the operator (F̂u)⊤, and hence, by the con-
straint (3.2), (F̂uuφh)

⊤az 6=0.

Remark 4.3. We notice that if φh→φ, then zλ→0, which will be witnessed in the proceed-
ing numerical examples. Although the dual problem requires the solution on an enriched
finite element space, only two solves with the same matrix is required, as opposed to four
for each Newton iteration of the primal problem.
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Remark 4.4. As with the primal problem, although we do not use this technique in our
numerical experiments, finite differencing can be used for the calculation of the second
order derivatives. For example,

(F̂uu)
⊤az =

(

a⊤
z (F̂uu)

)⊤≈
(a⊤

z

(

F̂u(uh+ǫφh)−F̂u

)

ǫ

)⊤
, (4.15)

where ǫ= ε
(

ε+‖uh‖
/

‖φh‖
)

, for ε=10−6.

5 Bratu problem and DG discretization

The Bratu problem on an open bounded domain Ω∈R
d, d≥1, with boundary Γ=∂Ω, is

defined by

∆u+λeu =0, x∈Ω, (5.1)

subject to homogeneous boundary conditions

u=0, x∈Γ. (5.2)

When d≤2 the nonlinear operator on the left hand side of (5.1) maps H1
0(Ω) to H−1(Ω)

(see Section 17 of reference [18]). We remark that Eq. (5.1) may be posed within the ab-
stract setting outlined in Section 2, based on first applying the inverse Laplacian operator
to (5.1). This approach was first developed by Brezzi and co-workers (see, e.g., [6]); a sur-
vey of this technique, together with the extension to the incompressible Navier-Stokes
equations is presented in [12].

Computing the Fréchet derivative of (5.1) with respect to u in the direction φ, we
deduce that at a singular point (u0,φ0,λ0) the following holds

Lu(u0,λ0)≡∆u0+λ0eu0
=0, x∈Ω, (5.3a)

Lφ(u0,λ0;φ0
h)≡∆φ0+λ0eu0

φ0 =0, x∈Ω, (5.3b)

subject to the homogeneous boundary conditions

u0 =0, x∈Γ, (5.4a)

φ0 =0, x∈Γ, (5.4b)

and the normalisation condition

(φ0,c)=1,

for some c∈ L2(Ω). The precise choice of c is not unique; clearly, any function which is
not orthogonal to φ0 may be employed. For the case of the Bratu problem, numerical
experiments indicate that simply selecting c=1 is indeed a suitable choice.
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5.1 Meshes and traces

In this section we introduce the notation needed to define the symmetric interior penalty
DG discretization of the primal problem (5.3)-(5.4). Specifically, we consider Ω⊂R

d, d=2,
with the definition for d=1 following in a natural manner.

To this end, we assume that Ω can be subdivided into shape-regular meshes Th ={κ}
(with possible hanging nodes) consisting of tensor-product elements κ (quadrilaterals,
when d=2). For the sake of simplicity, we shall suppose that the mesh is 1-regular in the
sense that there is at most one hanging node per element-face, which we assume to be
the barycenter of the face. We denote by h the piecewise constant mesh function with

h(x)≡hκ =diam(κ),

when x is in element κ. An interior face of Th is defined as the (non-empty) (d−1)-
dimensional interior of ∂κi∩∂κj, where κi and κj are two adjacent elements of Th, not nec-
essarily matching. A boundary face of Th is defined as the (non-empty) (d−1)-dimensional
interior of ∂κ∩Γ, where κ is a boundary element of Th. We denote by Γint the union of
all interior faces of Th. Given a face f ⊂Γint, shared by the two elements κi and κj, where
the indices i and j satisfy i > j, we write n f to denote the (numbering-dependent) unit
normal vector which points from κi to κj; on boundary faces, we put n f =n. Further, for
v sufficiently smooth, we define the jump of v across f and the mean value of v on f ,
respectively, by

[v]=v|∂κi∩ f −v|∂κj∩ f , 〈v〉= 1

2

(

v|∂κi∩ f +v|∂κj∩ f

)

.

On a boundary edge f ⊂∂κ, we set

[v]=v|∂κ∩ f , 〈v〉=v|∂κ∩ f .

Finally, given a smooth function v and an element κ∈Th, we denote by v+
κ (respectively,

v−κ ) the interior (respectively, exterior) trace of v defined on ∂κ (respectively, ∂κ\Γ). Since
below it will always be clear from the context which element κ in the subdivision Th

the quantities v+
κ and v−κ correspond to, for the sake of notational simplicity, we shall

suppress the letter κ in the subscript and write, respectively, v+ and v− instead.
Given that κ is an element in the subdivision Th, we denote by ∂κ the union of (d−1)-

dimensional open faces of κ. Let x∈∂κ and suppose that nκ(x) denotes the unit outward
normal vector to ∂κ at x.

For a given mesh Th and polynomial degree p≥ 1, we introduce the following finite
element space

Sh,p =
{

v∈L2(Ω) : v|κ ∈Qp(κ), ∀κ∈Th

}

.

Here, Qp(κ) denotes the space of tensor product polynomials on κ of degree at most p in
each coordinate direction. We then define the space Sh,p by

Sh,p =Sh,p×Sh,p×R,
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with which we shall approximate the base solution, the null-function and the critical
parameter value.

5.2 Symmetric interior penalty DG method

The symmetric interior penalty DG approximation of (5.3), (5.4) is defined as follows,
where again for notational simplicity we have suppressed the superscript ”0”: find uh =
(uh,φh,λh) in Sh,p, such that

N (uh;vh)=0, (5.5)

for all vh =(vh,ψh,χh)∈Sh,p, where

N (uh;vh)=−Ba(uh,vh)+B f (vh,uh)+B f (uh,vh)−Bϑ(uh,vh)

+λh

∫

Ω
euhvh dx+λh

∫

Ω
euh φhψhdx+χh

(

(φh,g)−1
)

−Ba(φh,ψh)+B f (ψh,φh)+B f (φh,ψh)−Bϑ(φh,ψh),

Ba(w,v)= ∑
κ∈Th

∫

κ
∇w ·∇vdx,

B f (w,v)=
∫

Γint∪Γ
〈(∇w)·n f 〉[v]ds,

Bϑ(w,v)=
∫

Γint∪Γ
ϑ[w][v]ds.

Here, ϑ is called the discontinuity-penalization parameter and is defined by ϑ| f = ϑ f , for
f ⊂Γint∪Γ, where ϑ f is a non-negative constant on face f . We select ϑ f as follows: writing
h∈L∞(Γint∪Γ) to denote the mesh function defined by

h(x)=

{

min{hκ ,hκ′}, x∈ f =∂κ∩∂κ′⊂Γint,
hκ , x∈ f =∂κ∩Γ,

we set

ϑ f =Cϑ
p2

h
.

Here, Cϑ is a positive constant which is independent of the mesh size and polynomial de-
gree p. Selecting Cϑ to be sufficiently large guarantees the well-posedness of the interior
penalty DG method (5.5). For details concerning the construction of the DG method (5.5),
we refer the reader to the article [22], for example.

5.3 A posteriori error estimation

We are now in a position to apply the DWR a posteriori error estimation technique out-
lined in Section 3 to the DG method proposed in the previous section. To this end, we
have the following result.
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Proposition 5.1 (Error Representation Formula). Let u and uh denote the solutions of
(5.3)-(5.4) and (5.5), respectively, and suppose that the corresponding dual problem (3.5)
is well posed, with solution denoted by z=(z′u,z′φ,z′λ). Then

λ−λh = εΩ(u,uh;z−zh)= ∑
κ∈Th

ηκ , (5.6)

for all zh =(zu,h,zφ,h,zλ,h)∈Sh,p. Here, ηκ =ηu
κ +η

φ
κ ,

ηu
κ = ∑

κ∈Th

∫

κ
Lu(uh,λh)whdx+

1

2

∫

∂κ\Γ

{

[uh]∇w+
h ·nκ−w+

h [∇uh ·nκ ]
}

ds

−
∫

∂κ\Γ
ϑ[uh]w

+
h ds+

∫

∂κ∩Γ
Ru

D(uh)∇w+
h ·nds−

∫

∂κ∩Γ
ϑRu

D(uh)w+
h ds, (5.7)

η
φ
κ = ∑

κ∈Th

∫

κ
Lφ(uh,λh;φh)ωhdx+

1

2

∫

∂κ\Γ

{

[φh]∇ω+
h ·nκ−ω+

h [∇φh ·nκ ]
}

ds

−
∫

∂κ\Γ
ϑ[φh]ω

+
h ds+

∫

∂κ∩Γ
R

φ
D(φh)∇ω+

h ·nds−
∫

∂κ∩Γ
ϑR

φ
D(φh)ω+

h ds. (5.8)

Moreover, wh=z′u−zu,h, ωh=z′φ−zφ,h, Ru
D(uh) and Ru

D(φh), represent the boundary resid-
uals for u and φ, respectively. Since homogeneous Dirichlet boundary conditions have
been employed, we have that

Ru
D(uh)

∣

∣

∂κ∩Γ
=u+

h

∣

∣

∂κ∩Γ
, and R

φ
D(φh)

∣

∣

∂κ∩Γ
=φ+

h

∣

∣

∂κ∩Γ
.

Proof. The error representation formula follows after an application of (3.6) and perform-
ing integration by parts.

6 Numerical experiments

In this section, we present numerical examples to highlight the practical performance of
our proposed a posteriori error indicator on adaptively refined computational meshes.

6.1 Example 1

In this first example we consider the Bratu problem in one-dimension on the domain
Ω = (0,1). In this case it can be shown that the Bratu problem has zero, one, or two
solutions when λ>λ0, λ=λ0, and λ<λ0, respectively, where the critical value λ0 satisfies
the equations

1=
1

4

√
2λ0sinh

( θ0

4

)

, and θ0 =
√

2λ0cosh
( θ0

4

)

,
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see [3]. A simple iterative solution procedure reveals that λ0=3.5138307191 to 10 decimal
places.

We begin with a uniform starting grid which divides [0,1] into 16 elements and carry
out an adaptive mesh refinement strategy based on the a posteriori error estimate derived
in the previous section. For the primal problem a polynomial degree of p=1 is used for
the numerical approximation of both the base solution and the null-function; on the other
hand, the dual problem is approximated with discontinuous piecewise polynomials of
degree p̂ = 2. Elements are marked for refinement/derefinement using a fixed fraction
strategy according to the size of the (approximate) error indicators |η̂κ |, with refinement
and derefinement fractions set to 20% and 10%, respectively. Here, the approximate error
indicator η̂κ is defined in an analogous fashion to ηκ in Proposition 5.1 with z replaced by
ẑh ∈Sh,2.

Table 1 shows the number of elements and the number of degrees of freedom em-
ployed in the finite element space Sh,p, the computed critical parameter λ0

h, the dual crit-

ical parameter zλ, the true error |λ0−λ0
h|, the predicted error |∑κ η̂k| and the effectivity

index τ = |∑κ η̂k|
/

|λ0−λ0
h|, as the mesh Th is refined. We first notice that, even on very

coarse meshes, the error indicator is performing extremely well, with effectivity indices
of 1.00 on all but the first two meshes. We remark that effectivities less than unity are
possible since the equality (5.6) only holds with the analytical dual solution; note here,
that the dual solution has been numerically computed as part of the a posteriori error es-
timation procedure. Secondly, we note that as the mesh is refined zλ does indeed appear
to be tending to 0.

Table 1: Convergence and effectivity indices for the 1D Bratu problem.

No. Elements DOF λ0
h zλ |λ0−λ0

h| |∑κ η̂k| τ
16 32 3.5249864 3.63E-05 1.116E-02 1.115E-02 0.99
21 42 3.5204068 1.04E-05 6.576E-03 6.571E-03 0.99
28 56 3.5169520 2.50E-06 3.121E-03 3.120E-03 1.00
36 72 3.5161228 1.14E-06 2.292E-03 2.291E-03 1.00
46 92 3.5151761 4.42E-07 1.345E-03 1.345E-03 1.00
59 118 3.5147078 2.06E-07 8.771E-04 8.770E-04 1.00
75 150 3.5143572 5.94E-08 5.265E-04 5.264E-04 1.00
96 192 3.5141461 2.45E-08 3.154E-04 3.154E-04 1.00

123 246 3.5140308 1.01E-08 2.001E-04 2.001E-04 1.00
157 314 3.5139494 3.40E-09 1.187E-04 1.187E-04 1.00

6.2 Example 2

In this second example we consider the Bratu problem in two-dimensions on the domain
Ω = (0,1)2. As in the one-dimensional setting, there exists a critical parameter value
λ0, such that for λ > λ0 the problem has no solution, for λ = λ0 there exists exactly one
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solution, and for λ < λ0 there are two solutions. To the authors’ knowledge there is no
analytical expression for the value λ0 in this case, but calculations have revealed that
λ0 =6.808124423 to 9 decimal places, see [27].

Once again we carry out a fixed fraction adaptive strategy using the a posteriori error
estimator developed in the previous section starting from a uniform grid consisting of
256 elements. As before, we assign a polynomial degree of p=1 on each element for the
numerical approximation of the primal problem, and employ bi-quadratic elements for
the numerical solution of the dual problem.

Table 2 shows the number of elements and the number of degrees of freedom em-
ployed in the finite element space Sh,p, the computed critical parameter λ0

h, the dual crit-

ical parameter zλ, the true error |λ0−λ0
h|, the predicted error |∑κ η̂k| and the effectivity

index τ = |∑κ η̂k|
/

|λ0−λ0
h|, as the mesh is refined. As with the one-dimensional case we

witness extremely good error predictions on all meshes, even the very coarse ones. In-
deed, except for the first two grids the effectivity index τ≈ 1.00. As the mesh is refined
we again see an indication that the dual critical parameter is tending to zero.

Table 2: Convergence and effectivity indices for the 2D Bratu problem.

No. Elements DOF λh zλ |λ0−λ0
h| |∑κ η̂k| τ

256 1024 6.8290830 7.83E-05 2.096E-02 2.093E-01 0.99
448 1792 6.8169639 1.12E-05 8.839E-03 8.833E-02 0.99
784 3136 6.8130504 3.73E-06 4.926E-03 4.924E-02 1.00

1342 5368 6.8110225 1.09E-06 2.898E-03 2.897E-02 1.00
2167 8668 6.8102161 7.09E-07 2.092E-03 2.091E-02 1.00
3583 14332 6.8092367 1.85E-07 1.112E-03 1.112E-02 1.00
5902 23608 6.8087960 6.67E-08 6.715E-04 6.715E-03 1.00
9691 38764 6.8085714 3.30E-08 4.469E-04 4.469E-03 1.00
15922 63688 6.8083832 1.08E-08 2.587E-04 2.588E-03 1.00
26449 105796 6.8082700 3.41E-09 1.455E-04 1.455E-03 1.00

Fig. 1(a) shows a plot of the resultant grid after 9 refinement steps; Fig. 1(b) shows
the numerical approximation of the primal base solution computed on that grid. We
notice immediately that the mesh has been refined to resolve the features present in the
base solution. We remark that the primal null-function and both components of the dual
solution exhibit the same features as the primal base solution and thus plots of these
have been omitted for brevity. The DWR technique only leads to refinement of those
regions in the computational domain where the residual weighted with the dual solution
is large. For this problem, the primal and dual solutions are so similar that refinement
has occurred to resolve all features present in the primal solution; this will not be the case
for more general problems.

Finally, for this two-dimensional problem we discuss the overall cost of our proposed
computational algorithm. Given the simplicity of the underlying problem, the Newton
iteration for the primal problem converges in around 3 steps, excluding the initial first
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(a) (b)

Figure 1: (a) Grid after 9 refinement steps and (b) Primal Base Solution.

mesh, where 6 iterations are necessary; here, we have reduced the l2-norm of the under-
lying residual to be below a tolerance of 10−11. In terms of computational time, the cost
of computing the dual solution is approximately 1.4 times that of the primal solution.
However, we point out that for more complicated problems, the cost of the evaluating
the dual solution in comparison to that of computing the primal is significantly reduced.

7 Conclusions

In this article we have developed a framework for a posteriori error estimation targeted at
numerically estimating critical parameters for nonlinear problems exhibiting quadratic
fold points. To this end, we employed the DWR approach, originally developed for the
numerical approximation of target functionals of the solution. This general approach
was then applied to the symmetric interior penalty DG approximation of the Bratu prob-
lem. Numerical experiments presented in both one- and two-dimensions clearly high-
light the practical performance of the proposed a posteriori error indicator within an auto-
matic adaptive mesh refinement strategy. The extension of these ideas to more complex
problems involving incompressible fluid flows in open systems will be considered in
the companion articles [8, 9]. Moreover, the rigorous analysis of discontinuous Galerkin
methods for the numerical approximation of simple singular points will be undertaken
in the forthcoming article [10].
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