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Abstract. In the low-frequency fast multipole algorithm (LF-FMA) [19, 20], scalar ad-
dition theorem has been used to factorize the scalar Green’s function. Instead of this
traditional factorization of the scalar Green’s function by using scalar addition theo-
rem, we adopt the vector addition theorem for the factorization of the dyadic Green’s
function to realize memory savings. We are to validate this factorization and use
it to develop a low-frequency vector fast multipole algorithm (LF-VFMA) for low-
frequency problems. In the calculation of non-near neighbor interactions, the storage
of translators in the method is larger than that in the LF-FMA with scalar addition
theorem. Fortunately it is independent of the number of unknowns. Meanwhile, the
storage of radiation and receiving patterns is linearly dependent on the number of un-
knowns. Therefore it is worthwhile for large scale problems to reduce the storage of
this part. In this method, the storage of radiation and receiving patterns can be reduced
by 25 percent compared with the LF-FMA.
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1 Introduction

To meet real needs of society, more complex computational algorithms are needed to nu-
merically simulate and analyze more complex problems. As a popular way to perform
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complex computational algorithms, modern computational electromagnetics has made
great strides forward. However, since the finite power of computers limits the size of
problems which can be solved with computational algorithms, computational electro-
magnetics is confronted with the issue of CPU time usage and memory requirements.

Many numerical modelings of physical phenomena or systems often result in ma-
trix equations, in which matrices are dense. As direct inversion methods require O(N2)
memory and O(N3) central processing unit time, where N is the number of unknowns
for solving the problem, it is not suitable to solve large scale problems with direct inver-
sion methods. Hence, iterative solvers for matrix equations have been developed. The
bottleneck of iterative solvers is the matrix-vector product. Since, for traditional iterative
solvers, the memory and computational complexities of the matrix-vector product scale
as O(N2), it is still not efficient for solving large scale problems by using traditional itera-
tive solvers. In recent decades, fast-multipole-like algorithms [10,12,18,20,21] have been
developed to accelerate the matrix-vector product. Such matrix-vector product can be
performed in O(N) operations or O(N logN) operations per iteration depending on the
problem. Moreover, in these methods, the memory complexity is the same as the compu-
tational complexity. For example, the memory requirement and the number of floating
point operations per iteration of the low-frequency multilevel fast multipole algorithm
(LF-MLFMA) are both of O(N). Up to now, since many fast algorithms are quite mature
and CPU time and memory usage in fast multipole algorithms scale as

Time≈CtN logN, Memory≈CmN logN, (1.1)

it is meaningful for large problems to gain efficiency by reducing the constant Ct or Cm in
front of the scaling formulas.

Electromagnetic simulations in the low frequency regime are important issues, where
the objects or parts can be a tiny fraction of wavelength. Such simulations are often
encountered in analyzing electromagnetic phenomena in circuits and antennas. With
increasing complexity of circuits or antennas, it is necessary to improve the ability of fast
solvers for handling large-scale problems at low frequencies. For achieving this aim, one
way is to enhance the memory efficiency of fast solvers. To develop efficient fast solvers
for low-frequency large-scale problems, we start by studying the electric field integral
equation operator [27]

LE(J)= iωµ
∫

S
g(r,r′)J(r′)dr′− 1

iωǫ
∇
∫

S
g(r,r′)∇′ ·J(r′)dr′, (1.2)

where J(r) is the surface current on the surface S. The first term is due to the vector poten-
tial and it corresponds to the electric field generated by a time varying magnetic field. Its
order is O(ω). The second term is due to the scalar potential, corresponding to the elec-
tric field produced by the charge in the system. Its order is O(ω−1). When the frequency
ω→0, the contribution from the vector potential will be lost in the numerical simulation
due to finite machine precision. Then Eq. (1.2) will only have the scalar potential part.
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The integral operator corresponding to the scalar potential part has a null space, which
is due to the divergence operator involved. This makes the impedance matrix nearly sin-
gular and the matrix equation is difficult to solve [5, 7]. Although the vector potential
part is much smaller than the scalar potential part, the two parts are equally important at
low frequencies. The loss of the contribution from the vector potential makes the solution
inaccurate. So an effective numerical method needs to capture the contributions of both
parts simultaneously when the frequency goes to zero.

To overcome the problems, most popular methods are based on the loop-tree or loop-
star decomposition [5,7,9,11,13,14,17], which can separate the contribution of the vector
potential part from that of the scalar potential part. After using the loop-tree or loop-star
basis, frequency normalization can be applied to balance the nearly singular impedance
matrix at very low frequencies. But it should be noted that the achieved matrix is still
ill-conditioned. This is traced to the fact that the divergence of the Rao-Wilton-Glisson
(RWG) basis [6] is not suitable for representing charges, which is contained in the calcu-
lation of the scalar potential part. The basis rearrangement can be adopted to overcome
this problem [20]. By doing so, the spectral property of the impedance matrix can be
improved and the iteration count can be reduced dramatically. However, numerical sim-
ulations show that iterative solvers fail to converge even with the basis rearrangement
when the number of unknowns becomes very large. It is caused by the accumulated
numerical error due to subtractions involved in the basis rearrangement. To avoid this
numerical error, the patch-pair basis, constructed from the single-patch basis directly, is
proposed to express charges [22].

Based on the above ideas, the low-frequency fast multipole algorithm (LF-FMA) has
been developed to numerically solve low frequency problems. In this method, the scalar
addition theorem has been used to factorize the scalar Green’s function. In this paper,
instead of this traditional factorization of the scalar Green’s function by using scalar ad-
dition theorem, we adopt the vector addition theorem for the factorization of the dyadic
Green’s function to realize memory savings. For large scale problems, the computation
and storage of non-near neighbor interactions are the main parts in the whole simulation
process. A low-frequency vector fast multipole algorithm (LF-VFMA) is developed by
using the factorization of the dyadic Green’s function with the vector addition theorem
to save memory for non-near neighbor interactions compared with the LF-FMA. Since
the computational complexity of the LF-VFMA is O(N), it still accelerates the computa-
tion compared with traditional iterative solvers. Since vector translators of the LF-VFMA
can be expressed by using scalar translators of the LF-FMA, theoretically we can only
store scalar translators and the storage of the translator part of the LF-VFMA is the same
as that of the LF-FMA. However, to make the LF-VFMA numerically applicable to low-
frequency problems, some elements of vector translators should be specially handled
and stored. In addition, if we only store scalar translators and these special elements for
calculating vector translators in the iteration process, repeated calculations will increase
floating point operations dramatically for large scalar problems. So, except for scalar
translators and special elements, we can also store some fundamental elements of vector
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translators to reduce part of repeated calculations, which is at the expense of raising the
storage for vector translators. Therefore, the storage for vector translators is larger than
that of scalar translators of the LF-FMA. Fortunately, the storage for vector translators
is independent of the number of unknowns. Meanwhile, the storage of radiation and
receiving patterns in the LF-VFMA can be reduced by 25 percent compared with that of
the LF-FMA. As the storage of radiation and receiving patterns depends on the number
of unknowns, it becomes the main part of the total storage with the increasing scale of
problems. Hence it is effective for large scale problems to reduce the storage of radiation
and receiving patterns.

In this paper, we introduce the factorization of the dyadic Green’s function in terms
of a set of vector multipole fields in Section 2. Section 3 is to briefly review general
equations. In Section 4, based on the factorization of the dyadic Green’s function given in
Section 2, the LF-VFMA is proposed and memory requirement is also discussed. Section 5
shows the computational complexity of the LF-VFMA. Some numerical examples are
given in Section 6 to verify the capability of the algorithm. Conclusions are presented in
Section 7.

2 Factorization of dyadic Green’s function

In this section, we will present the factorization of the dyadic Green’s function in terms of
two sets of vector multipole fields. It will be further explained that only one set of vector
multipole fields can be used to factorize the dyadic Green’s function in developing the
LF-VFMA for solving low frequency problems.

First, two sets of vector spherical harmonics will be introduced. One set of vector
spherical harmonics called Hansen spherical harmonics can be denoted as [16]

PJ,M(θ,φ)=erYJ,M(θ,φ), (2.1a)

BJ,M(θ,φ)=
∇sYJ,M(θ,φ)√

J(J+1)
, (2.1b)

CJ,M(θ,φ)=−er×BJ,M(θ,φ), (2.1c)

where the operator ∇s is defined as

∇s =eθ
∂

∂θ
+

eφ

sinθ

∂

∂φ
, (2.2)

and YJ,M is the spherical harmonics [2] (J =0,1,2,··· , and M=−J,··· ,−1,0,1,··· , J), which
is given by

YJ,M(θ,φ)=

√
(J−M)!

(J+M)!

2J+1

4π
PM

J (cosθ)eiMφ, M≥0, (2.3)

and
YJ,−M(θ,φ)=(−1)MY∗

J,M(θ,φ), M>0.
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Here, PM
J (x) is the associated Legendre functions of the first kind. The above is defined

in spherical coordinates, which is denoted by r=(r,θ,φ). The unit vectors are

er =(sinθcosφ, sinθsinφ, cosθ)T, (2.4a)

eθ =(cosθcosφ, cosθsinφ, −sinθ)T , (2.4b)

eφ =(−sinφ, cosφ, 0)T. (2.4c)

Another set of vector spherical harmonics is denoted as [16, 24]

Y
[J]
J,M(θ,φ)=

i√
J(J+1)

∇sYJ,M(θ,φ)×er, (2.5a)

Y
[J]
J−1,M(θ,φ)=

√
J√

2J+1
YJ,M(θ,φ)er +

1√
2J+1

√
J
∇sYJ,M(θ,φ), (2.5b)

Y
[J]
J+1,M(θ,φ)=

1√
2J+1

√
J+1

∇sYJ,M(θ,φ)−
√

J+1√
2J+1

YJ,M(θ,φ)er. (2.5c)

In electromagnetics and elastodynamics, in order to describe the divergence and curl
properties of the vector fields, Hansen multipole fields MJ,M(r), NJ,M(r) and LJ,M(r) are
often used, which can be defined as [1, 16, 24]

MJM(r)=∇×
[
rzJ(kr)PJ,M(θ,φ)

]
, (2.6a)

NJM(r)=
1

k
∇×MJM(r), (2.6b)

LJM(r)=
1

k
∇
[
zJ(kr)YJ,M(θ,φ)

]
, (2.6c)

where zJ(x) is the first kind spherical Hankel function of order J, i.e.,

zJ(x)=h
(1)
J (x),

see [4]. We can also express Hansen multipole fields in terms of the other set of vector
spherical harmonics [24]

MJM(r)=−i
√

J(J+1)zJ(kr)Y
[J]
J,M(θ,φ), (2.7a)

NJM(r)=− J
√

J+1√
2J+1

zJ+1(kr)Y
[J]
J+1,M(θ,φ)+

(J+1)
√

J√
2J+1

zJ−1(kr)Y
[J]
J−1,M(θ,φ), (2.7b)

LJM(r)=

√
J+1√

2J+1
zJ+1(kr)Y

[J]
J+1,M(θ,φ)+

√
J√

2J+1
zJ−1(kr)Y

[J]
J−1,M(θ,φ). (2.7c)

For the sake of simplifying the expression of the dyadic Green’s function in terms of
Hansen multipole fields, we scale MJM(r) and NJM(r) as

mJM(r)=
i√

J(J+1)
MJM(r)= zJ(kr)Y

[J]
J,M(θ,φ), (2.8a)
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nJM(r)=
i√

J(J+1)
NJM(r)

=− i
√

J√
2J+1

zJ+1(kr)Y
[J]
J+1,M(θ,φ)+

i
√

J+1√
2J+1

zJ−1(kr)Y
[J]
J−1,M(θ,φ). (2.8b)

By letting

Ψ
t
J,M(r)=

[
mJ,M(r),nJ,M(r),LJ,M(r)

]
∈C3×3, (2.9)

the vector addition theorem based on the Hansen multipole fields can be described as
follows [3, 8, 15]

Ψ
t
J,M(r)3×3 = ∑

J′,M′
RgΨ

t
J′,M′(r′)3×3 ·α J′M′,JM(r′′)3×3, |r′|< |r′′|, (2.10a)

Ψ
t
J,M(r)3×3 = ∑

J′,M′
Ψ

t
J′,M′(r′)3×3 ·β J′M′,JM(r′′)3×3, |r′|> |r′′ |, (2.10b)

RgΨ
t
J,M(r)3×3 = ∑

J′,M′
RgΨ

t
J′,M′(r′)3×3 ·β J′M′,JM(r′′)3×3, ∀ |r′|, |r′′|, (2.10c)

where vectors r, r′ and r′′ satisfy

r= r′+r′′, (2.11)

and the Rg operator implies taking the regular part of the function where a spherical
Hankel function is replaced by a spherical Bessel function. The subscript J =1,··· ,∞ and
−J≤M≤ J. If the summation is truncated at J = Jmax, then the number of terms involved
is

P=(Jmax+1)2−1.

The translator αJ′M′,JM(r′′) has the form




√
J′(J′+1)

J(J+1)
AJ′M′,JM(r′′)

√
J′(J′+1)

J(J+1)
BJ′M′,JM(r′′) 0

√
J′(J′+1)

J(J+1)
BJ′M′,JM(r′′)

√
J′(J′+1)

J(J+1)
AJ′M′,JM(r′′) 0

0 0 αJ′M′,JM(r′′)




, (2.12)

where αJ′M′,JM is the scalar translator. AJ′M′,JM and BJ′M′,JM are given in [15, 24]. The

translator β J′M′,JM(r′′) is the regular part of the translator αJ′M′,JM(r′′), i.e.,

βJ′M′,JM(r′′)=Rgα J′M′,JM(r′′).

Moreover, we have [15]

αJ′M′,JM(ril)= ∑
J1,M1

∑
J2,M2

β J′M′,J1 M1
(rij)·α J1 M1,J2 M2

(rjk)·β J2 M2,JM(rkl). (2.13)



Y. G. Liu and W. C. Chew / Commun. Comput. Phys., 8 (2010), pp. 1183-1207 1189

There is another set of vector multipole fields defined by [24]

FJM(r)= zJ(kr)Y
[J]
J,M(θ,φ), (2.14a)

HJM(r)= zJ+1(kr)Y
[J]
J+1,M(θ,φ), (2.14b)

TJM(r)= zJ−1(kr)Y
[J]
J−1,M(θ,φ). (2.14c)

For this set of vector multipole fields, we let

Ψ̃

t

J,M(r)=
[
FJ,M(r),HJ,M(r),TJ,M(r)

]
∈C3×3, (2.15)

and then the similar vector addition theorem based on the set of vector multipole fields
can be obtained

Ψ̃

t

J,M(r)3×3 = ∑
J′,M′

RgΨ̃

t

J′,M′(r′)3×3 ·α̃J′M′,JM(r′′)3×3, |r′|< |r′′|, (2.16a)

Ψ̃

t

J,M(r)3×3 = ∑
J′,M′

Ψ̃

t

J′,M′(r′)3×3 · β̃ J′M′,JM(r′′)3×3, |r′|> |r′′ |, (2.16b)

RgΨ̃

t

J,M(r)3×3 = ∑
J′,M′

RgΨ̃

t

J′,M′(r′)3×3 · β̃ J′M′,JM(r′′)3×3, ∀ |r′|, |r′′|. (2.16c)

The translator α̃J′M′,JM(r′′) can be written as

α̃J′M′,JM(r′′)=S(J′)·α J′M′,JM(r′′)·S−1
(J), (2.17)

where

S(J)=




1 0 0

0 − i
√

J√
2J+1

√
J+1√

2J+1

0
i
√

J+1√
2J+1

√
J√

2J+1




, (2.18a)

and

Ψ
t
J,M(r)= Ψ̃

t

J,M(r)·S(J). (2.18b)

The equation similar to (2.13) is as follows

α̃J′M′,JM(ril)= ∑
J1,M1

∑
J2,M2

β̃ J′M′,J1 M1
(rij)·α̃ J1 M1,J2M2

(rjk)· β̃ J2 M2,JM(rkl). (2.19)

In the above Eq. (2.19), the translator β̃ J′M′,JM(r) is the regular part of the translator

α̃J′M′,JM(r). The translator matrix α̃ J1 M1,J2 M2
(rjk) translates an outgoing wave from one
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coordinate system to an incoming wave at another coordinate system and we denote

it as an O2I translator. The translator matrix β̃J2 M2,JM(rkl) translates an outgoing wave
from one coordinate system to an outgoing wave at another coordinate system, which

is denoted as an O2O translator, while the translator matrix β̃ J′M′,J1 M1
(rij) translates an

incoming wave from one coordinate system to an incoming wave at another coordinate
system, which is denoted as an I2I translator.

To further analyze these translators, the more explicit form of the O2I translator

α̃J1 M1,J2M2
is given as follows




a11 AJ1 M1,J2 M2
a12BJ1 M1,J2 M2

a13BJ1 M1,J2 M2

a21BJ1 M1,J2 M2
a
(1)
22 AJ1 M1,J2 M2

+a
(2)
22 αJ1 M1,J2 M2

a
(1)
23 AJ1 M1,J2 M2

+a
(2)
23 αJ1 M1,J2 M2

a31BJ1 M1,J2 M2
a
(1)
32 AJ1 M1,J2 M2

+a
(2)
32 αJ1 M1,J2 M2

a
(1)
33 AJ1 M1,J2 M2

+a
(2)
33 αJ1 M1,J2 M2


. (2.20)

Here

a11 =

√
J1(J1+1)√
J2(J2+1)

, a12 =
i
√

J1(J1+1)√
(2J2+1)(J2+1)

,

a13 =− i
√

J1(J1+1)√
J2(2J2+1)

, a21 =− iJ1

√
J1+1√

(2J1+1)J2(J2+1)
,

a
(1)
22 =

J1

√
J1+1√

(2J1+1)(2J2+1)(J2+1)
, a

(2)
22 =

√
(J1+1)(J2+1)√

(2J1+1)(2J2+1)
,

a
(1)
23 =− J1

√
(J1+1)√

(2J1+1)J2(2J2+1)
, a

(2)
23 =

√
J2(J1+1)√

(2J1+1)(2J2+1)
,

a31 =
i(J1+1)

√
J1√

(2J1+1)J2(J2+1)
, a

(1)
32 =− (J1+1)

√
J1√

(2J1+1)(2J2 +1)(J2+1)
,

a
(2)
32 =

√
J1(J2+1)√

(2J1+1)(2J2+1)
, a

(1)
33 =

(J1+1)
√

J1√
(2J1+1)(2J2+1)J2

,

a
(2)
33 =

√
J1 J2√

(2J1+1)(2J2+1)
.

Moreover, for low frequencies (k→0) or small structures (kr→0) [19, 21],

AJ1 M1,J2 M2
≈O

(
t−(J1+J2+1)

)
, (2.21a)

BJ1 M1,J2 M2
≈O

(
t−(J1+J2)

)
, (2.21b)

αJ1 M1,J2 M2
≈O

(
t−(J1+J2+1)

)
, (2.21c)

where t is a parameter that satisfies

t/kr≈O(1).

By using the expression of the O2I translator matrix (2.20), we can calculate the order of
its each element. It should be noted that the order of the (3,3) element of the translator
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α̃J1 M1,J2 M2
is O(t−(J1+J2−1)), which is given as follows by canceling two highest order terms

in a
(1)
33 AJ1 M1,J2 M2

and a
(2)
33 αJ1 M1,J2 M2

:

a
(1)
33 AJ1 M1,J2 M2

+a
(2)
33 αJ1 M1,J2 M2

=
(J1+1)

√
J1√

(2J1+1)(2J2+1)J2

AJ1 M1,J2 M2
+

√
J1 J2√

(2J1+1)(2J2+1)
αJ1 M1,J2 M2

=

√
J1√

(2J1+1)(2J2+1)J2

[
(J1+1)AJ1 M1,J2 M2

+ J2αJ1 M1,J2 M2

]

=

√
J1√

(2J1+1)(2J2+1)J2

4π∑
J′′

i J1−J2+J′′zJ′′(kr′′)YJ′′,M2−M1
(θ′′,φ′′)

×
[ J1(J1+1)+ J2(J2+1)− J′′(J′′+1)

2J1
+ J2

]
A(M2, J2,−M1, J1, J′′), (2.22)

where |J1− J2|≤ J′′≤ J1+ J2−2, J′′ increments by a step of 2, and

A(M2, J2,−M1, J1, J′′)=(−1)M2
[
(2J2+1)(2J1+1)(2J′′+1)/4π

] 1
2

·
(

J2 J1 J′′

0 0 0

)
·
(

J2 J1 J′′

−M2 M1 M2−M1

)
. (2.23)

Since kr is very small for low-frequency problems and we have approximation formula-

tions in (2.21), two highest order terms in a
(1)
33 AJ1M1,J2M2

and a
(2)
33 αJ1 M1,J2M2

are very large.
Theoretically these two highest order terms should cancel each other exactly in the sub-
traction operation to generate the (3,3) element of the matrix in (2.20). However, in prac-
tice, the numerical error due to subtraction of highest order terms will swamp the real
value of the (3,3) element. Hence, instead of using those two terms on the left hand side
of (2.22), we should adopt the expression on the right hand side of (2.22) to calculate the
(3,3) element directly and store it alone. Then we have

α̃J1 M1,J2 M2
≈




O(t−(J1+J2+1)) O(t−(J1+J2)) O(t−(J1+J2))

O(t−(J1+J2)) O(t−(J1+J2+1)) O(t−(J1+J2+1))

O(t−(J1+J2)) O(t−(J1+J2+1)) O(t−(J1+J2−1))


. (2.24)

In the like manner, the order of each element of the O2O translator β̃ J2 M2,JM and the I2I

translator β̃ J′M′,J1 M1
can be obtained.

As to the O2O translator β̃ J2 M2,JM,

β̃ J2 M2,JM ≈




O(t|J2−J|) O(t|J2−J|+1) O(t|J2−J|+1)

O(t|J2−J|+1) O(t|J2−J|) O(t|J2−J|)

O(t|J2−J|+1) O(t|J2−J|) O(t|J2−J|)


, (2.25)
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and its (2,3) element contains the cancelation of high order terms for J2 ≥ J, which is
discussed as follows.

When J2≥ J, the (2,3) element is

a
(1)
23 RgAJ2 M2,JM+a

(2)
23 β J2 M2,JM

=− J2

√
(J2+1)√

(2J2+1)J(2J+1)
RgAJ2 M2,JM+

√
(J2+1)J√

(2J2+1)(2J+1)
β J2 M2,JM

=

√
J2+1√

(2J2+1)(2J+1)J

(
−J2RgAJ2 M2,JM+ Jβ J2 M2,JM

)

=

√
J2+1√

(2J2+1)(2J+1)J
4π∑

J′′
i J2−J+J′′

RgzJ′′(kr′′)YJ′′,M−M2
(θ′′,φ′′)

×
[
− J2(J2+1)+ J(J+1)− J′′(J′′+1)

2(J2+1)
+ J
]

A(M, J,−M2, J2, J′′), (2.26)

where

β J2 M2,JM =RgαJ2 M2,JM, |J2− J|+2≤ J′′≤ J2+ J,

and J′′ increments by a step of 2. Therefore, the order of (2,3) element is O(t(J2−J+2)) for
J2≥ J.

The orders of elements of the I2I translator β̃ J′M′,J1 M1
are




O(t|J
′−J1|) O(t|J

′−J1|+1) O(t|J
′−J1|+1)

O(t|J
′−J1|+1) O(t|J

′−J1|) O(t|J
′−J1|)

O(t|J
′−J1|+1) O(t|J

′−J1|) O(t|J
′−J1|)


, (2.27)

and its (3,2) element is the special one for J1≥ J′.

When J1≥ J′, the (3,2) element of the I2I translator β̃J′M′,J1M1
equals

a
(1)
32 RgAJ′M′,J1 M1

+a
(2)
32 β J′M′,J1 M1

=− (J′+1)
√

J′√
(2J′+1)(2J1+1)(J1+1)

RgAJ′M′,J1 M1
+

√
(J1+1)J′√

(2J1+1)(2J′+1)
β J′M′,J1 M1

=

√
J′√

(2J1+1)(2J′+1)(J1+1)

[
−(J′+1)RgAJ′M′,J1 M1

+(J1+1)β J′M′,J1 M1

]

=

√
J′√

(2J1+1)(2J′+1)(J1+1)
4π∑

J′′
i J′−J1+J′′

RgzJ′′(kr′′)YJ′′,M1−M′(θ′′,φ′′)

×
[
− J′(J′+1)+ J1(J1+1)− J′′(J′′+1)

2J′
+(J1+1)

]
A(M1, J1,−M′, J′, J′′), (2.28)

where |J1− J′|+2≤ J′′ ≤ J′+ J1 and J′′ increments by a step of 2. Therefore, the order of

(3,2) element of the I2I translator β̃ J′M′,J1 M1
is O(t(J1−J′+2)) for J1 ≥ J′.
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Just like the (3,3) element of the O2I translator α̃J1 M1,J2M2
, the (2,3) element of the O2O

translator β̃ J2 M2,JM and the (3,2) element of the I2I translator β̃ J′M′,J1 M1
should be calcu-

lated by using expressions given on the right hand sides of (2.26) and (2.28) respectively
and stored alone to guarantee the accuracy of these elements. Then, based on translators
mentioned above, we can give the nonuniformly normalized form of the core equation
for the 3D undiagonalized dynamic multilevel fast multipole algorithm,

α̃
N
JM,J′M′(ril ,til)

=
( til

tij

) J

∑
J1,M1

( tij

tjh

) J1

β̃
N

JM,J1 M1
(rij,tij) ∑

J3 ,M3

( tjh

thp

)J3 · β̃
N

J1 M1,J3M3
(rjh,tjh)

× ∑
J4 ,M4

til

thp
α̃

N
J3 M3,J4 M4

(rhp,thp)· ∑
J2 ,M2

( tpk

thp

)J4

β̃
N

J4 M4,J2 M2
(rpk,tpk)

( tkl

tpk

)J2

× β̃
N

J2 M2,J′M′(rkl ,tkl)
( til

tkl

)J′

, (2.29)

where normalized translators are defined as

α̃
N
J1 M1,J2M2

(r,t)= tJ1+J2+1α̃J1 M1,J2 M2
(r), (2.30a)

β̃
N

J1 M1,J2 M2
(r,t)= tJ<−J>

β̃ J1 M1,J2M2
(r). (2.30b)

Here the superscript < and the superscript > denote the terms at the lower level and
higher level, respectively. The parameter t depends on the level, which will be distin-
guished by different subscripts. Eq. (2.29) has an analogue given by using the scalar
addition theorem [19, 21, 23].

After presenting the vector addition theorem based on different vector multipole
fields, we will discuss the factorization of the dyadic Green’s function with vector ad-
dition theorem. The dyadic Green’s function can be expressed as

G(r1,r2)= Ig(r1,r2)−
∇1∇2

k2
g(r1,r2), (2.31)

where the scalar Green’s function g(r1,r2) has the expansion in terms of spherical wave
functions

g(r1,r2)=
eik|r1−r2|

4π|r1−r2|
= ik∑

J,M

ψJ,M(k,r1)Rgψ∗
J,M(k,r2), (2.32)

and the spherical wave function

ψJ,M(k,r)= zJ(kr)YJ,M(r̂).

By using the scalar addition theorem [21], the scalar Green’s function can be factorized as

g(r1,r2)= ik∑
J,M

∑
J′,M′

RgψJ′,M′(k,r13)αJ′M′,JM(r34)Rgψ∗
J,M(k,r24), (2.33)
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where rij = ri−rj. Using (2.32) in the second term on the right hand side of (2.31), we can
also get

∇1∇2

k2
g(r1,r2)= ik ∑

J,M

LJ,M(r1)RgL∗t
J,M(r2). (2.34)

Moreover, the tensorial Green’s function Ig(r1,r2) can be expressed in terms of the above
two sets of vector multipole fields, respectively.

Ig(r1,r2)= ik∑
J,M

(
mJ,M(r1)Rgm∗t

J,M(r2)+nJ,M(r1)Rgn∗t
J,M(r2)

+LJ,M(r1)RgL∗t
J,M(r2)

)
, (2.35a)

Ig(r1,r2)= ik∑
J,M

(
FJ,M(r1)RgF∗t

JM(r2)+HJ,M(r1)RgH∗t
JM(r2)

+TJ,M(r1)RgT∗t
JM(r2)

)
. (2.35b)

By applying (2.34) and (2.35a) in (2.31), the dyadic Green’s function can be written as

G(r1,r2)= ik∑
J,M

(
mJ,M(r14)Rgm∗t

J,M(r24)+nJ,M(r14)Rgn∗t
J,M(r24)

+LJ,M(r14)RgL∗t
J,M(r24)

)
−ik∑

J,M

LJ,M(r14)RgL∗t
J,M(r24), (2.36)

with (2.10a), Eq. (2.36) becomes

G(r1,r2)= ik∑
J,M

∑
J′,M′

RgΨ
t
J′,M′(r13)·αJ′M′,JM(r34)·RgΨ

∗
JM(r24)

−ik∑
J,M

∑
J′,M′

RgLJ′ ,M′(r13)·αJ′M′,JM(r34)·RgL∗t
J,M(r24). (2.37)

On the other hand, substituting (2.34) and (2.35b) into (2.31), we can get another expan-
sion of the dyadic Green’s function

G(r1,r2)= ik∑
J,M

(
FJ,M(r14)RgF∗t

J,M(r24)+HJ,M(r14)RgH∗t
J,M(r24)

·TJ,M(r14)RgT∗t
J,M(r24)

)
−ik∑

J,M

LJ,M(r14)RgL∗t
J,M(r24). (2.38)

Then, using (2.16) in (2.38), the dyadic Green’s function is re-expressed as

G(r1,r2)= ik∑
J,M

∑
J′,M′

RgΨ̃

t

J′,M′(r13)·α̃J′M′,JM(r34)·RgΨ̃

∗
JM(r24)

−ik∑
J,M

∑
J′,M′

RgLJ′ ,M′(r13)·αJ′M′,JM(r34)·RgL∗t
J,M(r24). (2.39)
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From (2.36), (2.38) and the following equation

LJM(r1)=

√
J+1√

2J+1
HJM(r1)+

√
J√

2J+1
TJM(r1), (2.40)

we know that the dyadic Green’s function can be expressed not only with the vector
multipole fields mJ,M(r), nJ,M(r) and LJ,M(r), but also with the vector multipole fields
FJ,M(r), HJ,M(r) and TJ,M(r). In addition, Eq. (2.40) is important for saving memory in
the radiation and receiving patterns of the LF-VFMA, which will be introduced in Section
4.

If we use (2.36) to factorize the dyadic Green’s function, for low frequency problems,
there is a high order term

−
√

J(J+1)

2J+1
zJ+1(kr1)RgzJ−1(kr2)Y

[J]
J+1,M(r̂1)Y

[J]∗t
J−1,M(r̂2),

contained in the term nJ,M(k,r1)Rgn∗t
J,M(k,r2) and a high order term of opposite sign

√
J(J+1)

2J+1
zJ+1(kr1)RgzJ−1(kr2)Y

[J]
J+1,M(r̂1)Y

[J]∗t
J−1,M(r̂2),

contained in the term LJ,M(k,r1)RgL∗t
J,M(k,r2). The order of these two terms is O(k−3).

Since the left hand side of Eq. (2.35a) is O(1), these two high order terms should cancel
each other exactly in theory. However, the numerical error caused by the cancelation of
high order terms will swamp the true value of Ig(r1,r2) and eventually lead to wrong
numerical solution. Therefore, expressions of dyadic Green’s function (2.36) and (2.37)
are not suitable for solving low frequency problems. On the other hand, since terms

FJ,M(k,r1)RgF∗t
J,M(k,r2), HJ,M(k,r1)RgH∗t

J,M(k,r2), and TJ,M(k,r1)RgT∗t
J,M(k,r2),

have the same order O(k−1), there is no cancelation error involved in numerically cal-
culating the formulation on the right hand side of (2.35b). Therefore, for low frequency
problems, we can adopt Eqs. (2.38) and (2.39) to factorize the dyadic Green’s function.

3 General equations

To avoid unnecessary complexity for introducing our method, we assume that the target
is a perfect electric conductor. A brief review of the electric-field integral equation based
on the loop-tree basis will be given in this section. Definitions of symbols in this section
are similar to those in [20].

The electric field integral equation (EFIE) for an arbitrary 3D PEC object can be written
as

−t̂(r)·Einc(r)= iωµt̂(r)·
∫

S
G(r,r′)·J(r′)dr′, r∈S, (3.1)
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where Einc is the incident electric field, J is the surface current, and t̂(r) is an arbitrary
tangential unit vector on the surface S. Let JLn(r) be a loop basis function such that
∇·JLn(r) = 0, and JCn

(r) be a tree basis function such that ∇·JCn
(r) 6= 0. Loop and tree

basis can be used to model the current in the system and the current J is expanded as

J(r)=
NL

∑
n=1

ILnJLn(r)+
NC

∑
n=1

ICn
JCn

(r). (3.2)

In the compact matrix form, the above equation is

J(r)= J
t
L(r)·IL +J

t
C(r)·IC , (3.3)

where JL(r) and JC(r) are matrices, whose n-th columns are JLn(r) and JCn
(r) respectively,

while IL and IC are column vectors, whose n-th elements are ILn and ICn
respectively.

With the loop-tree basis, we have the matrix equation of (3.1)

[
ZLL ZLC

ZCL ZCC

]
·
[

IL

IC

]
=

[
VL

VC

]
, (3.4)

where

ZLL = iωµ〈JL(r),G(r,r′),J
t
L(r′)〉= iωµ〈JL(r),Ig(r,r′),J

t
L(r′)〉=Z

V
LL,

ZLC = iωµ〈JL(r),G(r,r′),J
t
C(r′)〉= iωµ〈JL(r),Ig(r,r′),J

t
C(r′)〉=Z

V
LC,

ZCL = iωµ〈JC(r),G(r,r′),J
t
L(r′)〉= iωµ〈JC(r),Ig(r,r′),J

t
L(r′)〉=Z

V
CL,

ZCC = iωµ〈JC(r),G(r,r′),J
t
C(r′)〉= iωµ〈JC(r),Ig(r,r′),J

t
C(r′)〉

− ik2

ωǫ
〈JC(r),

∇∇′

k2
g(r,r′),J

t
C(r′)〉=Z

V
CC+Z

S
CC.

Moreover, vectors VL and VC on the right hand side of (3.4) are

VL =−
〈
JL(r), E(r)

〉
, (3.5a)

VC =−
〈
JC(r), E(r)

〉
. (3.5b)

Since we use the electric field integral equation, when the frequency is very low, the
scalar potential part dominates over the vector potential part. This makes (3.4) unbal-
anced and ill-conditioned. To overcome the low-frequency breakdown, the frequency
normalization is proposed. The frequency normalized impedance matrix based on the
loop-tree basis is no longer nearly singular and the matrix equation can be solved by
direct inversion methods without any problem [20]. The large number of unknowns is
needed for complex structures and it is impractical to solve matrix equations of large
scale problems with direct inversion methods. Therefore iterative solvers should be con-
sidered for such problems. But when the frequency normalized matrix equation is solved
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with iterative solvers, the iteration count is very large. This is because the divergence of
the RWG basis is not suitable for representing charges. Then the basis rearrangement
is proposed to improve the spectral property of the impedance matrix [20], with which
the iteration count is reduced dramatically. However, the accumulated numerical er-
ror, caused by subtractions involved in the basis rearrangement procedure, leads to the
divergence of the iteration when the number of unknowns reaches several hundred thou-
sands [22]. To remedy this, the patch-pair basis is constructed from the single-patch basis
directly to avoid the error accumulated in subtractions [22], which will be used in the
next section.

With the basis rearrangement and frequency normalization [20], Eq. (3.4) becomes




4

iωµ
I 0

0 ǫK
t−1


·Ft ·ZV

RWG ·F·
[

I 0

0 iωK
−1

]
·
[

IL

Q

]

+

[
0 0

0 iωǫK
t−1 ·ZS

CC ·K
−1

]
·
[

IL

Q

]
=




4

iωµ
VL

ǫKt−1 ·VC


, (3.6)

where the element of the matrix Z
V
RWG is

[
Z

V
RWG

]
m,n

= iωµ〈JRm (r),Ig(r,r′),Jt
Rn

(r′)〉, m,n=1,··· ,NR, (3.7)

JRm is the m-th RWG basis function and NR is the number of RWG basis functions. The

matrix F
t

is a transformation matrix that changes from the RWG basis to the loop-tree
basis. The matrix K corresponds to the process of the basis rearrangement with the rela-
tionship

K·IC = iωQ. (3.8)

4 LF-VFMA based on the vector addition theorem

Based on formulations introduced in the last section, we will present the low-frequency
vector fast multipole algorithm in this section. The factorization of the dyadic Green’s
function (2.39) with vector addition theorem is adopted in this method. The storage
requirement for radiation and receiving patterns and vector translators is discussed to
show the memory efficiency of this method for large scale problems.

We will introduce the low-frequency vector fast multipole algorithm in two steps.
First we consider the matrix-vector multiplication in the first term on the left hand side
of (3.6), which corresponds to the contribution of the vector potential part. The fast multi-

pole algorithm is used to accelerate the multiplication of the matrix Z
V
RWG and a vector. By

using (2.35b) and the vector addition theorem of the set of vector multipole fields (2.14)
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in (3.7), any element in the non-near neighbor part of the matrix Z
V
RWG can be expressed

as

[
Z

V
RWG

]
m,n

= iωµ〈JRm (r1), Ig(r1,r2), Jt
Rn

(r2)〉

=−ωµk∑
J,M

∑
J′,M′

〈
JRm(r1), RgΨ̃

t

J′,M′(r13)
〉
·α̃J′M′,JM(r34)·

〈
RgΨ̃

∗
J,M(r24), Jt

Rn
(r2)

〉
, (4.1)

where
〈
JRm(r1), RgΨ̃

t

J′,M′(r13)
〉

and
〈
RgΨ̃

∗
J,M(r24), Jt

Rn
(r2)

〉
are receiving and radiation

patterns respectively. Note that

〈
JRm (r1), RgΨ̃

t

J′,M′(r13)
〉

=
[〈

JRm(r1),RgFJ′,M′(r13)
〉
,
〈
JRm(r1),RgHJ′,M′(r13)

〉
,
〈
JRm(r1),RgTJ′ ,M′(r13)

〉]
, (4.2a)

〈
RgΨ̃

∗
J,M(r24), Jt

Rn
(r2)

〉

=
[〈

RgF∗t
J,M(r24),Jt

Rn
(r2)

〉
,
〈
RgH∗t

J,M(r24),Jt
Rn

(r2)
〉
,
〈
RgT∗t

J,M(r24),Jt
Rn

(r2)
〉]t

. (4.2b)

With the frequency normalization [20] and (2.29), we can get the normalized multilevel
expression of (4.1) for the vector fast multipole algorithm,

[
Z

V
RWG

]
m,n

=iωµ
〈
JRm(r1), Ig(r1,r2), Jt

Rn
(r2)

〉

=−ωµk ∑
J′,M′

〈
JRm(r1), RgΨ̃

Nt

J′,M′(r13,t13)
〉
·
( t13

t34

) J′

·∑
J,M

1

t34
·α̃N

J′M′,JM(r34,t34)·
〈
RgΨ̃

N∗
J,M(r24,t24), Jt

Rn
(r2)

〉
·
( t24

t34

)J
, (4.3)

where α̃
N
J′M′,JM(r34,t34) is given in (2.29), and

RgΨ̃

N

J′,M′(r13,t13)= t−J′

13 RgΨ̃ J′,M′(r13,t13).

After obtaining the factorization of the matrix Z
V
RWG, the implementation process of the

multiplication of the matrix Z
V
RWG and a vector is similar to the traditional LF-FMA [21].

Then we present the scalar potential part with LF-VFMA. In the scalar potential part, the

main calculation is the multiplication of the matrix Z
S
CC and a vector. By using (2.10a)

and (2.34), we can expand the element in the non-near neighbor part of the matrix Z
S
CC as

[
Z

S
CC

]
m,n

=
−ik2

ωǫ
〈JCm(r1),

∇∇′

k2
g(r1,r2),Jt

Cn
(r2)〉

=
−ik2

ωǫ ∑
J,M

∑
J′,M′

〈
JCm

(r1), RgLJ′ ,M′(r13)
〉
·αJ′M′,JM(r34)·

〈
RgL∗t

J,M(r24), Jt
Cn

(r2)
〉
. (4.4)
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If we adopt (4.4) to calculate the matrix Z
S
CC in the scalar potential part of low-

frequency large-scale problems, the subtraction error accumulated in the basis rearrange-
ment process will lead to the divergence of the iteration. To eliminate subtraction error,
we can use the patch-pair basis to express charges [22]. One way to define a complete set
of patch-pair basis for a given mesh on a single 3D body or open surface is: one patch is
chosen as a common negative patch and each of the other patches, as a positive patch [22].

For defining the single patch basis, we first give the definition of the RWG basis [26].
The RWG basis function JRn is defined on the n-th inner edge, which comprises a pair of
triangles T+

n and T−
n .

JRn(r)=





r−r+
n

2S+
n

, r∈ T+
n ,

r−n −r

2S−
n

, r∈ T−
n ,

0, otherwise,

(4.5)

where S±
n is the area of triangle T±

n , respectively. Vectors r±n represent the free vertices of
the triangle pair. Then, for each triangle patch, we define the single patch basis function
JPm(r) as

JPm(r)=

{
1/Sm, r∈ Tm,
0, otherwise.

(4.6)

Then a matrix D∈RNP×NR [25] is given to reveal the correspondence between the RWG
basis function and the triangle pair.

Dij =





0, Patch i does not belong to RWG j,
1, Patch i is the positive patch of RWG j,
−1, Patch i is the negative patch of RWG j.

(4.7)

For each RWG basis function, we find the two patches that belong to this RWG basis
function from the matrix D. If Dt1m =1 and Dt2m =−1, it means that the t1-th patch and
the t2-th patch are the positive and negative patches of the m-th RWG basis function,
respectively.

By using patch-pair basis, the matrix in the second term on the left hand side of (3.6)
can be written as

[
0 0

0 iωǫK
t−1 ·ZS

CC ·K
−1

]
=

[
0 0

0 iωǫW
t ·ZS

PP ·W

]
, (4.8)

where the matrix

W=D·Ft
CR ·K

−1
,

and FCR is a NC×NR transformation matrix that changes from the RWG basis to the tree
basis. Here, NP is the number of single patches, NC is the number of tree basis functions
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and NP = NC +1. Moreover, Z
S
PP is a NP×NP matrix, whose element in the non-near

neighbor part can be written as

[
Z

S
PP

]
mn

=− i

ωǫ

〈
JPm(r1), g(r1,r2), JPn(r2)

〉

=
k

ωǫ ∑
J,M

∑
J′,M′

〈
JPm(r1),RgψJ′,M′(r1−rl′)

〉
·αJ′M′,JM(rl′−rl)·

〈
Rgψ∗

JM(r2−rl), JPn(r2)
〉
, (4.9)

where rl′ denotes the center of the box to which the single patch basis function JPm be-
longs.

From (4.8) and (4.9), we see that the main calculation in the scalar potential part of

the LF-VFMA has been converted from the multiplication of the matrix Z
S
CC and a vector

to the multiplication of the matrix Z
S
PP and a vector. By doing so, the accumulation of

subtraction error can be avoided.
To show the memory saving in the part of radiation and receiving patterns of the

LF-VFMA, we first consider radiation and receiving patterns in (4.4), even though they
need not be used in practice. Since radiation and receiving patterns are similar, we only
consider receiving patterns in the following. By using the integration by parts, receiving
patterns in (4.4) can be calculated by using the patch pair basis function

〈
JCm

(r1), RgLJ′,M′(r1−rl)
〉

=− 1

k

〈
∇·JCm (r1),RgψJ′ ,M′(r1−rl)

〉

=− 1

k

(〈
JPt1

(r1),RgψJ′,M′(r1−rl)
〉
−
〈

JPt2
(r1),RgψJ′,M′(r1−rl)

〉)
, (4.10)

where rl is the center of the box to which the RWG basis function JCm
belongs. Let the

center of the box to which the patch basis function JPti
belongs be rti

, i = 1, 2. It should
be noted that rt1

or rt2 is not always equal to rl [21]. If rt1
6= rl , a translator is needed to

transform
〈

JPt1
(r1),RgψJ′ ,M′(r1−rt1

)
〉

to
〈

JPt1
(r1),RgψJ′ ,M′(r1−rl)

〉
. By using the scalar

addition theorem [21], we know

RgψJ,M(r)= ∑
J′ ,M′

RgψJ′,M′(r′)·β J′M′,JM(r′′), ∀J, ∀|r′|, |r′′|, (4.11)

where r= r′+r′′. So it can be obtained that

〈
JPt1

(r1),RgψJ′M′(r1−rl)
〉
= ∑

J,M

〈
JPt1

(r1),RgψJM(r1−rt1
)
〉
·β JM,J′M′(rt1

−rl). (4.12)

Since the box to which a patch triangle of an RWG basis function belongs is adjacent to
or the same as the box to which the RWG basis function belongs, the vector rt1

−rl only
has 27 possibilities at most, which is independent of the number of unknowns. So the
storage of translators β J′M′,JM is small and remains constant.
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In addition, by applying (2.40), we can express the third component of receiving pat-
terns (4.2a) in the vector potential part of the LF-VFMA as

〈
JRi

(r1),RgTJM(r1−rli
)
〉

=

√
2J+1√

J

〈
JRi

(r1),RgLJM(r1−rli
)
〉
−
√

J+1√
J

〈
JRi

(r1),RgHJM(r1−rli
)
〉
. (4.13)

Since the subtraction on the right hand side of (4.13) is between two terms with different
highest orders, the real value of

〈
JRi

(r1),RgTJM(r1−rli
)
〉

will not be swamped by the
subtraction error.

Therefore, in the scalar potential part of the LF-VFMA, we only store receiving pat-
terns

〈
JPm(r1),RgψJ′,M′(r1−rl′)

〉
with the single patch basis. For receiving patterns (4.2a)

in the vector potential part of the LF-VFMA, only the first two components need to be cal-
culated and stored. By using (4.10), (4.12) and (4.13), the third component can be obtained
with the second component of receiving patterns in the vector potential part, receiving
patterns of the scalar potential part and translators introduced in (4.11). Hence, the total
storage of receiving patterns contains three items: one is receiving patterns with the sin-
gle patch basis in the scalar potential part and the other two are the first two components
of receiving patterns in the vector potential part.

We know the storage of receiving patterns in the vector potential part of the LF-FMA
contains three items, while the storage of receiving patterns in the scalar potential part
of the LF-FMA is the same as that of the LF-VFMA, which contains one item. Therefore,
compared with the LF-FMA, the storage of receiving patterns in the vector potential part
of the LF-VFMA is reduced from 3NRP to 2NRP. Moreover, the storage of receiving
patterns in the scalar potential part is still NPP. Therefore, the total storage of radiation
and receiving patterns of the LF-VFMA can be reduced by 25 percent compared with that
of the LF-FMA.

As for the storage for vector translators, since elements of vector translators can be
calculated with scalar translators of the LF-FMA, theoretically we can only store scalar
translators for generating vector translators. However, as we have discussed in Section 2,
some elements of vector translators should be calculated and stored alone to avoid nu-
merical error due to the subtraction of two high order terms. The storage of special el-
ements in vector translators approximately equals that of scalar translators. Therefore,
the storage for vector translators, containing the storage of scalar translators and spe-
cial elements, is larger than that for scalar translators, which depends on the number of
buffer boxes and the number of levels of FMA. In the numerical simulation, if we only
store scalar translators and special elements for calculating vector translators in the iter-
ation process, repeated calculations will increase floating point operations dramatically
for large scale problems. Therefore, besides the scalar translators and special elements,
we consider to store fundamental elements of vector translators, AJ1M1,J2M2

and BJ1 M1,J2 M2

used in (2.20), to reduce part of repeated calculations, which is at the expense of rais-
ing storage for vector translators. In addition, we should store translators used in (4.12),
whose storage is small and remains constant.
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Fortunately, the storage for all translators used in this method is independent of the
number of unknowns. With the increase in the number of unknowns, the storage of radi-
ation and receiving patterns, which depends on the number of unknowns, will dominate
over that of translators. It is reduced by 25 percent in our method compared with that in
the LF-FMA. The analysis of memory requirement implies that the method is superior in
saving memory for solving large scale problems.

5 Computational complexity of the LF-VFMA

In the implementation of the LF-VFMA, only nonempty boxes are involved in the compu-
tation. If each box at the finest level has on the average M subscatterers, then the number
of boxes at the finest level is about NR/M. Since it is a 3D algorithm, the number of boxes
at the next coarser level is roughly 1/I of that at the current level, where I is a number
smaller than 8. Moreover, the number of levels is roughly

L= logI

NR

M
−1.

According to the scale invariance of the low-frequency case, the number of the multi-
pole spherical waves can be chosen the same at different levels. Let the number of the
multipole spherical harmonics at the finest level be K.

The floating-point operations related directly to subscatterers are the aggregation
from subscatterers to the finest level, the disaggregation from the finest level to sub-
scatterers, and the interactions of the neighbor terms. Different from the LF-FMA, the
operations of the LF-VFMA related directly to subscatterers contain the translations de-
scribed in (4.12), whose floating-point operations is Ct

0K2NR in the worst-case. However,
the workload of this kind of translations in practice is much less than that in the worst-
case. So the total floating-point operations related to the subscatterers is

T0 =C′
0MNR+C′′

0 KNR+Ct
0K2NR =(C′

0M+C′′
0 K+Ct

0K2)NR. (5.1)

The levels are indexed from the finest level to the coarsest level successively with
l = 1,2,··· ,L. Compared with LF-FMA, in the processes of aggregations from level l to
l+1, disaggregations from level l+1 to level l and translations at level l, tiny extra cal-
culations are needed for generating the vector translators by using the scalar translators
and some special elements of vector translators, which have been calculated and stored
in the setup stage. Therefore, the workload for the aggregation from level l to l+1 and
the disaggregation from level l+1 to level l are

T′
l =





C′
(1

I

)l NR

M
K2+C′

t

(1

I

)l NR

M
K, l =1,2,··· ,L−1,

0, l = L.
(5.2)
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The workload for the translations at level l is

T′′
l =C′′

(1

I

)l NR

M
K2+C′′

t

(1

I

)l NR

M
K, l =1,2,··· ,L, (5.3)

so the total workload per iteration is

T =T0+
L

∑
l=1

(T′
l +T′′

l )

=
{

C′
0M+C′′

0 K+Ct
0K2+

[
C′
(

1− 1

IL−1

)
+C′′

(
1− 1

IL

)]K2

M

+
[
C′

t

(
1− 1

IL−1

)
+C′′

t

(
1− 1

IL

)] K

M

}
NR. (5.4)

In addition, we know that the floating-point operations for applying the basis rearrange-
ment also scale as O(NR) [19, 21]. Therefore, the computational complexity of the LF-
VFMA is clearly O(NR), which is the same as that of the LF-FMA.

6 Numerical examples

This section presents some numerical examples to demonstrate the validity of the LF-
VFMA. These examples are all PEC structures in free space.

1. Sphere scattering To verify the efficiency of this method for low frequency prob-
lems, the scattering problem of a sphere is considered. An incident x-polarized plane
wave is from the z direction onto a PEC sphere with radius 1 m. The triangulation of
the sphere contains 28,065 inner edges. By using the 5 level LF-VFMA, we calculate the
bistatic radar cross section (RCS) of the PEC sphere with fixed φ =0 at 10−7 GHz, where
the size of the leafy level box is 2.21465×10−8λ (λ is the wavelength). The number of
buffer box is 1. Then we compare the result with the Mie series solution. Fig. 1 shows the
agreement of the radar cross sections between the numerical result of the LF-VFMA and
the Mie series solution.

2. Cube scattering A PEC cube is excited by an x-polarized plane wave incident
from the z direction. The edge length of the cube is 1 m. In the numerical simulation,
we use four different discretizations from coarsest to densest. The LF-VFMA is used to
calculate the bistatic RCS of the PEC cube with fixed φ =0 at 10−6 GHz for four meshes.
The number of buffer boxes is 1 and the number of multipoles is chosen as five to get
a better accuracy. The GMRES-30 is used to solve matrix equations. The computational
costs are shown in Table 1 and Table 2. Relative errors of RCS given in the last column of
the second table are between the LF-VFMA and LF-FMA for different meshes.

3. Almond scattering We use an x-polarized plane wave incident from the z direction
to excite a PEC NASA almond given in Fig. 2, whose length d=2.52374 m. The mesh has
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Figure 1: The bistatic RCS of a PEC sphere at 10−7 GHz using LF-VFMA. The reference solution is calculated
by the Mie series.

Figure 2: NASA almond.
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Figure 3: Bistatic RCS of a PEC NASA almond.
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Table 1: Memory usages of translators and radiation and receiving patterns of the LF-FMA and LF-VFMA for
different meshes.

Method
Number of Number of Memory of Memory of Rad and Rec
Unknowns Levels Translators (MB) patterns (MB)

LF-FMA
7,200 4

9.69 14.50
LF-VFMA 47.56 10.55
LF-FMA

45,000 5
12.97 90.64

LF-VFMA 63.49 65.92
LF-FMA

180,000 6
15.70 362.55

LF-VFMA 76.73 263.67
LF-FMA

281,250 6
15.70 566.48

LF-VFMA 76.73 411.99

Table 2: The number of iterations and the average time per iteration of the LF-VFMA for different meshes.

Method
Number of Number of Number of Average Time Relative Error
Unknowns Levels Iterations per Iteration (s) of RCS

LF-VFMA 7,200 4 31 29.18 2.95×10−4

LF-VFMA 45,000 5 71 94.30 1.33×10−4

LF-VFMA 180,000 6 142 330.38 4.74×10−4

LF-VFMA 281,250 6 181 322.24 4.87×10−4

5,574 inner edges. We use the 6 level LF-VFMA to calculate the bistatic RCS of the PEC
NASA almond with fixed φ =0 at 10−6 GHz. The GMRES-50 is used to solve the matrix
equation. The result of the LF-VFMA is compared with that of the method of moments
(MOM) in Fig. 3.

7 Conclusions

In this work, the vector addition theorem is adopted for the factorization of the dyadic
Green’s function. Then the factorization is used to develop the LF-VFMA for realizing
memory savings. In this method, the storage of translators, which depends on the num-
ber of buffer boxes and the number of levels of FMA, is larger than that of the LF-FMA.
Although there is an increase in the storage of translators, it is independent of the number
of unknowns. Meanwhile, the storage of radiation and receiving patterns in the non-near
neighbor part can be reduced by 25 percent compared with that of the LF-FMA. Since the
storage of radiation and receiving patterns depends on the number of unknowns, it will
become the main part of the total storage with the increase in the scale of problems. So
the reduction of the storage of radiation and receiving patterns is meaningful for large
scale problems.

Compared with the LF-FMA, the calculation of near field part remains unchanged,
and the total storage for the non-near neighbor part in this method is reduced for large
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scale problems. Therefore the LF-VFMA is advantageous for solving large scale problems
in saving memory.
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