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Abstract. The main goal of this paper is to develop the coupled double-distribution-
function (DDF) lattice Boltzmann method (LBM) for simulation of subsonic and tran-
sonic turbulent flows. In the present study, we adopt the second-order implicit-explicit
(IMEX) Runge-Kutta schemes for time discretization and the Non-Oscillatory and Non-
Free-Parameters Dissipative (NND) finite difference scheme for space discretization.
The Sutherland’s law is used for expressing the viscosity of the fluid due to consid-
erable temperature change. Also, the Spalart-Allmaras (SA) turbulence model is in-
corporated in order for the turbulent flow effect to be pronounced. Numerical exper-
iments are performed on different turbulent compressible flows around a NACA0012
airfoil with body-fitted grid. Our numerical results are found to be in good agreement
with experiment data and/or other numerical solutions, demonstrating the applicabil-
ity of the method presented in this study to simulations of both subsonic and transonic
turbulent flows.
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1 Introduction

The Lattice Boltzmann method (LBM) has recently attracted an increasing amount of at-
tention from the computational fluid dynamics (CFD) community [1, 2]. The LBM is a
derivative of the lattice gas automata (LGA) method with some advantages of the LGA
successfully inherited. Different from the conventional numerical methods for solving
the macroscopic governing equations, the LBM is based on microscopic models and the
kinetic theories [3]. The mechanism of LBM is parallel in nature due to the locality of
particle interaction and the transport of particle information, so it is well suitable for
massively parallel computing. Moreover, the LBM has some other advantages, such as
good numerical robustness, flexibility with respect to complex boundaries, and compu-
tational efficiency.

As of today, the LBM has achieved great success in simulating semi-incompressible
and isothermal fluid flows. Available literatures also reveal that the LBM has been suc-
cessfully applied to the solution of the Euler [4–7] or Navier-Stokes (N-S) equations [8–22]
for a compressible fluid. For instance, Qu et al. [7] proposed a non-free-parameter LBM
to construct equilibrium distribution functions for inviscid compressible flows at high
Mach number. Sun et al. [10–13] developed a locally adaptive lattice Boltzmann model
suitable for flows in a wide range of Mach numbers for compressible flows. Watari [15]
proposed finite difference lattice Boltzmann method (FDLBM) for numerical simulations
of flows from subsonic to supersonic ranges for both inviscid (Euler model) and viscous
(Navier-Stokes model) fluids. Yan et al. [4,17] presented a compressible LBM with three-
speed and three-energy-level for the Euler [4] and Navier-Stokes equations [17]. Pan et
al. [18] and Gan et al. [19] also worked on improving lattice Boltzmann model for some
high-speed inviscid and viscous supersonic flow cases, respectively, with higher Mach
numbers (up to 30 or a bit above). Recently, Li Q [20], Wang Y et al. [21] developed a
coupled double-distribution-function (DDF) LBM by combining the DDF approach and
the multi-speed approach, and used it to simulate compressible fluid flow with arbi-
trary specific-heat ratio and Prandtl number. In this method, a density distribution func-
tion based on a multi-speed lattice as well as a total energy distribution function are
used, and these two distribution functions are coupled together via the state equation.
In [20], Li Q et al. applied two different methods to construct equilibrium distribution
functions in two coupled DDF models, respectively. Model 1 is based on the truncated
Maxwellian distribution function and limited to low- and moderate-Mach-number vis-
cous fluid flows; Model 2 is based on a circular function [7] and can be used to simulate
viscous fluid flows with high Mach numbers. In the two models, the density distribution
function is used to recover the compressible continuity and momentum equations, while
the energy equation is recovered by a total energy distribution function. The total en-
ergy distribution function is coupled with the density distribution function via the ideal
gas law. This method can be used for non-uniform grid through the transformation of
coordinates [22].

Most flows encountered in engineering applications are of turbulent nature. The pre-
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diction of flow phenomena such as boundary layer separation depends strongly on the
choice of the turbulence model. In combination with other models used for turbulent
flow studies, the LBM approach has been considered for simulation of realistic compress-
ible fluid flows with turbulence effects taken into account. For example, by incorporating
two-layer mixing-length algebraic model and two versions (standard and renormaliza-
tion group (RNG)) of the κ-ǫ two-equation model into the lattice Boltzmann method,
Teixeira [23] successfully simulated turbulent flow in a straight pipe. In extension of this
strategy, Filippova et al. [24] proposed multi-scale lattice Boltzmann schemes and per-
formed numerical investigation of turbulent flow associated with complex curvilinear
geometry; Imamura et al. [25] presented the generalized form of interpolation supple-
mented lattice Boltzmann method and applied it to simulations of turbulent flows around
a NACA0012 airfoil. On the other hand, in connection with the very large eddy simu-
lation (VLES) approach, the LBM was developed for turbulent flow simulation; some
typical research work in this direction can be found in [26–30].

Apart from the above-mentioned choices, one-equation models such as the Spalart-
Allmaras (SA) turbulence model [31–33] seem to be an ideal compromise between alge-
braic and two-equation models. It does not require finer grid resolution near the wall;
thus, the computation cost using the one-equation SA model is lessened when compared
to using the two-equation model. In particular, the SA model became quite popular be-
cause of its satisfactory results for a wide range of flow problems and its reliable numeri-
cal properties. Using conventional numerical methods, such as finite difference and finite
volume approaches, this model has provided good simulation results for transonic tur-
bulent flow around a full aircraft configuration [32] and for supersonic flow associated
with other complex configurations [33]. In order to solve the turbulent compressible flow
problems, the SA model is incorporated into the coupled DDF models in this paper. The
simulation using a body-fitted grid is then performed for turbulent compressible flows
around NACA0012 airfoil at subsonic and transonic regimes, respectively.

The rest of the paper is organized as follows. The LBM model and different versions
of the SA turbulence model are described in detail in the Section 2. In Section 3, selected
numerical simulation results are shown to demonstrate the reliability and effectiveness
of the present model. Finally, concluding remarks are made in Section 4.

2 Numerical methods

2.1 LBM for compressible fluid flow

The discrete Boltzmann Bhatnagar-Gross-Krook (BGK) equation reads [34]

∂ fα

∂t
+

(−→eα ·
−→∇

)

fα =− 1

τf

(

fα− f
eq
α

)

, (2.1)

where fα is the density distribution function, f
eq
α is the corresponding equilibrium distri-

bution function, −→eα is the discrete particle velocity along the α-th direction, and τf is the
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relaxation time for the momentum transport. In this study, two-dimensional problems
are considered, leading Eq. (2.1) to

∂ fα

∂t
+

(

eαx
∂ fα

∂x
+eαy

∂ fα

∂y

)

=− 1

τf

(

fα− f
eq
α

)

, (2.2)

with −→e α =
(

eαx,eαy

)t
. In order to deal with the non-uniform grid, a computational plane

(−→
ξ =(ξ,η)t

)

is employed. For simplification, the grid spacing of the uniform rectangular
grid on the computational plane, ∆ξ and ∆η, are set as 1; ∆x and ∆y, corresponding to

the physical plane
(−→x =(x,y)t), are normally non-uniform. The relationship between

−→
ξ

and −→x satisfies the following condition [35]:
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, (2.3)

where the Jacobian determinant J is denoted by

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
. (2.4)

Using the chain rule of differentiation, the convection term in the Eq. (2.2) can be rewrit-
ten as

eαx
∂ fα

∂x
+eαy

∂ fα

∂y
=eαx

(∂ fα

∂ξ

∂ξ

∂x
+
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∂η
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+eαy
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+

∂ fα

∂η

∂η

∂y

)

=
(

eαx
∂ξ

∂x
+eαy

∂ξ

∂y

)∂ fα

∂ξ
+

(

eαx
∂η

∂x
+eαy

∂η

∂y

)∂ fα

∂η

=ẽαξ
∂ fα

∂ξ
+ ẽαη

∂ fα

∂η
, (2.5)

where ẽαξ , ẽαηare the contravariant velocity [25] in the computational plane and defined
as

ẽαξ = eαx
∂ξ

∂x
+eαy

∂ξ

∂y
, (2.6a)

ẽαη = eαx
∂η

∂x
+eαy

∂η

∂y
, (2.6b)

then, Eq. (2.2) can be rewritten as

∂ fα

∂t
+

(

ẽαξ
∂ fα

∂ξ
+ ẽαη

∂ fα

∂η

)

=− 1

τf

(

fα− f
eq
α

)

, (2.7)
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Eq. (2.7) is the evolution equation for the density distribution function on the body-fitted
coordinate systems. The evolution equation of the total energy distribution function is
expressed as follows [20, 36]:

∂hα

∂t
+

(−→e α ·
−→▽

)

hα =− 1

τh

(

hα−h
eq
α

)

+
1

τh f

(−→e α ·−→u − |−→u |2
2

)

(

fα− f
eq
α

)

, (2.8)

where hα is the total energy distribution function; h
eq
α is the corresponding equilibrium

distribution function; and

τh f =
τhτf

τf −τh
,

with τh denoting the total energy relaxation time. After utilizing Eqs. (2.5) and (2.6),
Eq. (2.8) can be transformed to

∂hα

∂t
+

(

ẽαξ
∂hα

∂ξ
+ ẽαη

∂hα

∂η

)

=− 1

τh

(

hα−h
eq
α

)

+
1

τh f

(−→e α ·−→u − |−→u |2
2

)(

fα− f
eq
α

)

. (2.9)

Note that we can solve Eq. (2.7) and Eq. (2.9) on the body-fitted coordinate systems which
are the same as on the uniform grid. In the present paper, we adopt the second-order
IMEX Runge-Kutta scheme [20, 37] for time discretization, which consist of an implicit
step for the collision term and an explicit one for the other terms. In order to capture
discontinuities, the Non-Oscillatory and Non-Free-Parameters Dissipative (NND) finite
difference scheme [7, 22, 38] is adopted to evaluate the convection terms. The details of
such methods can be found in [7,20,22,37,38]. The macroscopic quantities such as density
ρ, velocity −→u and temperature T can be calculated using

ρ=∑
α

fα , −→u =
1

ρ ∑
α

fα
−→e α , T =

2

bR

(1

ρ ∑
α

hα−
|−→u |2

2

)

, (2.10)

where b is a constant which is related to the specific-heat ratio γ by γ =(b+2)/b. Then,
the relaxation times τf and τh are computed as follows:

τf =
µ

p
, τh =

τf

Pr
=

1

p

µ

Pr
, (2.11)

where Pr is the Prandtl number and µ is the dynamic viscosity. For the compressible fluid
flows with great variation of temperature, the impact of temperature upon the viscosity
should be considered through application of the Sutherland’s law

µ=µ∞

( T

T∞

)
3
2 T∞+S

T+S
, (2.12)

where T∞ =288.15K and S=110.4K.
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Figure 1: Discrete velocities of the D2Q13 lattice.

Because the original D2Q9 model cannot recover the compressible fluid momentum
equation, a 2-dimensional and 12-velocity (D2Q12, model 1) or D2Q13 (model 2) square
lattice, as shown in Fig. 1, is used with −→e α defined as

−→e α =























{0,0}t, α=0, only for D2Q13,

c
{

cos[(α−1)π/2], sin[(α−1)π/2]
}t

, α=1,2,3,4,
√

2c
{

cos[(2α−1)π/4], sin[(2α−1)π/4]
}t

, α=5,6,7,8,

2c
{

cos[(α−9)π/2], sin[(α−9)π/2]
}t

, α=9,10,11,12,

(2.13)

where c =
√

RTc is the characteristic speed of the lattice fluid with Tc denoting the char-
acteristic temperature.

As aforementioned, the equilibrium distribution functions in the model 1 are based
on the truncated Maxwellian distribution functions, those in the model 2 are based on the
circular functions which are distributed to the lattice velocity directions by Lagrangian
interpolation. Relevant details can be found in [7, 20]. The equilibrium total energy dis-
tribution function is expressed as [20]:

h
eq
α =

[

E+(−→e α−−→u )·−→u
]

f
eq
α +̟α

p

c2
RT, (2.14)

where E = (bRT+|−→u |2)/2 is the total energy, ̟0 = 0, ̟1,2,3,4 =−1/3, ̟5,6,7,8 = 1/4 and
̟9,10,11,12 = 1/12. The density and total energy distribution functions are coupled by
using the ideal gas law p=ρRT.

2.2 Turbulence model

In order to solve the turbulent compressible flow problems, the Spalart-Allmaras turbu-
lence model is employed. The SA model is a one-equation model which solves a trans-
port equation for a transformed eddy kinematic viscosity ν̃ related to νt. The original SA
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model is expressed as [31, 33, 38]:

Dν̃

Dt
=Cb1

(1− ft2)S̃ν̃+
1

σ

[−→▽·
(

(νl + ν̃)
−→▽ ν̃

)

+Cb2

∣

∣

−→▽ ν̃
∣

∣

2]

−
(

Cw1
fw−

Cb1

κ2
ft2

)( ν̃

d

)2

, (2.15)

where νl is the laminar kinematic viscosity. The eddy kinematic viscosity νt is defined as:

νt = ν̃ fν1
, fν1

=
χ3

χ3+C3
ν1

, χ=
ν̃

νl
,

then, the turbulent dynamic viscosity is computed using µt=ρνt . The calculation involves
the following parameters

ft2 =Ct3 exp(−Ct4
χ2), S̃=

√

2ΩijΩij fν3 +
ν̃

κ2d2
fν2 ,

Ωij =
1

2

(∂ui

∂xj
− ∂uj

∂xi

)

, fν2 =1− χ

1+χ fν1

, fν3 =1,

fw = g
( 1+C6

w3

g6+C6
w3

)

1
6

, g= r+Cw2(r6−r), r=
ν̃

S̃κ2d2
.

Constants used in the model are

Cb1
=0.1355, Cb2

=0.622, σ=2/3, κ =0.41, Cw1
=

Cb1

κ2
+

1+Cb2

σ
,

Cw2 =0.3, Cw3 =2, Cν1
=7.1, Ct3 =1.1, Ct4

=2.

To improve the convergence of the residual turbulence, Spalart proposed the following
modifications [33]:

S̃=
√

2ΩijΩij fν3 +
ν̃

κ2d2
fν2 ,

with

fν2 =
(

1+
χ

Cν2

)−3
, fν3 =

(1+χ fν1
)(1− fν2)

χ
, Cν2 =5, χ=max

{

χ,10−4
}

.

In order to adapt the model to compressible fluid flows, the convection term in Eq. (2.15)
is modified

∂ν̃

∂t
+

∂

∂xj
(ν̃uj)=

Dν̃

Dt
+ ν̃

−→▽·−→u = RHS, (2.16)

where the right hand side (RHS) is the same as in Eq. (2.15).
Finally, the modified SA model is re-written as follows:

Dν̃

Dt
=

[

Cb1
(1− ft2)S̃−−→▽·−→u

]

ν̃+
1

σ

[−→▽·
(

(νl + ν̃)
−→▽ ν̃

)

+Cb2

∣

∣

−→▽ ν̃
∣

∣

2]

−
(

Cw1
fw−

Cb1

κ2
ft2

)( ν̃

d

)2
. (2.17)
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In this study, the modified SA model is used and, accordingly, variables are modified as

µ=µl +µt,
µ

Pr
=

µl

Prl
+

µt

Prt
, (2.18)

where the subscripts l and t represent laminar and turbulent contributions, respectively.
In all simulations of the air flows included in this paper, Prl and Prt are equal to 0.72
and 0.9, respectively. Combining Eq. (2.11) with Eq. (2.18), the relaxation times τf and τh

should be re-computed using

τf =
µl +µt

p
, τh =

1

p

( µl

Prl
+

µt

Prt

)

, (2.19)

where µl is computed using Eq. (2.12).

3 Numerical results

The numerical simulations are performed for the turbulent compressible flow around
a NACA0012 airfoil. In this study, a body-fitted (C-type) grid with resolution of 257×
65 is used. With the chord length as unit length, the computational domain is shown
in Fig. 2. Details of the grid in the vicinity of the airfoil are shown in Fig. 3, with 173
points on the surface of airfoil. The thickness of the first layer adjacent to the wall of the
airfoil is 1.4×10−4 for code validation (see Section 3.1), and then is 2.4×10−5 for other
numerical experiments with fluid viscosity particularly taken into account by employing
the SA model (see Section 3.2). Since the numerical experiments conducted in the present
study aim mainly at verifying the applicability and robustness of the code we developed,
the mesh is generated with no particular treatment to intentionally accommodate shocks
possibly incurred by the incoming subsonic or transonic flows, except that the wake area
is distributed with reasonably dense nodes.

Figure 2: Computational domain.
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Figure 3: C-type grid of NACA0012 airfoil (257×65).

The reference density ρ0 and the reference temperature T0 =288.15K are used in sim-
ulations and the reference velocity and the reference pressure are defined as

u0 =
√

γRT0, P0 =ρ0RT0,

while µ = 1.789×10−5kg/(m·s). In this study, these reference values are taken corre-
sponding to the incoming free stream.

3.1 Code validation

The first test is performed for a slightly inclined subsonic flow (Ma=0.85, α=1.0◦) around
a NACA0012 airfoil. In this simulation, the SA model is not included and the reflective-
wall boundary condition applies to the wall; that is, two layers of ghost nodes inside the
wall are used and the mirror method is employed to obtain the distribution functions [7].
Moreover, the non-equilibrium-extrapolation method [39] for the distribution functions
is applied on the airfoil surface. Free stream condition is applied at the outer boundary
(the distribution functions are always set as in their equilibrium states). Fig. 4 shows the
surface pressure coefficients compared with the results of AGARD extracted from [40]
and [41]. The numerical results of the two present models are found to be generally
in good agreement with the results from different resources. It is noticed that the two
present models can predict the shock locations, though the shock location on the lower
surface of the airfoil is not sufficiently precisely captured if compared with the weighted
essentially nonoscillatory (WENO) approach as shown in Fig. 4. The main reason could
be that the accuracy of discretization scheme adopted in the present models is in a lower
order than that taken by others. In [41], the third-order IMEX Runge-Kutta scheme and
the fifth-order WENO scheme are used for time discretization and space discretization,
respectively, but the computation time also increases by 50% compared with the two
models employed here.
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Figure 4: Cp distribution along surface of airfoil NACA0012 at Ma=0.85, α=1.0◦.

3.2 Turbulent compressible flow

The subsonic and transonic turbulent flows around a NACA0012 airfoil are simulated in
order to demonstrate the applicability of the present method coupling the LBM model
with the SA turbulence model. From extensive available experimental data, two cases
are selected with Ma = 0.503, 0.775, Re = 2.85×106, 1.0×107 and angles of attack α =
8.02◦, 2.05◦, respectively, for the two simulations. In these tests, the wall boundary con-
dition for viscous fluid flow (adiabatic and no-slip boundary condition) is applied at the
airfoil surface. Two layers of ghost nodes inside the wall are used, and the anti-symmetry
method is used for the distribution functions as follows:

fα,i,−1 = fanti(α),i,1, fα,i,−2 = fanti(α),i,2, (3.1)

where nodes −1 and −2 are the ghost nodes of nodes 1 and 2, respectively and anti(α)
signifies the opposite direction of α. Other boundary conditions are the same as those
used for code validation.

Fig. 5 shows the surface pressure coefficient comparisons with the experimental data
[42, 43] at Ma =0.503 and Ma =0.775, respectively. Fig. 5(a) demonstrates models 1 and
2 are both working, without noticeable discrepancy, for simulation of subsonic turbulent
flow. From Fig. 5(b) corresponding to the transonic flow simulation, we can find that
the result obtained from model 2 is slightly better than the result obtained from model 1
when both are compared against the experimental data. It is however noticed that, for
both subsonic and transonic flow simulations, the pressure coefficient near the trailing
edge does not look sufficiently smooth. This is because both simulations share an identi-
cal mesh and the mesh is not particularly refined in the vicinity of the trailing edge that
is followed by the wake region. Through a further numerical investigation using a mesh
with enriched density of nodes over the wake area, it has been confirmed that the pres-
sure coefficient gets smoothened near the trailing edge. As aforementioned, the goal of
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(a) (b)

Figure 5: Cp distribution along surface of airfoil NACA0012 at (a) Ma=0.503, Re=2.85×106, α=8.02◦; and

(b) Ma=0.775, Re=1.0×107, α=2.05◦.

(a) (b)

Figure 6: Pressure contours at Ma=0.775, Re=1.0×107, α=2.05◦. (a): Model 1; (b): Model 2.

(a) (b)

Figure 7: Contours of velocity magnitude at Ma=0.775, Re=1.0×107, α=2.05◦. (a): Model 1; (b): Model 2.
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Figure 8: Viscosity ratio contours at Ma=0.775, Re=1.0×107, α=2.05◦ (Model 1).

Figure 9: Viscosity ratio contours at Ma=0.775, Re=1.0×107, α=2.05◦ (Model 2).

this study is to test the robustness of the method coupling the DDF with the SA model for
simulation of turbulent compressible flows without requesting a case-dependent mesh.
Here, Fig. 5 reveals that our method can satisfactorily deal with both subsonic and tran-
sonic flow cases on an identical ordinary mesh. Besides, Fig. 5 also demonstrates that the
results obtained by the present models are in excellent agreement with the experimental
data [42, 43].

In order to look into the performance of the two models presented in this study,
Figs. 6-10 are used to compare the pressure, magnitude of velocity, and viscosity ratio
contours at Ma = 0.775 using the two different models. Each two consecutive iso-value
lines for dimensionless pressure or velocity magnitude are in difference of 0.05 for each
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Figure 10: Distribution of viscosity ratio at the trailing edge along the line normal to the upper surface of airfoil
at Ma=0.775, Re=1.0×107, α=2.05◦.

of Figs. 6-7. The comparisons of the pressure (Fig. 6) and the velocity magnitude (Fig. 7)
indicate that the two models can produce practically identical results for transonic flow
simulation, except that some slight discrepancies can be found near the shock on the up-
per surface and at the position near one quarter of the chord length on the lower surface.
Such discrepancies echo the slight differences in pressure coefficients resulting from the
two models, as already demonstrated in Fig. 5(b).

Finally, Figs. 8 and 9 show the viscosity ratio contours at Ma = 0.775 corresponding
to the two models, respectively. It is noticed that the viscosity ratio reaches its maximum
within the wake region on both figures. Also, no significant difference can be found in the
behaviors of the turbulence obtained by using two different models. Even when zooming
in the sensitive trailing edge area, Fig. 10 depicts the distribution of viscosity ratios for
the two models along the line on the grid that is starting at the trailing edge and normal
to the upper surface of airfoil; again, as anticipated, the viscosity ratio distributions in
this sensitive area are almost identical for the two different models.

4 Conclusions

In this paper, we incorporate the Spalart-Allmaras (SA) turbulent model into the coupled
double-distribution-function (DDF) lattice Boltzmann method (LBM), while the Suther-
land’s law is used for updating the viscosity due to temperature changes. This enhanced
LBM is then applied to the simulation of subsonic and transonic turbulent flows around
a NACA0012 airfoil. Two models are evaluated, and the numerical results demonstrate
that both models can provide good prediction of shock location and accurate resolution
of the compressible turbulent flows without significant difference. All numerical results
appear in fairly good agreements with experimentally obtained data, indicating that our
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method can be used for simulating both subsonic and transonic turbulent flows. More-
over, the two sets of test cases corresponding to subsonic and transonic turbulent flows
employ an identical mesh without any adaptation. Thus, the method exhibits a remark-
able generality in practical applications, and it looks promising for simulations of sub-
sonic and transonic turbulent flows of more practical interests.
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