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Abstract. We merge classical kinetic theories [M. Doi and S. F. Edwards, The Theory
of Polymer Dynamics, 1986] for viscous dispersions of rigid rods, extended to semi-
flexibility [A. R. Khokhlov and A. N. Semenov, Macromolecules, 17 (1984), pp. 2678-
2685], and for Rouse flexible chains to model the hydrodynamics of polymer nano-rod
composites (PNCs). A mean-field potential for the polymer-rod interface provides the
key coupling between the two phases. We restrict this first study to two-dimensional
conformational space. We solve the coupled set of Smoluchowski equations for three
benchmark experiments. First we explore how rod semi-flexibility and the polymer-
rod interface alter the Onsager equilibrium phase diagram. Then we determine mon-
odomain phase behavior of PNCs for imposed simple elongation and shear, respec-
tively. These results inform the effects that each phase has on the other as parametric
strengths of the interactions are varied in the context of the most basic rheological ex-
periments.

AMS subject classifications: 82D60, 82C31, 76T20, 76A05

Key words: Kinetic theory, polymer, nanorod, nanocomposites, monodomains, equilibrium, elon-
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1 Introduction

Polymer-nanoparticle composites are made from blends of flexible polymers and vari-
ous anisotropic nanoparticles, including nano-clay platelets and graphene sheets, carbon
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nanotubes, nanowires, and metals. They have shown promising, extraordinary prop-
erties in chemical, electrical, environmental, and thermal transport as well as ultrahigh
mechanical strength. We refer to various review articles [9,18,21–24,27] on the promising
diverse applications of polymer nanocomposites.

Given the promising applications of blends of flexible polymers and nanoparticles,
a thorough understanding of their phase behavior, dynamics, morphology development
and mesoscopic structure evolution, and the full spectrum of rheological behavior in pro-
cessing conditions, becomes important. Yet theoretical studies of these aspects of poly-
mer blends are sparse. Liu and Fredrickson developed a mean field thermodynamic
theory to study phase separation kinetics focusing on low frequency and long wave be-
havior [16]. Muratov and E proposed a kinetic theory for the incompressible mixture
of flexible polymers and rodlike liquid crystalline polymers [8, 19], in which they in-
vestigated the phase separation kinetics employing a gradient expansion of the density
function of the rodlike liquid crystalline polymer and identified various transitions lead-
ing to phase separation including a micro-phase separation transition. In both of these
theories, the detailed conformational dynamics of the flexible polymers and the semi-
flexibility of the rods are ignored. There is now overwhelming evidence that the polymer
phase is modified due to surface chemistry with the rod phase, and the local rod-polymer
interactions are critical elements of a predictive theory. This paper takes into account the
local conformational dynamics of the blend of the flexible polymer and the semiflexible
nanorod in a hydrodynamic theory in a 2-D configurational space setting.

Two recent research papers have proposed continuum models of nanorods and nan-
oclays based on the GENERIC formalism [10,20]. The models yield a reasonable qualita-
tive agreement with experimental data. To explore more detailed microscopic informa-
tion and their role in mesoscopic material properties, our aim is to develop a kinetic
theory for flowing polymer nanoparticle dispersion systematically accounting for the
conformational dynamics of the flexible polymer, the polymer nano-particle interactions
and semiflexibility of the nano-particles [12]. This theory extends work of the authors
on blends of polymers and rodlike liquid crystals [14], and of Semenov and Khoklov on
semiflexible liquid crystal polymers [15].

In the blend system, we introduce a statistical weight for the flexible polymer matrix
Θ(x,{Ri},t), where x is the location of the material point, t is time, and {Ri}=(R1,··· ,Rn)
describes the conformation of the flexible polymer chain modeled as a bead-spring chain
[1, 3]. We assume

Θ=φθ(x,{Ri},t), (1.1)

where θ is a probability density function for the conformation of the bead-spring chain
and φ is the volume fraction of the polymer per unit volume at the macroscopic level.
The time evolution of θ is governed by the Rouse dynamics while φ is a constant in the
monodomain case considered here. Since the added conformational dynamics is local, it
does not affect the macroscopic incompressibility constraint. It does however add a de-
tailed conformational contribution of the flexible polymer to the elastic stress as well as to
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the orientational dynamics of the nano-particle phase. Within the framework presented
here, FENE, FENE-p, and Giesekus etc. models can all be cast in this kinetic theory for the
dynamics of the flexible polymer. In principle, it can be extended to deal with arbitrary
shaped nano-particles as well [4–7].

Specifically, this paper aims at:

• casting the kinetic theory in a 2-D configurational space with a 2-D bead-spring
model for the polymer matrix and a semi-flexible rod for the nano-particle ensemble
with excluded volume interactions;

• studying the solution of the highly nonlinear Smoluchowski equation in simple
benchmark flows to explore the effect of various materials parameters such as the
semiflexibility and the interfacial interaction between the polymer and the nanorod.

The rest of the paper is organized into five sections. First, we develop the theory
with a nonlocal intermolecular potential accounting for the Brownian motion, excluded
volume effects, conformational entropic effect for semiflexible nanorods, and polymer
nanorod interaction. We then study the PNC model in equilibrium, elongation and sim-
ple shear flows to investigate the phase diagram and rheological responses.

2 Hydrodynamic theory

We derive the kinetic theory for flowing polymer-nanorod nanocomposites in 2-D con-
figurational space in this section. For incompressible mixtures of flexible polymers and
semiflexible nanorods, we introduce (i) the probability density function (PDF) of nanorods
per unit volume f (x,m,t) at (x,t) with the mean orientation axis m; and, (ii) another
statistical weight proportional to the number density of flexible polymers (modeled as
bead-spring chains) per unit volume Θ(x,q,t) at (x,t) with the chain conformation q (the
end-to-end vector of a bead-spring model). We assume Θ is scaled into,

Θ(x,q,t)=φθ(x,q,t), (2.1)

where φ is the volume fraction of the flexible polymer modeled as a bead-spring chain
and θ(x,q,t) is the probability density function (pdf) of the chain, i.e.,

∫

θ(x,q,t)dq=1. (2.2)

We denote the ensemble average with respect to the probability density function (PDF) θ
by

≪ (•)≫=
∫

(•)θ(x,q,t)dq (2.3)

and the ensemble average with respect to the PDF of the nanorod f (m,x,t) by

〈(•)〉=
∫

‖m‖=1
(•) f (x,m,t)dm. (2.4)
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We propose a free energy functional for the mixture of polymers and semiflexible
nanorods consisting of three parts: (i) free energy associated with the Brownian mo-
tion of the nanorods, entropic contribution due to semiflexibility and excluded volume
interaction among the nanorods, (ii) Brownian motion and the elastic energy for bead-
spring chains, and (iii) the free energy due to the surface contact interaction between
the nanorods and flexible polymer molecules. The excluded volume interaction for the
flexible polymers can be easily accounted for by adding an additional excluded volume
potential for bead-spring chains in the free energy, which has a negligible contribution
to the elastic stress [3]. For the sake of simplicity, we neglect this effect in the current
derivation. In the following, we assume the nanorods are monodispersed ellipses, where
the semiflexibility of the ellipses are taken into account separately, the flexible polymer
matrix consists of bead-spring chains of uniform molecular weight, and the effects of
gelation, excluded volume interaction between nanorods and polymers, poly-dispersity
and polymerization of the flexible polymers are ignored.

Free energy

Let A[ f ] denote the free energy of the mixture in a material volume Ω,

A[ f ,θ]= Fnr +Fbeads+Fint, (2.5)

where Fnr is the free energy associated with the semiflexible nanorods, Fbeads is the free
energy associated with the conformational change of the flexible polymer modeled as a
bead-spring chain, and Fint is the free energy due to the polymer-nanorod contact inter-
action.

Specifically, the free energy for the nanorods consists of a linear combination of the
rigid rod rotational entropic potential and semiflexible rigid body conformational en-
tropic potential along with the rod excluded volume potential

Fnr = ckT(1−φ)
∫

Ω

∫

‖m‖=1
[(1−r f )( f (m,x,t)ln f (m,x,t)− f (m,x,t))

+r f Lr f‖Rln f‖2 +
1

2
U(m,x,t) f (m,x,t)]dmdx, (2.6)

where c is the number density of the nanorods, r f is an interpolating parameter between
0 and 1 parameterizing the degree of semi-flexibility of the nanorod (an important model
parameter to be explored exclusively later), Lr >0 is proportional to the ratio of the con-
tour length of the nanorod to the persistent length of the nanorod [15], k is the Boltzmann
constant, T is the absolute temperature, U(m,x,t) is the excluded volume potential de-
fined below, and R=(I−mm)· ∂

∂m is the orientational gradient operator.
The flexible bulk free energy for the polymer chain is given by the chain Brownian

motion and the elastic potential.

Fbeads = kTγφ
∫

Ω

∫

[θ(x,q,t)lnθ(x,q,t)+ξ‖q‖2θ(x,q,t)]dqdx, (2.7)
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where γkTξ is the spring constant for the Rouse chain and γ is a reciprocal volume pa-
rameter (1/γ is proportional to the effective area of a polymer molecule). We remark that
a FENE type potential can be used as well, where the potential is given by

Fbeads = kTγφ
∫

Ω

∫

[θ(x,q,t)lnθ(x,q,t)−
ξd2

0

2
ln(1−‖q‖2/d2

0)θ(x,q,t)]dqdx, (2.8)

where d0 is the maximum extensible length for the segment of the polymer chain.

The polymer-nanorod interaction potential is made up of the polymer-nanorod con-
tact interaction,

Fint = cφ(1−φ)kTγ
∫

Ω

∫

‖m‖=1
[α1((q)·m)2+α2((q)×m)2]θ(x,q,t) f (m,x,t)dqdmdx, (2.9)

where α1 and α2 parameterize the normal and tangential interaction, respectively.

Configurational kinetics

We neglect the translational diffusion of the material and instead focus only on the con-
figurational space diffusion in the monodomain. The chemical potential for the nanorod
is defined by µnr,

µnr =
δA

c(1−φ)δ f
= kT

(

(1−r f )ln f +r f Lr

[

‖Rln f‖2−2
R·( fRln f )

f

]

+U

)

+γkTφ
∫

[α1((q)·m)2+α2((q)×m)2]θdq. (2.10)

The rotary flux in the configurational space m∈S1 for the nanorod is given by

jr
m =−

1

kT
f Dr(m)·Rµnr , (2.11)

where Dr(m) is the rotary diffusivity, a scalar in this paper. Analogously, the flux of the
flexible polymer in the conformational space q is given by

(jθ)=−H·
∂

∂q
µθ , (2.12)

where H is the mobility matrix for the bead-spring chain [3], and the chemical potential
for the local polymer chain is given by

µθ =
1

γφ

δA

δθ
= kT[lnθ+1+ξ‖q‖2 ]+kT

∫

‖m‖=1
[α1((q)·m)2+α2((q)×m)2]c(1−φ) f dm]

= kT[lnθ+(ξ+c(1−φ)α2)‖q‖2+c(1−φ)(α1−α2)qq : 〈mm〉]+const. (2.13)
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Smoluchowski equation

Given the above fluxes due to the rotary diffusion of each constituent in the nanocom-
posite and taking into account the spatial convection as well as the rotary convection [3],
we arrive at the Smoluchowski equation for f (m,x,t) as follows:

d f

dt
=R·

( Dr(m)

kT
fRµnr

)

−R·(ṁ f ),

ṁ=W·m+a[D·m−D : mmm],
(2.14)

where W = 1
2 (K−KT),D = 1

2(K+KT) are the vorticity and rate of strain tensor, respec-
tively, K=∇v is the velocity gradient tensor, 0≤a≤1 is the standard rod shape parameter,
and d

dt = ∂
∂t +v·∇ is the material derivative. Analogously, we obtain the accompanying

Smoluchowski equation for θ

d

dt
θ =−

∂

∂q
·((K−(1−a0)D)·qθ)+

∂

∂q
·H·

( ∂

∂q
θµθ

)

, (2.15)

where −1≤ a0 ≤1 is a rate parameter describing the extent of the nonaffine motion. For
isotropic friction, H= 1

ζp
I, where ζp is the friction coefficient. In order to couple the kinetic

equation for the momentum transport process in the macroscopic flow, we need the stress
tensor for the mixture [25, 26].

Stress tensor

The extra stress is given by two parts, the viscous stress τv and the elastic stress τe:

τ =τv+τe. (2.16)

We consider two sources for the viscous stress in this theory. There must be a zero-strain-
rate viscosity while the mixture is isotropic, which we denote as ηv. The viscous stress
associated to this effect is denoted as 2ηvD. In addition, there is a viscous stress due to
the friction between polymers and nanorods. Following the procedure outlined in [25],
we arrive at the viscous stress

2c(1−φ)kTζD : 〈mmmm〉+cζ2(1−φ)kT(D·〈mm〉+〈mm〉·D),

where ζ and ζ2 are two friction parameters. The overall viscous stress is therefore given
by

τv =2ηvD+2c(1−φ)kTζD : 〈mmmm〉+c(1−φ)ζ2 kT(D·〈mm〉+〈mm〉·D). (2.17)

The elastic stress and extra elastic body force are derived through a virtual work prin-
ciple [3]. Consider an infinitesimal displacement given by δu = vδt corresponding to a
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deformation rate δǫ = Kδt. The variation of the free energy (2.5) in response to the in-
finitesimal deformation and displacement is equal to the work done by a body force
along the displacement and the stress with respect to the deformation rate:

δA=
∫

Ω
[δǫ : τe−δu·Fe]dx, (2.18)

where Fe is the elastic body force induced by the long range interaction among the nanorods
and polymer-nanorod interaction. It follows from a simple calculation that

Fe =−∇p0, (2.19)

where p0 is a scalar function, and

τe =γφ
[a0

2
[≪

∂µθ

∂q
q≫+≪q

∂µθ

∂q
≫]+

1

2
[≪

∂µθ

∂q
q≫−≪R

∂µθ

∂q
≫]

]

+
ac(1−φ)

2
[〈R(µnr)m〉+〈mR(µnr)〉]+

c(1−φ)

2
[〈R(µnr)m〉−〈mR(µnr)〉]. (2.20)

Since p0 can be identified as a part of the hydrodynamic pressure in the incompressible
system, we will not explicitly write the elastic external force in the momentum balance
equation in the following. We note that

≪
∂µθ

∂q
q≫

=2kT[(ξ+c(1−φ)α2)≪qq≫+(α1−α2)c(1−φ)〈mm〉·≪qq≫]+scalarI. (2.21)

The total extra stress, modulo a pressure like term, is then given by

τ =τv+τe

=2ηvD+2c(1−φ)kTζD : 〈mmmm〉+c(1−φ)ζ2 kT(D·〈mm〉+〈mm〉·D)

+
ac(1−φ)

2
[〈R(µnr)m〉+〈mR(µnr)〉]+

c(1−φ)

2
[〈R(µnr)m〉−〈mR(µnr)〉]

+2a0γkTφ(ξ+c(1−φ)α2)≪qq≫+γc(1−φ)φkT[(α1−α2)[a0[〈mm〉·≪qq≫

+≪qq≫·〈mm〉]+〈mm〉·≪qq≫−≪qq≫·〈mm〉]. (2.22)

Governing equations

The Smoluchowski equation, the stress constitutive equation, the continuity equation and
the balance of linear momentum equation constitute the governing system of equations
for flows of the polymer-nanorod composite in the kinetic theory, which are summarized
below.

Continuity equation

d

dt
ρ+ρ∇·v=0. (2.23)
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Balance of linear momentum

ρv̇=∇·(−pI+τ)+ρg, (2.24)

where p is the hydrodynamic pressure, and g is the external force per unit mass.
Smoluchowski kinetic equations



























d f

dt
=R·(

Dr(m)

kT
fRµ)−R·(m×ṁ f ),

ṁ=W·m+a[D·m−D : mmm],

d

dt
θ =−

∂

∂q
·((K−(1−a0)D)·qθ)+

∂

∂q
·H·(

∂

∂q
µθθ),

(2.25)

Stress constitutive equation

τ =2ηvD+2kTζ(1−φ)D : 〈mmmm〉+ζ2kT(1−φ)(D : 〈mm〉+〈mm〉·D)

+
ac(1−φ)

2
[〈R(µnr)m〉+〈mR(µnr)〉]+

c(1−φ)

2
[〈R(µnr)m〉−〈mR(µnr)〉]

+2a0γkTφ(ξ+α2c(1−φ))≪qq≫+γcφ(1−φ)kT[(α1−α2)[a0[〈mm〉·≪qq≫

+≪qq≫·〈mm〉]+〈mm〉·≪qq≫−≪qq≫·〈mm〉]. (2.26)

3 Model reduction for Rouse chains and Smoluchowski

equations in elongation and shear flows

This kinetic theory consists of two Smoluchowski equations. If we adopt an isotropic ten-
sor for the polymer mobility matrix H = 1

ζp
I, we can bypass the Smoluchowski equation

for θ [1]. Taking the second moment of q with respect to pdf θ, we arrive at the evolution
equation for the structure tensor of the flexible polymer ≪qq≫ :

d

dt
≪qq≫−W·≪qq≫+≪qq≫·W−a0[D·≪qq≫+≪qq≫·D]

=
2kT

ζp
I−

4(ξ+c(1−φ)α2)kT

ζp
≪qq≫

−
2c(1−φ)(α1−α2)kT

ζp
[Q·≪qq≫+≪qq≫·Q], (3.1)

where the second moment is denoted as

Q= 〈mm〉.

This equation for Q generalizes the Johnson-Segalman model [1] to include the coupling
terms between nanorods and polymers. With this self-contained equation, we can com-
pletely bypass the Smoluchowski equation for pdf θ now. We remark that if the FENE
type elastic potential is used, the decoupling is not feasible.
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To simplify the stress expression, we introduce a scaled structure tensor for the flexi-
ble polymer

U=2γkT(ξ+c(1−φ)α2)≪qq≫ . (3.2)

It follows from the governing equation for the structure tensor ≪qiqi≫ (3.1) that

λ
[ d

dt
U−W·U+U·W−a0[D·U+U·D]

]

+U=ǫpI−β(1−φ)[Q·U+U·Q], (3.3)

where

λ=
ζp

4(ξ+c(1−φ)α2)kT
, ǫp =γkT, β=

c(α1−α2)

2(ξ+c(1−φ)α2)
(3.4)

are the relaxation time, polymer viscosity, and a dimensionless parameter measuring the
degree of the surface contact interaction relative to the modulus of the mixture (a key
parameter to be explored extensively in the following), respectively.

We use the Maier-Saupe potential to approximate the excluded volume potential in
the following [25]

Ums =−N(1−φ)Q : mm, (3.5)

where N is a dimensionless concentration related to the geometry of the nanorod. With
this excluded volume potential, the chemical potential for the nanorod is explicitly given
by

µnr = kT

[

(1−r f )ln f +r f Lr

(

(
∂

∂θ
ln f )2−2

1

f

∂2

∂θ2
f
)

+Ums+
φβ

ckT
U : mm

]

. (3.6)

Consider an imposed shear flow

v=





γ̇y

0



, W=
γ̇

2





0 1

−1 0



, D=
γ̇

2





0 1

1 0



, (3.7)

where γ̇ is the shear rate. We parameterize the unit vector m by the polar angle θ:

m=(cosθ,sinθ) (3.8)

and denote its orthogonal counterpart as

m⊥=(−sinθ,cosθ). (3.9)

The Smoluchowski equation can be written as

d

dt
f =

∂

∂θ

[

Dr

(

(1−r f )
∂

∂θ
f +r f Lr

(4 fθ fθθ

f
−2

f 3
θ

f 2
−2 fθθθ

)

+ f [(A22−A11)sin2θ+2A12cos2θ]
)

−
[ γ̇

2
(acos2θ−1) f

]

]

, (3.10)
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where

A=−N(1−φ)Q+
βφ

ckT
U, (3.11)

and the subscript of f denotes partial derivative with respect to θ. For an imposed elon-
gational flow,

v=(γ̇x,−γ̇y), (3.12)

where γ̇ denotes the elongational rate in this context, the Smoluchowski equation can be
written as

d

dt
f =

∂

∂θ

[

Dr

(

(1−r f )
∂

∂θ
f +r f Lr

(4 fθ fθθ

f
−2

f 3
θ

f 2
−2 fθθθ

)

+ f [(A22−A11)sin2θ+2A12cos2θ]
)

+
[

γ̇(asin2θ) f
]

]

. (3.13)

The second moment of m with respect to the pdf f is evaluated as

Q= 〈mm〉=
∫

‖m‖=1
mm f dm=2

∫ π

0
mm f dθ

=
∫ π

0





(1+cos2θ) sin2θ

sin2θ (1−cos2θ)



 f dθ. (3.14)

The extra stress tensor can be expressed as

τ =2ηvD+2ckTζ(1−φ)D : 〈mmmm〉+ζ2ckT(1−φ)(D·Q+Q·D)

+2ackT(1−φ)

[

(1−r f )(Q−
1

2
I)−NQ2+NQ : 〈mmmm〉

+
1

4
r f Lr

(

〈m⊥m
∂

∂θ
((

fθ

f
)2−

2

f
fθθ)〉+〈mm⊥

∂

∂θ
((

fθ

f
)2−

2

f
fθθ)〉

)

]

+
ckT

2
(1−φ)r f Lr

(

〈m⊥m
∂

∂θ
((

fθ

f
)2−

2

f
fθθ)〉−〈mm⊥

∂

∂θ
((

fθ

f
)2−

2

f
fθθ)〉

)

+a0φU+φ(1−φ)β
[

a(U·Q+Q·U−2U : 〈mmmm〉)+a0(Q·U+U·Q)
]

. (3.15)

4 Nondimensionalization

We use a characteristic length scale h, time scale t0, and force scale f0 to nondimensional-
ize the governing system of equations for the nanocomposite flow

ṽ=
t0

h
v, τ̃ =

h2

f0
τ, p̃=

h2

f0
p, Ũ=

h2

f0
U, (4.1)
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where the inertial force is used as the characteristic force f0=ρh4/t2
0 and the characteristic

time t0 will be chosen later. A group of dimensionless parameters then arise

Re=
h2

ηρt0
, α=

ckTh2

f0
, Λ1 =

λ1

t0
, Ep =

ǫph2

f0
, De=

1

t0Dr
, Pe= t0γ̇. (4.2)

Here Re is the Reynolds number for the solvent, α is a parameter measuring the strength
of the thermal force relative to the inertia force, Λ1 is the Deborah number for the poly-
mer and De is the Deborah number for the nanorod, Pe is the Peclet number due to the
imposed linear flow field.

In this paper, we choose the characteristic timescale t0 as the reciprocal rotational
diffusion rate of the rods t0 = D−1

r , so that the dynamics is measured in this unit. This is
equivalent in the above scaling to a unit Deborah number for the nanorod phase: De=1.
We drop the tilde on the dimensionless variables; then, the dimensionless equations for
the nanocomposite flow are given as follows:

∇·v=0,
dv

dt
=∇·(−pI+τ),

d

dt
f =

∂

∂θ

[

1

De

(

(1−r f )
∂

∂θ
f +r f Lr

(4 fθ fθθ

f
−2

f 3
θ

f 2
−2 fθθθ

)

+ f [(A22−A11)sin2θ+2A12 cos2θ]
)

−[
Pe

2
(acos2θ−1) f ]

]

, Shear

d

dt
f =

∂

∂θ

[

1

De

(

(1−r f )
∂

∂θ
f +r f Lr

(4 fθ fθθ

f
−2

f 3
θ

f 2
−2 fθθθ

)

+ f [(A22−A11)sin2θ+2A12 cos2θ]
)

+[aPesin2θ f ]

]

, Elongation

A=−N(1−φ)Q+
βφ

α
U,

τ =2ηvD+2αζ(1−φ)D : 〈mmmm〉+ζ2α(1−φ)(D·Q+Q·D)

2aα(1−φ)

[

(1−r f )(Q−
1

2
I)−NQ2+NQ : 〈mmmm〉

+
1

4
r f Lr

(

〈m⊥m
∂

∂θ
((

fθ

f
)2−

2

f
fθθ)〉+〈mm⊥

∂

∂θ
((

fθ

f
)2−

2

f
fθθ)〉

)

]

+
α

2
(1−φ)r f Lr

(

〈m⊥m
∂

∂θ
((

fθ

f
)2−

2

f
fθθ)〉−〈mm⊥

∂

∂θ
((

fθ

f
)2−

2

f
fθθ)〉

)

+a0φU+φ(1−φ)β

[

a(U·Q+Q·U−2U : 〈mmmm〉)+a0(Q·U+U·Q)

]

,

Λ1

[

d

dt
U−W·U+U·W−a0[D·U+U·D]

]

+U=EpI−β(1−φ)[Q·U+U·Q].

(4.3)
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5 Numerical method: collocation method

We numerically solve the nonlinear system of equations given above (Eq. (4.3)) in mon-
odomains. In a monodomain and in cases of equilibrium, simple elongation and shear,
the velocity field is either a constant or a linear function of the coordinates such that
the continuity and the momentum transport equation are trivially satisfied. We there-
fore only need to solve the Smoluchowski equation for the nanorods and the constitu-
tive equation for the polymer structure tensor U numerically. The stress tensor is post-
processed from the numerical solution of U and f , the pdf for the nanorod. Given the
nonlinear terms in the Smoluchowski equation, it is advantageous to use the collocation
method to discretize the PDE system [2]. We discretize the interval [0,π] into n equal
intervals with grid points:

θj =
1

2
(jh+π), h=

2π

n
, j=−n/2,··· ,n/2,

and approximate the function using the interpolant

fa =
n/2−1

∑
j=−n/2

f jSn(2(θ−θj)), (5.1)

where f j = f (θj) and Sn(x) = (sin nx
2 )/(ntan x

2 ) defined in (−π,π) is the Sinc function
which is an approximate δ function with the property

Sn(0)=1. (5.2)

Thus,

fa(θj)= f j, j=−n/2,··· ,n/2. (5.3)

The derivatives evaluated at the grid points are given by

faθ,k =2
n/2−1

∑
j=−n/2

f jS
′
n(2(θk−θj)), k=−n/2,··· ,n/2−1, (5.4)

where the derivative of fa at the grid points can be calculated by the derivatives of Sn

S′
n(2(θk−θj))=







0, j= k,

1

2
(−1)k+j cot

(k− j)h

2
, j 6= k,

(5.5)

S′′
n(2(θk−θj))=















−
1

6
−

π2

3h2
, j= k,

1

2
(−1)(j+k)csc2 (k− j)h

2
, j 6= k.

(5.6)
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From the above formulas, we can construct the derivative matrices for the first through
the third order derivative, respectively,

faθ,k =(Dn)kl fl , k=−n/2,··· ,n/2−1,

faθθ,k =(D
(2)
n )kl fl , k=−n/2,··· ,n/2−1,

faθθθ,k =(Dn)
3
kl fl, k=−n/2,··· ,n/2−1,

(5.7)

where the derivative matrices are given by

(Dn)ij =2







0, i= j,

1

2
(−1)i+jcot

(i− j)h

2
, i 6= j,

(5.8)

(D
(2)
n )ij =4















−
1

6
−

π2

3h2
, j= i,

1

2
(−1)(j+i+1)csc2 (i− j)h

2
, j 6= i.

(5.9)

The third order derivative is calculated by D3
n. The second moment tensor is approxi-

mated by quadratures, for example, the composite trapezoidal rule:

Q=h
n/2−1

∑
j=−n/2

(mm)j f j, (5.10)

where the transpose of m evaluated at the jth grid point is given by

mT
j =(cosθj,sinθj), (5.11)

and the periodicity of the second moment tensor and the pdf is exploited. In the chemical
potential µnr, we evaluate the second order tensor

A=−N(1−φ)

[

h
n/2−1

∑
j=−n/2

(mm)j f j

]

+
βφ

α
U. (5.12)

Then, µnr = A : mm. The Smoluchowski equation is fully discretized at each grid point
θj, j=−n/2,··· ,n/2−1,

[ ∂

∂t
fa+v·∇ fa

]

j
=

[ ∂

∂θ

Dr

kT
[ fa

∂µnr

∂θ
]−m⊥ ·

∂

∂θ
[(W·m+a(D·m−D : mmm)) fa]

]

j
, (5.13)

for j =−n/2,··· ,n/2−1. The equation for the structure tensor U is an ordinary differ-
ential equation coupled to the Smoluchowski equation. In the numerical scheme, the
two systems are integrated simultaneously using a second order Runge-Kutta scheme of
good A-stability. All computational results presented below are obtained for n=64 unless
specified otherwise.
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6 Numerical results

We next study the solution of the Smoluchowski equation and the polymer structure
tensor equation numerically with respect to the various material parameters. We first
investigate the equilibria or the steady states of the Smoluchowski equation absent of
external flows (Pe=0).

6.1 Equilibria: effects due to nanorod semi-flexibility and nanorod-polymer
surface interaction

All equilibria of the nanorod Smoluchowski equation and the corresponding polymer
Smoluchowski equation are invariant under a planar rotation; this is the classical rota-
tional degeneracy of the nematic rod phase in equilibrium which extends to the polymer-
nanorod mixture. Ordered equilibria constitute a 1-parameter family; we represent each
circle of ordered equilibria by fixing the peak of the nematic phase PDF at π

2 . We re-
mark that due to the coupling of the nanorod with the flexible polymer in the mixture,
the rotational degeneracy of the nanorod and polymer Smoluchowski equation is not in-
dependent! The dual orientation of the nanorod ensemble and the polymer matrix are
measured by the scalar order parameter s of the nanorod and the scalar order parameter
su of the polymer matrix, respectively,

s=
√

2(Q−I/2) : (Q−I/2), su =
√

2(U/tr(U)−I/2) : (U/tr(U)−I/2) . (6.1)

Here, tr(U) denotes the trace of tensor U. Both s and su measure the deviation of the
orientation/structure tensor from the isotropic state. Their values are confined between
0 and 1.

In this numerical study, we limit our attention to a small set of model parameters
and their influence on the solution of the Smoluchowski equation with the primary fo-
cus on the modeling advances developed in this paper, which are captured by the rod
semi-flexibility parameter r f and the rod-polymer surface interaction parameter β. The
following dimensionless parameter values are fixed in all calculations:

Λ1 =0.5, φ=0.9, N =60, Ep =50, De=1, ζ =0.5, ζ2 =0.5, Re=1, α=100.

We use a perturbed isotropic state as the initial condition in the transient calculations.
All calculations are terminated after they demonstrate convergence to steady states. We
set the convergent criterion as the difference of the pdf at two consecutive time steps
to be less than 10−7 in the L2 norm. We note that the time to reach steady state is not
sensitive to the value of r f , however it is sensitive to the value of β, which parameterizes
the interaction between the nanorod and the host polymer matrix.

The typical steady state solution is either a pdf of uniform distribution or one of a
single peak in the domain of the orientation angle θ, indicating an isotropic phase or a
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nematic phase, respectively. The isotropic phase is obtained at lower values of the ef-
fective strength of the excluded volume potential N(1−φ) while the nematic one can be
observed at higher values of N(1−φ). Like in any anisotropic fluids, where the concen-
tration of the anisotropic inclusion can induce a phase transition, this model predicts a
second order phase transition from the isotropic phase to the nematic phase at a critical
effective strength of the excluded volume potential N(1−φ) [17]. For instance, the critical
value is N(1−φ)=3.96 at r f =0.15.

A representative phase diagram describing the phase transition is depicted in Fig. 1
at four selected values of r f .
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Figure 1: The bifurcation diagram of the nanorod orientational order parameter s as a function of the effective
concentration N(1−φ) at selected values of the rod semi-flexibility parameter r f . The effect of increasing r f is
shown to delay the formation of the nematic phase in the nanocomposite to higher concentration.

6.1.1 Effect of semi-flexibility of the nanorod

At fixed surface interaction parameter β, the peak of the pdf solution is lowered as r f in-
creases, indicating the enhanced semi-flexibility of the nanorod reduces the local degree
of orientation or the mesoscale nematic order in the composite at a given nanorod concen-
tration. The effective phase transition concentration shifts to large values as r f increases
(shown in Fig. 1). This behavior is universal for both positive and negative values of β.
We note that a positive value of β promotes the perpendicular configuration of the poly-
mer relative to the rod; while a negative one favors the parallel alignment. Fig. 2 depicts
some representative steady states at selected r f for β <0. As the nanorod semiflexibility
increases, the nematic order in the nanorod ensemble reduces and the alignment in the
host polymer matrix relaxes as well. Similar behavior had been reported for semiflexible
liquid crystal polymers in the past [15].
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Figure 2: (a). The equilibrium pdf at four selected values of r f . The other parameters used are β =−3,N =
60,φ=0.9. (b). Order parameter s and su. The orientation order in the polymer matrix is considerably lower than
that in the nanorod phase in all cases. (c). The orientation tensor depicted as an ellipse, where the semiaxes are
in the eigenvector directions and the length of the semiaxes represents the size of the corresponding eigenvalues.
(d). The structure tensor U depicted as ellipses. The increase in semiflexibility of the nanorod reduces the local
degree of orientation of the nanorod phase as well as that of the host polymer matrix. But, it has a weaker
impact on the host polymer matrix. The major director of the orientation tensor Q and that of the structure
tensor are parallel to each other in this case.

6.1.2 Effect of surface interaction parameter β

At a fixed value of the semi-flexibility parameter r f , the effect of the surface interaction
parameter β on the nanorod orientational order is nominal, yet the polymer matrix is
modified significantly! We refer to Fig. 3. It shows that the mesostructure of the polymer
matrix is quite sensitive to the interaction parameter. When β>0, increasing β enhances
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Figure 3: (a). The equilibrium pdf solution at four selected values of β. The other parameters are r f =
0.1,N =60,φ=0.9. (b). Order parameter s and su. Notice that the orientation order in the polymer matrix is
considerably lower than that in the nanorod phase. (c). The orientation tensor depicted as an ellipse. (d). The
structure tensor U depicted as an ellipse. The larger positive value of β promotes the perpendicular orientation
between the nanorod and the polymer; whereas the smaller negative value of β facilitates the parallel alignment
between the two.

the polymer alignment transverse to the orientation of the nanorod ensemble; whereas
decreasing β when β <0 boosts the parallel alignment of the polymer with the nanorod.
The polymer matrix structure is more sensitive to the variation of β when it is negative
than when it is positive.

Fig. 4 depicts the equilibrium phase diagram as a function of the effective concentra-
tion N(1−φ) at a few selected values of β in all cases. A second order phase transition
is observed at critical values of the effective concentration N(1−φ) at fixed β. When
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Figure 4: The bifurcation diagram of the nanorod order parameter s as a function of N(1−φ). (a). β>0,r f =0.5,

(b). β<0,r f =0.5. The stronger surface contact interaction lowers effective phase transition concentration.

N(1−φ) is less than the critical value, the only existing phase is the isotropic one. When-
ever N(1−φ) exceeds the critical value, the only stable phase is the nematic one. This
phase transition phenomenon is the reminiscence of the liquid crystal polymer phase be-
havior [3]. Increasing |β|, i.e., enhancing the nanorod polymer interaction, promotes the
nematic phase formation. It clearly establish that the phase transition value of N(1−φ)
varies opposite to the variation of |β|.

We next look into the phase behavior when a linear flow of elongation or shear is im-
posed, respectively. As we noted in [11,13] that both types of flows are in fact potential in
2-D so that the numerical code developed here can be applied to both cases with minimal
modification.

6.2 Planar elongation

When planar elongation is imposed, the rotational symmetry in the Smoluchowski equa-
tion is broken. The pdf solution no longer possesses the translational invariance with
respect to the angle variable θ. In polar coordinates, the potential of the planar elonga-
tional flow is given by

Vel =
aPekT

2
cos2θ. (6.2)

Elongation is a strong flow, in which all the sustainable solutions are stable steady states,
so that the principal axes of both the orientation tensor and the structure tensor align with
the axes of symmetry of the flow. The flow certainly aligns the polymer matrix to the flow
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Figure 5: Steady states in elongation at various Pe, where r f = 0.1,β = 1. (a). The steady state pdf. (b).

The order parameters s and su. (c). The corresponding orientation tensor Q depicted as an ellipse. (b). The
structure tensor U depicted as an ellipse. The enhanced elongation improves nanorod alignment nominally
whereas polymer alignment significantly.

direction (i.e. the stretching direction or the x-axis in this paper). However, the nanorod
alignment is slaved by the detail of the nanorod-polymer interaction at regime of small
nanorod volume fraction of industrial interest. When β > 0, the interaction favors an
orthogonal alignment between the nanorod phase and the flow-aligning polymer matrix;
otherwise, the nanorod phase aligns with the polymer matrix in the flow direction.

Fig. 5 depicts a set of steady states at various values of the Peclet number, in which
the polymer phase aligns weakly in the flow direction while the nanorod phase aligns
in the flow gradient direction at β = 1. The mesoscopic order in both phases increase
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Figure 6: Steady states at various β, where Pe =0.1,r f =0.1. (a). The steady state pdf. (b). Order parameter

s and su. (c). The orientation tensor Q. (d). The structure tensor U. The change of β from positive
to negative switches nanorod mesoscopic orientation from transverse to parallel with respect to the polymer
matrix orientation, i.e., flow direction.

with the Peclet number, as expected. The enhancement in the mesoscopic order is most
pronounced in the polymer matrix though. The impact of β on the nanorod ensemble
and the polymer matrix is stronger in the case of β<0 than in the case of β>0 evidenced
in Fig. 6. In the case of β <0, the nanorod along with the polymer matrix align with the
flow and the degree of orientation in the polymer matrix is enhanced significantly due
exclusively to the nanorod-polymer interaction.

Analogous to the equilibrium situation, the enhancement of semi-flexibility reduces
the local nematic order. However, it has a weak effect on the structure of polymeric matrix
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Figure 7: Steady and transient elongational viscosity. (a). The steady state elongational viscosity as a function
of Pe at β< 0. Elongational thinning is seen at small Pe while elongational hardening is observed at large Pe.
(b). The transient elongational viscosity as a function of time at β<0.

in elongation in stark contrast to the significant effect of β to the nematic orientation of the
nanorod and the orientational structure of the polymer matrix. This is apparently related
to the low volume fraction of the nanorod considered in the paper. This scenario perhaps
will change if we reverse the ratio of the volume fraction of the two components in the
composite, a case which we will not explore due to the lack of scientific and industrial
interest so far.

A typical steady state elongational viscosity defined by

ηe =
τ11−τ22

Pe
(6.3)

is depicted in Fig. 7(a) as a function of the Peclet number at a set of fixed parameter
values. The steady elongational viscosity decreases at small Pe, but increases at larger
Pe showing a nonmonotonic trend. The transient viscosity increases with respect to time
and ”blows up” at some intermediate time (Fig. 7(b)).

6.3 Plane shear

Next, we study the microstructural response of the nanocomposite with respect to an
imposed planar shear flow. The plane shear in 2-D is a potential flow with the potential
given by

Vshear =−
PekT

2

( a

2
sin2θ−θ

)

(6.4)
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Figure 8: The pdf solution and the nanorod nematic orientation tensor Q and polymer structure tensor U for
various values of Pe in shear. (a). PDF solution. (b). The scalar order parameters s and su. (c). The ellipses
of Q. (d). The ellipses of U.

in polar coordinates. The nanorod kinetic equation admits either steady or time-periodic
solutions in various regimes of the parameter space. It’s been shown numerically that
a smaller geometrical parameter a (or a fatter nanorod geometry) tends to promote the
formation of time-periodic solution in liquid crystal polymer systems [14]. We will show
that this feature is retained in the current PNC model. At small and large values of the
effective concentration N(1−φ), steady states prevail for all Pe. Whereas, time-periodic
solutions exist at intermediate range of N(1−φ) and Pe. The time-periodic solution is
a feature reminiscent of the intermediate to concentrated nanorod fluids due to the ex-
cluded volume interaction [14].
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Figure 9: The pdf solution and Q and U for various values of Pe in shear. (a). PDF solution. (b). The scalar
order parameters s and su. (c). The ellipses of Q. (d). The ellipses of U.

6.3.1 Steady state behavior

First, we study the parameter dependence of the steady states. Like in the case of elonga-
tional flows, the mesoscopic orientation of the nanorods is slaved by the polymer matrix
meso-structure primarily due to the overwhelming volume advantage of it. As we in-
crease the Peclet number, the local nematic order in both nanorod and polymer distribu-
tion improves. It is more significant in the polymer matrix than in the nanorods though.
Because the polymer nanorod interaction favors a mutually orthogonal orientation be-
tween the nanorod and the polymer matrix when β > 0, the Leslie angle that the major
director of the nanorod ensemble makes with the flow direction tends to be an abtuse
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Figure 10: The pdf solution and Q and U for various values of β in shear. (a). & (b). The scalar order
parameters s and su. (c). & (d). The ellipses of Q. (e). & (f). The ellipses of U.
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one while the polymer principal axis makes a positive acute angle with the flow direc-
tion. As the Peclet number increases, the polymer principal axis tends to rotate clockwise
toward the flow direction while that of the nanorod tends to rotate clockwise as well (see
Fig. 8), first toward the velocity-gradient at small Peclet numbers and then toward the
flow direction at large Peclet numbers. In any case, the two principal axes are neither
completely orthogonal nor completely parallel in shear. The direction cosine between the
two major director takes on a numerical value between zero and 1. When β<0, it favors
a nearly parallel alignment between the nanorods and the polymers. Enhanced shear
strength forces the degree of order in both the nanorod ensemble and the polymer matrix
to increase and their principal axes oriented towards the flow direction (see Fig. 9). The
direction cosine between the two major directors is slightly less than one. The effect of
semiflexibility parameter r f on the steady state in shear is analogous to what we have
alluded to in equilibrium and elongation: the major director orientation does not change
much except that the local nematic order of the nanorods reduces as the semi-flexibility
enhances.

When we vary the surface interaction parameter β, however, the mesoscale degree
of orientation and the polymer matrix both get improved. As |β| increases and Pe is
fixed, the major director of the nanorod rotates toward the flow direction for β<0 or the
velocity-gradient direction for β > 0 while the nematic order increases sharply. Fig. 10
depicts the steady state variation with respect to β. An increase in N(1−φ) improves
alignment noticeably in the degree of orientation in the nanorods yet with a nominal
impact on the polymer matrix. The weakly order reducing effect of r f and the strong
order enhancement due to the increase of surface interaction (i.e., |β|) retains.

6.3.2 Rheological functions

The steady state shear viscosity, defined by ηs = τxy/Pe, shows shear thinning behavior
consistently. Fig. 11 depicts both the shear stress τxy and the normal stress difference
τxx−τyy in steady and transient flows, respectively. It shows that the normal stress dif-
ference also decreases with Pe. Transient shear viscosity and normal stress difference
demonstrates a sequence of actions: initial climbing, overshooting and then reaching a
plateau (See Fig. 11). Some transient oscillation is more noticeable at large Peclet num-
bers than others but otherwise nonexistent at small Peclet numbers. The normal stress
difference oscillation is in sync with that of the shear stress component.

The shear viscosity prediction qualitatively captures the behavior observed in exper-
iment [28, 29]. Fig. 12 shows a good agreement with the experimental data at the smaller
end of the Peclet number [20,28]. However, the prediction using the same results at large
Peclet numbers yields some oscillations which seem to be larger than what was reported
in experiments [28,29]. When N, r f and β>0 vary respectively, the qualitative impact on
the viscosity is minimal. However, variation in β<0 does show noticeable impact on the
enhancement of the overshoot in the viscosity.

Another rheological function for the nanocomposite is the small amplitude viscoelas-
ticity, which is characterized by the elastic or storage modulus G′ and the loss modulus
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Figure 11: Shear viscosity of steady states as a function of Pe and transient shear viscosity as function of time
at two selected β. The label of the dashed curve is on the left while that of the solid one is on the right.
(a). Steady state viscosity and normal stress difference for β>0. (b). Steady state viscosity and normal stress
difference for β>0. (c). Steady state viscosity and normal stress difference for β<0. (d). Steady state viscosity
and normal stress difference for β<0.

G′′, respectively. We impose the shear velocity field as follows

v=(yǫcosωt,0) (6.5)

where |ǫ|≪ 1. We linearize the stress constitutive equation about the steady state. The
linearized shear stress equation can then be written into

τxy =
ǫ

ω

(

G′sinωt+G′′cosωt
)

, (6.6)
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Figure 12: Transient shear viscosity for various values of Pe normalized by its terminal value at steady states.
(a) & (c) and various values of β (b) & (d).

in which G′ is the storage modulus and G′′ is the loss modulus. In this paper, instead
of linearizing the stress equation and the Smoluchowski equation, we calculate the non-
linear solution and the stress in short time and then project the stress onto the Fourier
subspace corresponding to the frequency ω. Namely, this is done by expanding the shear
stress response into the Fourier series of the form

τxy =∑
n

(

an cosnωt+bn sinnωt
)

, (6.7)

where

an =
ω

π

∫ T0+
2π
ω

T0

τxycosnωtdt, bn =
ω

π

∫ T0+
2π
ω

T0

τxysinnωtdt, (6.8)
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Figure 13: Storage (G′) and loss (G′′) modulus at various values of β,r f ,N. (a). G′ and G′′ at four selected

values of β > 0. The slope of G′ and G′′ lies in [1.7692,1.822] and [0.7874,0.8334], respectively, at ω = 0.5.
(b). G′ and G′′ at three selected values of r f . The slope of G′ and G′′ fluctuates slightly around 1.769 and

0.7884, respectively, at ω =0.5. (c). G′ and G′′ at four selected values of N. The slope of G′ and G′′ varies in
[1.8626,1.8741] and [0.8721,0.8761], respectively, at ω =0.4.

T0>0 is the initial transient time after which the solution exhibit periodic behavior. Then,
ǫG′=ωb1,ǫG′′=ωa1 are recovered.

In all cases we investigated, G′ and G′′ demonstrate noticeable crossover behavior
as the frequency increases. At low frequency, G′ is smaller than G′′. As the frequency
increases, the difference between the two shrinks to zero and then G′ takes over G′′ as
the larger one. This lasts for a few decades of the frequency and then the role of G′ and
G′′ switch back. The material parameters dictate the slope of the two curves at small
frequency regime, the crossover frequency, and the eventual slopes of the two curves.
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Figure 14: A tumbling solution. (a). Order parameter s over one period. (b). The tumbling major director of
Q over one period. (c). Order parameter su over one period. (d). The wagging major director of U over one
period.

These phenomena have been documented in some experiments [28, 29]. The model cap-
tures them qualitatively.

6.3.3 Time-periodic states

Time-periodic solutions exist in this system at some regimes of Pe and N(1−φ). For the
time-periodic solutions, we observe either tumbling (rotating a full π circle, Fig. 14) or
wagging (oscillating about a certain direction with the sway of angles less than π, Fig. 15)
behavior in the nanorod ensemble. In the meantime, the polymer matrix synchronically
exhibits wagging behavior. In both tumbling and wagging states, the order parameters
fluctuate as well. In the tumbling case, the nematic order of the nanorod fluctuates be-
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Figure 15: A wagging solution. (a). Order Parameter s over one period. (b). The waggling major director of
Q over one period. (c). Order parameter su over one period. (d). The wagging major director of U over one
period.

tween 0.59 and 0.66 while that of the polymer matrix bounces between 0.31 and 0.44 as
depicted in Fig. 14. In the case of wagging, on the other hand, the nematic order oscillates
between 0.24 and 0.64 while that of the polymer matrix bounces between 0.74 and 0.765
shown in Fig. 15. The local order of both the nanorod and the polymer matrix couple
strongly to the director motion. The nematic order in both constituent ensembles oscil-
lates the most when the directors wags in a large angle. The magnitude of fluctuation
attenuates as the wagging angle decreases. In general, a decrease in polymer relaxation
time Λ1, an increase in the semiflexibility r f , and a decrease in the surface interaction pa-
rameter β tend to promote steady states; large Peclet numbers also arrest time-periodic
solutions to steady states. For periodic solutions, an increase in Pe and β tends to reduce
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Figure 16: The half of the rotated angle of the major director and the period in the solution. The dashed line is
π/2, the circles depict the half of the rotated angle of the major director, and the diamonds show the period of
the solution. (a). The case of varying Pe. The wagging behavior is shown between 3.2≤Pe≤4.1. For Pe <3.2, it
is tumbling and steady state for Pe >4.25. (b). The case of varying r f . It is wagging at 0.4≤r f ≤0.42, tumbling

at r f < 0.4, and steady state at r f > 4.25. The period peaks near the tumbling-wagging transition. (c). The

case of varying β.It is wagging when 0.85≤β1.05, tumbling when β≥1.05, and steady state when β<0.85. (d).
The case of varying N. It is wagging when 59≤N≤60, tumbling when N≥61, and steady state when N<59.
The period peaks near the tumbling-wagging transition.

the size of the period. In particular, a negative value of β has a strong tendency to arrest
periodic solutions: at smaller negative values of β, no periodic solutions can be sustained.

Fig. 16 depicts the half of the angle rotated in the time-periodic motion and the time
period in various parameter regimes. The angle rotated is a monotonic function of the pa-
rameters while the period may not. For instance, the period does not vary monotonically
with respect to r f and N. It peaks in the interval where tumbling shifts to wagging.
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7 Conclusion

A hydrodynamic kinetic theory for monodomain, incompressible polymer-nanorod com-
posites is developed merging the kinetic theory for semiflexible rod suspensions and
flexible polymers [14, 15], in which details of the polymer conformation, the polymer-
nanorod surface contact interaction, semiflexibility of the nanorod, and nanorod hydro-
dynamics are accounted for. This study explores the semiflexibility of the nanorod, the
crucial nanorod-polymer coupling and its consequence to the mesoscopic structure and
rheology in the quiescent state, plane elongation and shear, respectively. It shows strong
impact of the polymer nanorod surface interaction to the mesoscopic structure of the
nano-composite and to its rheology. The model qualitatively predicts the rheological fea-
tures of PNCs in elongation and shear flow shedding light on further improvement of
the modeling effort for PNCs.
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