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Abstract. In this paper, we propose a lattice Boltzmann (LB) method coupled with a
direct-forcing fictitious domain (DF/FD) method for the simulation of particle suspen-
sions. This method combines the good features of the LB and the DF/FD methods
by using two unrelated meshes, namely, an Eulerian mesh for the flow domain and a
Lagrangian mesh for the solid domain, which avoids the re-meshing procedure and
does not need to calculate the hydrodynamic forces at each time step. The non-slip
boundary condition is enforced by introducing a forcing term into the lattice Boltz-
mann equation, which preserves all remarkable advantages of the LBM in simulating
fluid flows. The present LB-DF/FD method has been validated by comparing its re-
sults with analytical results and previous numerical results for a single circular particle
and two circular particles settling under gravity. The interaction between particle and
wall, the process of drafting-kissing-tumbling (DKT) of two settling particles will be
demonstrated. As a manifestation of the efficiency of the present method, the settling
of a large number (128) of circular particles is simulated in an enclosure.

AMS subject classifications: 76T20, 76-02, 76M28

Key words: Lattice Boltzmann method, direct-forcing fictitious domain method, particle suspen-
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1 Introduction

Many industrial processes involve transport of solid particles suspended in a fluid
medium in the form of slurries, colloids, polymers, or ceramics, such as fluidized beds in
chemical reactors, water treatment, paper formation, etc. It is therefore important to un-
derstand the macroscopic transport behavior of particle suspensions, which has attracted
considerable attention in the past decades, both experimentally and numerically.
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Conventional numerical methods, such as the finite volume method (FVM) and finite
element methods (FEM) are not very efficient in simulating particle suspensions. One of
the main obstacles is the need of generating new, geometrically adapted grids, which is
a very time-consuming task especially in three-dimensional flows. Another method for
suspensions, Stokesian dynamics is proposed by Brady and Bossis [1], which is limited
to suspensions with simple geometries such as spheres or spheroids in creeping flow.

More recently, the lattice-Boltzmann method (LBM) has been advocated as an effec-
tive computational tool for the simulation of complex flows [2, 3]. Application of lattice
Boltzmann (LB) method to simulate particles suspended in a viscous fluid was first pro-
posed by Ladd [4, 5]. However, Ladd’s model requires fluid to cross the boundary of
the suspended solid particle and occupy the entire domain such that the computational
nodes inside and outside the solid particle are treated in an identical manner. Thus, this
method is limited to the solid particles with density larger than the fluid density. Built
on Ladd’s framework, Aidun [6] proposed a new approach to overcome this drawback,
which works well for analysis of suspended solid particles with any solid-to-fluid density
ratio. Thereafter many relevant works [7–12] have been done to demonstrate that LBM
is a robust and efficient method for simulating particulate flows containing a small or a
large number of particles with spherical or complex geometry. However, in both Ladd’s
model and Aidun’s model, the non-slip condition on the particle-fluid interface is treated
by the bounce-back rule and the particle surface is represented by the boundary nodes,
which are essentially a set of mid-points of the links between two fixed grids. If the first-
order accurate Eulerian scheme is applied, this causes fluctuations on the computation
of forces on the particle and further leads to fluctuations on the velocities of the particle.
Despite of this drawback the LBM has still attracted many attentions [13–16] because of
its several remarkable advantages, such as easy coding, no requirement of re-meshing
procedure, and computational efficiency.

The direct-forcing fictitious domain (DF/FD) method, presented by Yu [17], is based
on the distributed-Lagrange-multiplier/fictitious-domain (DLM/FD) method proposed
by Glowinski et al. [18] and direct-forcing immersed boundary (DF/IB) method proposed
by Fadlun et al. [19]. The key idea of the DLM/FD method is that the interior domains of
the particles are filled with the same fluids as the surroundings and the Lagrange mul-
tiplier (physically a pseudo body force) is introduced to enforce the interior (fictitious)
fluids to satisfy the constraint of rigid body motion. However, the calculation of the par-
ticle velocity and body-force is a little more involved. Consequently, the DF/FD method
is more expensive than the DF/IB method [17] in which the non-slip condition is en-
forced by applying an equivalent forcing term into the Navier-Stokes equations. Thus,
in DF/FD method, the body-force is treated in essentially the same way as the DF/IB
method. As in the DLM/FD method, DF/FD method makes use of Eulerian lattice nodes
for the fluid flow field and Lagrangian nodes to represent particles, and the body-force
is distributed over the particle inner domain for the constraint that all inner fluids move
as a rigid-body, which allows to update particle velocities explicitly without the need of
computing the hydrodynamic force and torque on the particles [17], while in the DF/IB



546 D. Nie and J. Lin / Commun. Comput. Phys., 7 (2010), pp. 544-563

method the body-force is only distributed on the particle boundary. As a result, the hy-
drodynamic force and torque have to be calculated explicitly.

In this work, we present the coupling of the DF/FD method to solve fluid-particle
interactions and the LB method to solve fluid flow. The accuracy and robustness of the
present method is demonstrated in simulations of sedimentation of a single particle in
an infinite channel, sedimentation of a single particle in an enclosure, the DKT process of
two circular particles, and sedimentation of 128 particles in an enclosure. It is noted that
a number of works have addressed the coupling of the LBM and IB or DLM/FD method.
Feng and Michaelides [20,21] proposed a LB-IB method coupling with a penalty method
and a direct-forcing method, respectively. Niu et al. [22] proposed a multi-relaxation
time LB model combined with immersed boundary method based on the momentum ex-
change approach. Shi and Lim [23] introduced a LB model integrated with distributed
Lagrange multipliers/fictitious domain method to simulate fluid-elastic body interac-
tions. Dupuis et al. [24] demonstrated an immersed boundary-lattice Boltzmann method
for the simulation of the flow past an impulsively started cylinder. The purpose of this pa-
per is to extend the LB method to fluid-particle interaction problems by using the DF/FD
method.

2 Numerical model

2.1 Lattice-Boltzmann (LB) model

The fluid flow is solved by the LB method. The discrete LB equations of a single relax-
ation time model under external forces are described by

fi(x+ei∆t,t+∆t)− fi(x,t)=− 1

τ

[

fi(x,t)− f
(0)
i (x,t)

]

+
ωi∆t

c2
s

(λ·ei), (2.1)

where fi(x,t) is the distribution function on the i-direction microscopic velocity ei,

f
(0)
i (x,t) is the equilibrium distribution function, λ is the external force, ∆t is the time

step of the simulation, τ is the relaxation time, cs is the speed of sound and ωi are weights
related to lattice model. The fluid density ρ f and velocity u are determined by the distri-
bution function

ρ f =∑
i

fi, ρ f u=∑
i

fici. (2.2)

For the 2D 9-bit BGK model used here, the discrete velocity vectors are

e0 =(0,0),

ei =

(

cos

(

i−1

2
π

)

,sin

(

i−1

2
π

))

∆x

∆t
, i=1∼4, (2.3)
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)
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(

2i−9

4
π

))

∆x

∆t
, i=5∼8,
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where ∆x is the lattice spacing. The equilibrium distribution function is chosen as

f
(0)
i (x,t)=ωiρ f

[

1+
3ei ·u

c2
+

9(ei ·u)2

2c4
− 3u2

2c2

]

, (2.4)

where c = ∆x/∆t, the speed of sound is defined as c2
s = c2/3, and ωi are chosen as the

following values:

ω0 =4/9,

ωi =1/9, i=1∼4, (2.5)

ωi =1/36, i=5∼8.

By performing a Chapman-Enskog expansion and in the low Mach number limit, the
macroscopic mass and momentum equations can be recovered

∂ρ f

∂t
+∇·

(

ρ f u
)

=0, (2.6)

∂
(

ρ f u
)

∂t
+∇·

(

ρ f uu
)

=−∇p+∇·
[

υ
(

∇
(

ρ f u
)

+∇
(

ρ f u
)T

)]

+λ. (2.7)

The kinematic viscosity can be expressed as υ = (2τ−1)(∆x)2/6∆t. Therefore, theoret-
ically the LBGK model can only be used to simulate compressible flows in the incom-
pressible limit.

2.2 Fictitious domain (FD) method

As in the DLM/FD method, the momentum equation for incompressible fluid flow is

ρ f
du

dt
=∇·σ+λ in Ω (the whole domain), (2.8)

u=U+ωs×r in P(t) (the particle inner domain), (2.9)

where σ =−pI+2µS, with p the fluid pressure, µ the viscosity and S the rate-of-strain
tensor, λ is a pseudo body-force introduced over the particle inner domain to enforce
the fictitious fluid to satisfy the rigid-body motion constraint which is zero outside the
particle domain, and U and ωs are the particle translational velocity and angular veloc-
ity, respectively. Note that (2.8) is applicable to incompressible fluid flow while (2.7) is
applicable to compressible flows in the incompressible limit. For simplicity the following
description is still based on (2.7), but there is a little difference in the implementation as
shown in the following description.

The motion of the particle is governed by Newton’s equation of motion as follows:

M
dU

dt
=FH +

(

1− 1

ρr

)

Mg+Fc, (2.10)

d(J·ωs)

dt
=TH, (2.11)
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where M, J are the particle mass, moment of inertia tensor, respectively; g is the gravi-
tational acceleration, and ρr is the solid-fluid density ratio, Fc is the collision force acting
on the particle by other particles and the wall when they come close to each other, FH

and TH are the hydrodynamic force and torque on the particle, respectively, which are
defined by

FH =
∫

∂P
n·σds, (2.12)

TH =
∫

∂P
r×(n·σ)ds. (2.13)

Here n is the unit outward normal on the particle surface and r is the position vector with
respect to the particle mass center. From (2.8), (2.9), (2.12) and (2.13), we can obtain

FH =−
∫

P
λdΩ+M′ dU

dt
, (2.14)

TH =−
∫

P
r×λdΩ+

d(J′ ·ωs)

dt
, (2.15)

and

M′=
∫

P
ρ f dΩ, J′=

∫

P
ρ f r×rdΩ, (2.16)

which are determined numerically in the computations. M′ and J′ can also be expressed
as [17]:

M′= M/ρr, J′= J/ρr . (2.16’)

The reason for using (2.16) instead of (2.16’) is that the LB model used here is applied to
simulate compressible flows in the incompressible limit. Numerical results have shown
that a little difference exists between the two formulations, which would be discussed in
Section 3.2.

Substituting (2.14) into (2.10), and (2.15) into (2.11) gives, respectively,

(

M−M′) dU

dt
=−

∫

P
λdΩ+

(

1− 1

ρr

)

Mg+Fc, (2.17)

d[(J−J′)·ωs]

dt
=−

∫

P
r×λdΩ. (2.18)

2.3 Direct-forcing (DF) scheme

From Eq. (2.8), we can get

λ=ρ f
∂u

∂t
+ρ f u·∇u−∇·σ =ρ f

∂u

∂t
−rhs. (2.19)

The corresponding discrete form can be expressed as

λ
n+1 =ρ f

un+1−un

∆t
−rhsn =ρ f

un+1−u∗

∆t
+ρ f

u∗−un

∆t
−rhsn, (2.20)
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where u∗ is a temporary velocity which satisfies the momentum equation with zero body-
force described as

ρ f
u∗−un

∆t
−rhsn =0. (2.21)

Therefore, the forcing exerted on the Lagrangian points in the particle inner domain is

λ
n+1 =ρ f

un+1−u∗

∆t
=ρ f

Un+1+ωs×r−u∗

∆t
. (2.22)

The forcing is direct in the sense that the desired value of velocity is imposed directly in
the particle inner domain without any dynamical process. The discrete formulations for
(2.17) and (2.18) are

(

M−M′) Un+1−Un

∆t
=−

∫

P
λ

n+1dΩ+

(

1− 1

ρr

)

Mg+Fcn+1
, (2.23)

(J−J′)·
(

ωn+1
s −ωn

s

)

∆t
+ω

n
s ×

[(

J−J′
)

·ωn
s

]

=−
∫

P
r×λ

n+1dΩ. (2.24)

Adding (2.22) into (2.23) and (2.24), respectively, gives

M
Un+1

∆t
=

(

M−M′) Un

∆t
+

(

1− 1

ρr

)

Mg+
∫

P
ρ f

u∗

∆t
dΩ+Fcn+1

, (2.25)

J·ωn+1
s

∆t
=

(J−J′)·ωn
s

∆t
−ω

n
s ×

[(

J−J′
)

·ωn
s

]

+
∫

P
ρ f r× u∗

∆t
dΩ. (2.26)

All the right-hand side terms of (2.25) and (2.26) are known except Fcn+1
. A simple way

to deal with it is to apply an explicit scheme with Fcn
instead of Fcn+1

. Besides, as shown
from (2.25) and (2.26), the hydrodynamic force and torque exerted on the particle do not
appear explicitly. As a result, it is unnecessary to calculate the hydrodynamic force and
torque to update the particle motion.

The discrete quantity f in the Eulerian (xi) and Lagrangian (Xl) frames are as follows:

fL (Xl)=∑
i

fE (xi)δ∆(xi−Xl), fE (xi)=∑
l

fL (Xl)δ∆ (xi−Xl)∆Vl , (2.27)

where ∆Vl = Vp/Nl ·∆x2 for the 2D case (∆Vl = Vp/Nl ·∆x3 for the 3D case), Vp is the
particle volume (area for 2D case, e.g., Vp = πD2/4 for a circular particle with diameter
of D), Nl the number of Lagrangian nodes, and ∆x the lattice spacing. The δ-function is
defined by

δ∆ (x)=d∆ (x)·d∆ (y) ·d∆ (z) (2.28)

and

d∆ (r)=

{

1−
∣

∣

∣

r

∆x

∣

∣

∣
, |r|<∆x,

0, otherwise.
(2.29)
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2.4 LB-DF/FD method

The whole problem is decoupled into the fluid and solid particle sub-problems with the
fractional step scheme, which includes the following steps:

(a) Calculate f ∗(x,t) from Eq. (2.1) without the body force and then u∗ from Eq. (2.2), which
corresponds to solving Eq. (2.21).

(b) Based on Eqs. (2.25) and (2.26), calculate the particle translational velocity U and the angular
velocity ωs.

(c) Update pseudo body-force λ
n+1 inside the particle domain through Eq. (2.22).

(d) Introduce body-force λ
n+1 into Eq. (2.1) and calculate f (x,t) without collision. Then the new

ρ f and u are determined.

It is noted that the forcing term λ
n is retained to update λ

n+1 in Eq. (2.22) with the
purpose of higher accuracy and larger time step in [17]. For simplicity λ

n is set to be zero
in the present numerical simulations, which is proved to be of good capability and high
effectiveness.

2.5 Collision models

The collision model proposed by Wan and Turek [25] is used in the present numerical
simulations. For particle-particle collisions, the repulsive force is determined as:

FP
i,j =























0 for di,j > Ri+Rj+ξ,

1

ε′P

(

Xi−Xj

)(

Ri+Rj−di,j

)

for di,j ≤Ri+Rj,

1

εP

(

Xi−Xj

)(

Ri+Rj+ξ−di,j

)2
for Ri+Rj≤di,j ≤Ri+Rj+ξ,

(2.30)

where Ri and Rj are the radius of the ith and jth particle, Xi and Xj are the coordinates of
their mass centers, di,j = |Xi−Xj| is the distance between their mass centers, ξ is the range
of the repulsive force which is set to be ∆x (lattice spacing) in the present numerical sim-
ulations, ε′p and εp are small positive stiffness parameters for particle-particle collisions

which are set to be 10−7 in the calculations. For the particle-wall collisions, the corre-
sponding repulsive force reads,

FW
i,j =























0 for d′i >2Ri+ξ,

1

ε′W

(

Xi−X′
i

)(

2Ri−d′i
)

for d′i ≤2Ri,

1

εW

(

Xi−X′
i

)(

2Ri+ξ−d′i
)2

for 2Ri ≤d′i ≤2Ri+ξ,

(2.31)

where X′
i is the coordinate vector of the center of the nearest imaginary particle located

on the boundary and d′i = |Xi−X′
i|, ε′w and ε′w are small positive stiffness parameters for

particle-wall collisions which are taken as ε′w = ε′p/2 and εw = εp/2 in the calculations.



D. Nie and J. Lin / Commun. Comput. Phys., 7 (2010), pp. 544-563 551

Figure 1: Arrangements of Lagrangian points for circular particles.

U

D

W

Figure 2: Schematic diagram of a circular particle with a constant velocity U in an infinite horizontal channel.

3 Numerical examples and discussions

3.1 Validation of LB-DF/FD method

The arrangement of Lagrangian points inside the circular particle proposed by Yu [17] is
used, see Fig. 1, where one point is placed at the particle center, and 6i points on the ith
ring for i=1, Nr, with Nr being the number of the rings.

In order to demonstrate the ability of the present LB-DF/FD method for dealing with
the fluid-particle interaction, a circular particle with a constant velocity U in an infinite
channel is considered. A schematic diagram of the problem solved is depicted in Fig. 2.
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Figure 3: Drag force of the particle for three kinds of grid definition.

In this simulation, the computational parameters are summarized as follows: the lattice
spacing is ∆x = 0.01cm, the time step is ∆t = 1.0×10−4s, the relaxation time is τ = 1.0,
the diameter of the particle is set to be D = 0.06cm, 0.12cm and 0.24cm, respectively,
representing three kinds of grid definition (D =6∆x, 12∆x and 24∆x), the corresponding
number of the rings is Nr = 3, 5 and 11, the width of the channel is W = 4D, the fluid
density is ρ f =1.0g/cm3, the velocity is U =0.1cm/s. As is known, the drag force of the
particle in the channel keeps constant because of low Reynolds numbers.

Fig. 3 shows the results corresponding to the three kinds of grid definition. To as-
sist clarity the results for D = 0.12cm and 0.24cm have been displaced in the y direction
by −5×10−4 and −1×10−3, respectively. As shown, no fluctuations have been found
in the results, even in the case of the coarsest grid (D = 6∆x), which demonstrates that
better results can be obtained by the LB-DF/FD method than by previous LBMs with
the first-order accurate Eulerian scheme. It should be mentioned that the smooth parti-
cle trajectories can also be obtained by the previous LBM proposed by Aidun et al. [6]
if a second-order Verlet algorithm [26, 27] or a fourth-order Runge-Kutta scheme [6] is
applied.

The next simulation is to validate the results of LB-DF/FD method by comparisons
with an analytical solution. As shown in Fig. 4, a circular particle’s sedimentation under
gravitational force in an infinite channel is considered. The particle is initially set to be in
the middle of the channel, released from rest at t=0.

At low Reynolds numbers there is an analytical expression for the drag force on a
circular particle settling in an infinite channel which can be described as [28]

Fd =4πKµU, (3.1)



D. Nie and J. Lin / Commun. Comput. Phys., 7 (2010), pp. 544-563 553
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Figure 4: Schematic diagram of sedimentation of a circular particle under gravity in an infinite vertical channel.

where U is the particle settling velocity and K is defined by

K =
1

lnW∗−0.9157+1.7244(W∗)−2−1.7302(W∗)−4+2.4056(W∗)−6−4.5913(W∗)−8
,

(3.2)
with W∗ =W/D the ratio of the channel width to the particle diameter. At steady state
during sedimentation the gravitational force on the particle is balanced by the sum of the
drag force and the buoyancy force. Thus the sedimentation velocity can be defined

U =
D2

16Kµ

(

ρ f −ρs

)

g. (3.3)

The corresponding computational parameters, the lattice spacing, time step, the fluid
density and viscosity are the same as the above. Other parameters are: Ω = H×W =
1.2cm×6cm, D = 0.24cm, τ = 0.8, Nr = 11. The particle is initially located at (0.6 cm,
3.0 cm). The inlet of the domain, where zero velocity is applied uniformly, is always
12.5D from the moving particle, whereas the downstream boundary is 12.5D from the
particle. The normal derivative of velocity is set to zero at the downstream boundary.
Non-equilibrium extrapolation method [29] has been adopted here for the inlet and outlet
boundary conditions. In comparison with the scheme proposed by Aidun [6], the method
of [29] is easier to be implemented. Moreover, it has been proved to be of second-order
accuracy by the authors. In the simulation, as soon as the particle shifts by one lattice
unit, the computational domain also moves by one lattice unit. This is done by removing
one layer of fluid nodes at the downstream side of the system and adding one layer of
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Figure 5: Time history of the sedimentation velocity of the particle at W/D = 5 for different particle densities.
The numbers in the blankets are particle Reynolds number. The dash lines are theoretical results obtained by
(3.3).
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Figure 6: Effect of distance from moving particle to downstream on its settling velocity.

lattice nodes to the upstream side. In this way, the computational domain captures the
relevant section of the infinite domain inside the channel.

Fig. 5 shows the time evolution of the settling velocities at two kinds of particle den-
sities: 0.95, 0.98, 0.99 and 1.01, 1.02, 1.05. An excellent time independence of the particle
velocity is observed when Time >0.9s. The positive velocities for ρp =0.95, 0.98 and 0.99
demonstrate that in the present LB-DF/FD method the solid-to-fluid density ratio can be
less than or greater than one, which relaxes the assumption in LB model proposed by
Ladd [4, 5]. The numbers in the blankets are particle Reynolds number (Rep =ρ f UcD/µ,
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Figure 7: Time history of the sedimentation velocity of the particle for different numbers of Lagrangian nodes.

Uc is the settling velocity of particle). The dash line are theoretical results obtained by
Eq. (3.3). A good agreement is observed when the particle Reynolds number is about
0.63 which is consistent with the low Reynolds number limit. The disagreement between
numerical and analytical results is becoming obvious as the particle Reynolds number
increases, as shown in Fig. 5. Fig. 6 shows that effect of the distance from moving particle
to downstream on its settling velocity. As is shown, no effect is found when the distance
is larger than 6.25D, indicating that the present 12.5D used here is reasonable.

It should be remarked that the arrangement of Lagrangian nodes as shown in Fig. 1
is one of the possible ways to distribute Lagrangian points. Moreover, the number of La-
grangian nodes or the number of the rings used in the present work may not be optimal.
In fact, there is no general theory or rule to determine these parameters. Numerical sim-
ulations suggest that the numbers of Lagrangian nodes can be chosen just to make ∆Vl

not too large or too small, for the sake of numerical stability. Fig. 7 shows the time evolu-
tion of the settling velocities at different numbers of Lagrangian nodes for two kinds of
arrangement, Nr =9, 10 and 11 for “6i” and Nr =8, 9, and 10 for “8i”, for ρp =1.01g/cm3

and 1.1g/cm3, respectively. Here “6i” refers to arrangement in which 6i points are on
the ith ring as shown in Fig. 1, while “8i” refers to 8i points on the ith ring. The results
indicate that the influences of the numbers of Lagrangian nodes and the arrangements of
Lagrangian points are negligible. The value of ∆Vl is about 1.67, 1.37, 1.14 for Nr =9, 10,
and 11 in “6i” arrangement and 1.56, 1.25, 1.03 for Nr=8, 9 and 10 in “8i” arrangement. In
general, the numbers of Lagrangian nodes chosen to make ∆Vl ≈1 may be a good choice,
which is also stated by Yu [17].

3.2 Sedimentation of a circular particle in an enclosure

In this simulation, for convenience of comparison, the computational parameters are cho-
sen as the same as those of Glowinski et al. [30] and Wang et al. [31], which are summa-
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Table 1: Comparisons of the maximum Reynolds number during the particle sedimentation for ρp =1.25g/cm3

and µ=0.1g/cm·s.

Present Wan and Turek [25] Glowinski et al. [30] Wang and Fan [31]
∆x (cm) 1/100 1/200 1/48 1/96 1/192 1/256 1/72 1/144 1/256
ReM 17.042 17.304 17.42 17.15 17.27 17.31 16.962 17.216 17.307

Table 2: Comparisons of the maximum Reynolds number during the particle sedimentation for ρp = 1.5g/cm3

and µ=0.01g/cm·s.

Present Wan and Turek [25] Wang and Fan [31] Uhlmann [32]
∆x (cm) 1/200 1/300 1/48 1/96 1/72 1/144 1/256 1/256
ReM 487.28 489.91 442.19 465.52 502.37 503.26 503.38 495

rized as follows: Ω=2cm×6cm, D=0.25cm, ρp=1.25g/cm3 and 1.5g/cm3, ρ f =1.0g/cm3,
µ=0.1g/cm·s and 0.01g/cm·s. The particle is initially located at the point (1cm, 4cm).

The maximum Reynolds number is defined as

ReM = Max





ρp ·
√

U2
p+V2

p ·D
µ



, (3.4)

where Up, Vp are the transversal and vertical velocity of mass center of the particle, re-
spectively.

Table 1 shows the comparison of the maximum Reynolds number during the par-
ticle sedimentation for ρp = 1.25g/cm3 and µ = 0.1g/cm·s with previous related nu-
merical results. Other computational parameters in this simulation are: ∆x = 0.01cm,
∆t=0.333×10−4s, τ =0.6, Nr =8 and ∆x=0.005cm, ∆t=0.5×10−4s, τ =1.1, Nr =18. The
present predicted maximum Reynolds numbers under different mesh sizes are in excel-
lent agreement with those of Wan and Turek [25], Glowinski et al. [30] and Wang and
Fan [31]. The Mach number for ∆x =0.01cm and ∆x =0.005cm is about 0.032 and 0.096,
respectively. The incompressible limit is obviously valid.

Table 2 shows the comparison of the maximum Reynolds number during the par-
ticle sedimentation for ρp = 1.5g/cm3 and µ = 0.01g/cm·s with previous related nu-
merical results. Other computational parameters in this simulation are: ∆x = 0.005cm,
∆t=0.5×10−4s, τ=0.56, Nr =18 and ∆x=0.00333cm, ∆t=0.333×10−4s, τ=0.59, Nr =26.
The present predicted maximum Reynolds numbers are in good agreement with those
of Wang and Fan [31] and Uhlmann [32], but an apparent disagreement with Wan and
Turek [25] is observed. The Mach number for ∆x=0.005cm and ∆x=0.00333cm is about
0.22, which is the maximal Mach number in the present simulations. Thus the fluid is
nearly incompressible and the incompressible limit is still considered to be valid.

As shown in the numerical simulations, if Eq. (2.16’) is adopted instead of us-
ing Eq. (2.16), the maximum Reynolds number is about 16.06 for ρp = 1.25g/cm3 and
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Figure 8: Time history of (a) vertical velocity, (b) vertical position of the particle for ρp = 1.5g/cm3 and
µ=0.01g/cm·s.

µ=0.1g/cm·s, and about 260 for ρp=1.5g/cm3 and µ=0.01g/cm·s, which differs from the
present result quantitatively. The reason is that even if the incompressible limit is valid,
there is still difference between

∫

P ρ f dΩ and M/ρr, especially when the Mach number
increases. Thus

∫

P ρ f dΩ cannot be replaced by M/ρr and should be defined by Eq. (2.27).
Fig. 8 shows the time evolution of the vertical velocity and the vertical position of the

particle for ρp=1.5g/cm3 and µ=0.01g/cm·s, respectively. As shown in Fig. 8(a), there is
a little oscillation in the vertical velocity when the particle reaches the lower wall, which
means a colliding force induced by the wall is added on the particle. When the particle
rebounds back as shown in Fig. 8(b), the oscillation of the vertical position of the particle
occurs. Finally the particle stays on the bottom. A little difference exists between Fig. 8(b)
and the result of Wang and Fan [31]; the oscillation amplitude of the latter is larger.

Fig. 9 shows the corresponding instantaneous vorticity contours when the particle
reaches the lower wall. A pair of symmetrical vortex behind the particle is observed in
Fig. 9(a), and the vortex does not shed because of the limited computational and symmet-
rical initial conditions. While the particle moves to the region close to wall as shown in
Fig. 9(b), another pair of vortices are created at the sides of the particle. The vortices are
relatively thin and gradually grow up as the particle rebounds back as shown in Figs. 9(c)
and (d). When the particle falls down again, the pair of vortices keep growing up and
slowly move to its respective side wall along with the other pair of vortices which are
obviously observed in Figs. 9(e) and (f).

3.3 Drafting-Kissing-Tumbling (DKT) process of two circular particles

The case of two circular particles sedimentation in a viscous fluid is also considered to
validate the present LB-DF/FD method. An important phenomenon in this case is the
well-known “Drafting-Kissing-Tumbling” (DKT) motion which has been studied exten-
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Figure 9: Instantaneous vorticity contours when particle reaches wall for ρp =1.5g/cm3 and µ=0.01g/cm·s.

sively. The leading particle creates a wake of low pressure in which the trailing particle
is caught, thus makes it falls faster than the leading one. This stage is called “Drafting”.
Then the trailing particle of increased speed induces a kissing contact with the leading
one in which the two particles form a long body with the line of center along the stream.
This state, which is called “Kissing”, is unstable, and will be broken down at the last,
after that the particles tumble.

The computational parameters are summarized as follows in this simulation: Ω =
2cm×6cm, ∆x = 0.01cm, ∆t = 0.333×10−4s, τ = 0.6, D = 0.25cm, ρp = 1.5g/cm3, ρ f =

1.0g/cm3, µ=0.1g/cm·s, Nr =8. The particles are initially located at (1+0.001cm, 4.5cm)
(leading particle), and (1−0.001cm, 5cm) (trailing particle).

Fig. 10 shows the positions of particles and vorticity contours of the flow during sed-
imentation at different time stages. Obviously, the DKT motion is reproduced. The in-
stantaneous horizontal and vertical positions of the two particles are depicted in Fig. 11.
It should be noted that, the cross observed in the vertical positions of the two particles,
which suggests that the “Tumbling” is taking place for the two settling particles, does
not indicate that the particles overlap because their instantaneous horizontal positions
are different.
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Figure 11: Time history of (a) horizontal positions, (b) vertical positions of the two particles for ρp =1.5g/cm3

and µ=0.1g/cm·s.

3.4 Sedimentation of 128 circular particles in an enclosure

In order to further demonstrate the power of the LB-DF/FD method, sedimentation of
128 circular particles in an enclosure has been numerical simulated. The computational
parameters are summarized as follows: Ω = 4.04cm×4.2cm, ∆x = 0.02cm, ∆t = 1.333×
10−4s, τ =0.6, D=0.20cm, ρp =1.5g/cm3, ρ f =1.0g/cm3, µ=0.1g/cm·s, Nr =6.
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Figure 12: Sedimentation of 128 circular particles in an enclosure at different time.

There are 8 rows and in each row there are 16 particles. The 128 particles are placed
at the top of the enclosure. The snapshots of the evolution and velocity fields for the
sedimentation of 128 circular particles are shown in Fig. 12. The influence of the walls
in hindering the closest particles is observed in Fig. 12(b), leading to the creation of two
vortices close to the two top corners. As shown in Figs. 12(c)-(e), the particles near two
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side walls fall down more quickly than those in the middle. The same phenomenon is
reported in the literature [20, 31]. Due to the vortices in the two sides of the enclosure,
some particles near the middle are held up by the fluid during the settling process, as
shown in Fig. 12(f), and part of them are carried to the side walls settling down again,
as shown in Fig. 12(g). Figs. 12(h)-(i) show the final stages of the settling process when
all the particles have settled in the bottom of the enclosure. Obviously, there is some
“packing” of the particles in the last two stages. The gaps between particles on the top
are an indication of the slow process of particle packing. At the end, all the particles settle
down and stay on the bottom of the enclosure.

4 Conclusion

The LB-DF/FD method, which combines the desired features of the Direct-forcing/ficti-
tious method and the lattice Boltzmann method, has been proposed for simulating par-
ticle suspensions. This method makes use of two computational grids, the Eulerian one
for the flow domain, and the Lagrangian one for the particles. The rigid body conditions
are enforced by the direct-forcing scheme in which the desired value of velocity is im-
posed directly in the particle inner domain by introducing a pseudo body force to satisfy
the constraint of rigid body motion, which is the key idea of fictitious domain method.
The main advantages of the present method are that the re-meshing procedure is avoided
and one does not need to calculate the hydrodynamic force and torque explicitly at each
time step to update particle motion. Besides, it has been found that the present method
preserves the merits of the LB method in simulating fluid flow.

The LB-DF/FD method has been validated by simulating four different cases (sedi-
mentation of a single particle in an infinite channel, sedimentation of a single particle in
an enclosure, the DKT process of two circular particles, sedimentation of 128 particles in
an enclosure) and the results have been compared with those with other methods. The
numerical evidences illustrated the capability and robustness of the present method for
simulating particle suspensions.
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