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Abstract. Morales-Casique et al. (Adv. Water Res., 29 (2006), pp. 1238-1255) devel-
oped exact first and second nonlocal moment equations for advective-dispersive trans-
port in finite, randomly heterogeneous geologic media. The velocity and concentration
in these equations are generally nonstationary due to trends in heterogeneity, condi-
tioning on site data and the influence of forcing terms. Morales-Casique et al. (Adv.
Water Res., 29 (2006), pp. 1399-1418) solved the Laplace transformed versions of these
equations recursively to second order in the standard deviation σY of (natural) log hy-
draulic conductivity, and iteratively to higher-order, by finite elements followed by
numerical inversion of the Laplace transform. They did the same for a space-localized
version of the mean transport equation. Here we recount briefly their theory and al-
gorithms; compare the numerical performance of the Laplace-transform finite element
scheme with that of a high-accuracy ULTIMATE-QUICKEST algorithm coupled with
an alternating split operator approach; and review some computational results due to
Morales-Casique et al. (Adv. Water Res., 29 (2006), pp. 1399-1418) to shed light on
the accuracy and computational efficiency of their recursive and iterative solutions in
comparison to conditional Monte Carlo simulations in two spatial dimensions.
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1 Introduction

It has become increasingly common to describe the spatial variability of geologic medium
properties geostatistically and to analyze subsurface fluid flow and solute transport in
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such media stochastically [11, 44, 55]. The most common and straightforward method of
stochastic analysis is computational Monte Carlo simulation that produces a large num-
ber of equally likely results. These results are summarized statistically in terms of their
sample averages, second (variance-covariance) or higher moments, or probability distri-
butions. Results that honor measured values of medium properties and/or state variable
are said to be conditioned on these data. One thus obtains (among others) conditional
mean flow and transport variables that constitute optimum unbiased predictors of these
random quantities, and conditional second moments that provide a measure of the asso-
ciated prediction errors. An alternative is to compute these statistics directly on the basis
of corresponding conditional moment equations. Commonly, the moment equations are
derived a priori in an approximate manner which renders them local in space-time. We
focus instead on exact forms of these equations, which are generally nonlocal in space-
time, and their subsequent solution by approximation.

Exact space-time nonlocal first and second conditional moment equations have been
developed for steady state [40,41] and transient [48–50] flow in bounded saturated media
as well as advective [23, 39] and advective-dispersive [56] transport in infinite domains;
related but somewhat different unconditional formulations of nonlocal transport in such
domains are found in [10, 15, 30]. We concentrate here on exact first and second nonlo-
cal moment equations for advective-dispersive transport in bounded media developed
recently by Morales-Casique et al. [37]. Morales-Casique et al. [38] solved Laplace trans-
formed versions of these equations recursively to second order in the standard deviation
σY of (natural) log hydraulic conductivity, and iteratively to higher-order, by finite el-
ements followed by numerical inversion of the Laplace transform. They did the same
for a space-localized version of the mean transport equation. Following a summary of
their theory and algorithmic approach, we compare below the numerical performance
of the Laplace-transform finite element scheme with that of a high-accuracy ULTIMATE-
QUICKEST algorithm coupled with an alternating split operator approach. We then re-
view some computational results due to Morales-Casique et al. [38] to shed light on the
accuracy and computational efficiency of their recursive and iterative solutions in com-
parison to conditional and unconditional Monte Carlo simulations in two spatial dimen-
sions.

2 Exact conditional moment equations for bounded media

Morales-Casique et al. [37] express advective-dispersive solute mass flux at some local
support scale ω, centered about point x in a Cartesian coordinate system, as

J(x,t)=v(x,t)c(x,t)−Dd∇c(x,t), (2.1)

where c is concentration, v is velocity, Dd is a constant local dispersion tensor and t is
time. The velocity is given by Darcy’s law

v(x,t)=−K(x)∇h(x,t)/φ,
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where K(x) is a random hydraulic conductivity field, h(x,t) is hydraulic head and φ is a
constant porosity. It satisfies a stochastic flow equation

∇·v(x,t)= f (x,t)

subject to random initial and boundary conditions where f (x,t) is a random fluid source
(and/or accumulation term involving ∂h/∂t) normalized by φ. Lead multivariate statis-
tics of log hydraulic conductivity Y(x) = lnK(x) are inferred geostatistically from mea-
sured values of K(x), rendering it conditional on these data and thus (generally) non-
stationary [11, 44]. Lead joint statistics of v and f are obtained by solving the stochastic
flow equation subject to appropriate (generally random) initial and boundary conditions,
conditioned on measurements of K(x) and/or h(x,t) and v(x,t) by forward and/or in-
verse solutions using Monte Carlo simulation or the solution of corresponding recursive
conditional moments equations [23, 24, 28, 54].

The concentration of a non-reactive solute in a domain Ω bounded by Γ is taken to be
governed locally by the advection-dispersion equation

∂c(x,t)

∂t
+∇·J(x,t)= g(x,t), x∈Ω (2.2)

subject to initial and boundary conditions

c(x,0)=C0(x), x∈Ω, (2.3)

c(x,t)=CD(x,t), x∈Γ1, (2.4)

−Dd∇c(x,t)·n(x)=W(x,t), x∈Γ2, (2.5)

[v(x,t)c(x,t)−Dd∇c(x,t)]·n(x)= P(x,t), x∈Γ3, (2.6)

where g is a random source of solute, CD is a random concentration prescribed on bound-
ary segment Γ1, W is a random dispersive flux prescribed normal to boundary segment
Γ2, P is a random advective-dispersive flux prescribed on boundary segment Γ3, and n

is an outward unit normal to any segment of Γ. Though theory does not require it, all
forcing terms g, C0, CD, W, P are taken to be prescribed in a manner that renders them
statistically independent of v and each other. All random functions a(x,t) are decom-
posed as

a(x,t)= 〈a(x,t)〉c+a′(x,t),
〈

a′(x,t)
〉

c
≡0,

where 〈 〉c designates ensemble mean conditioned on measurements (as implied by the
subscript; for simplicity and without loss of generality, forcing terms remain uncondi-
tional) and primed quantities are zero-mean random fluctuations about the mean. The
former can be viewed as unbiased predictors of their random counterparts, and the lat-
ter as the associated prediction errors. Morales-Casique et al. [37] show that conditional
mean transport is governed exactly by

∂

∂t
〈c(x,t)〉c+∇·〈J(x,t)〉c = 〈g(x,t)〉, x∈Ω (2.7)
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subject to

〈c(x,0)〉c = 〈C0(x)〉, x∈Ω, (2.8)

〈c(x,t)〉c = 〈CD(x,t)〉, x∈Γ1, (2.9)

−Dd∇〈c(x,t)〉c ·n(x)= 〈W(x,t)〉, x∈Γ2, (2.10)

[〈v(x,t)〉c〈c(x,t)〉c−Dd∇〈c(x,t)〉c+Qc(x,t)]·n(x)= 〈P(x,t)〉, x∈Γ3, (2.11)

where

〈J(x,t)〉c =〈v(x,t)〉c〈c(x,t)〉c−Dd∇〈c(x,t)〉c+Qc(x,t), (2.12)

Qc(x,t)=
∫

Ω

t
∫

0

αc(x,t,y,τ)∇y ·Qc(y,τ)dτdy−
∫

Ω

t
∫

0

βc(x,t,y,τ)∇y〈c(y,τ)〉c dτdy

−
∫

Ω

t
∫

0

γc(x,t,y,τ)〈c(y,τ)〉c dτdy−
∫

Γ3

t
∫

0

αc(x,t,y,τ)QT
c (y,τ)n(y)dτdy

+
∫

Γ3

t
∫

0

βc(x,t,y,τ)〈c(y,τ)〉c n(y)dτdy, (2.13)

and

αc(x,t,y,τ)=
〈

G(x,t|y,τ)v′(x,t)
〉

c
,

βc(x,t,y,τ)=
〈

G(x,t|y,τ)v′(x,t)v′T(y,τ)
〉

c
,

γc(x,t,y,τ)= 〈G(x,t|y,τ)v′(x,t) f ′(y,τ)〉c.

The random Green’s function G(x,t|y,τ) satisfies a stochastic advection-dispersion equa-
tion subject to homogenous initial and boundary conditions. Morales-Casique et al. [37]
present corresponding equations satisfied exactly by the conditional covariance

Ccc(x,t,z,s)= 〈c′(x,t)c′(z,s)〉c

of concentration and the conditional covariance 〈J′(x,t)J′T(z,s)〉c of solute flux.

3 Recursive and iterative Laplace-transform finite element

algorithms (FELT)

Though the above conditional moment equations are exact, they cannot be evaluated
without a closure approximation. For steady state flow Morales-Casique et al. [37] derive
recursive approximations in Laplace space by expanding all ensemble moments to ith

order in a small parameter, σY, representing the standard deviation of

Y′(x)=Y(x)−〈Y(x)〉c.
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They define a deterministic differential operator

L̂(0) =λ+∇·[〈v(x)〉(0)
c −Dd∇],

where tilde designates Laplace transformed quantities and the superscript indicates or-
der zero in σY. They show that, to zero order, 〈ĉ(x,λ)〉c satisfies the boundary-value
problem

L̂(0)〈ĉ(x,λ)〉(0)
c = 〈ĝ(x,λ)〉+〈C0(x)〉, x∈Ω, (3.1)

〈ĉ(x,λ)〉(0)
c =

〈

ĈD(x,λ)
〉

, x∈Γ1, (3.2)

−Dd∇〈ĉ(x,λ)〉(0)
c ·n(x)=

〈

Ŵ(x,λ)
〉

, x∈Γ2, (3.3)
[

〈v(x)〉(0)
c 〈ĉ(x,λ)〉(0)

c −Dd∇〈ĉ(x,λ)〉(0)
c

]

·n(x)=
〈

P̂(x,λ)
〉

, x∈Γ3, (3.4)

and to second order the boundary-value problem

L̂(0)〈ĉ(x,λ)〉(2)
c =−〈v(x)〉(2)

c ·∇〈ĉ(x,λ)〉(0)
c −∇·Q̂(2)

c (x,λ), x∈Ω, (3.5)

〈ĉ(x,λ)〉(2)
c =0, x∈Γ1, (3.6)

−Dd∇〈ĉ(x,λ)〉(2)
c ·n(x)=0, x∈Γ2, (3.7)

[

〈v(x)〉(0)
c 〈ĉ(x,λ)〉(2)

c −Dd∇〈ĉ(x,λ)〉(2)
c

]

·n(x)

=−
[

〈v(x)〉(2)
c 〈ĉ(x,λ)〉(0)

c +Q̂
(2)
c (x,λ)

]

·n(x), x∈Γ3. (3.8)

The complete second-order approximation is given by

〈ĉ〉[2]
c = 〈ĉ〉(0)

c +〈ĉ〉(2)
c .

The authors provide corresponding second order equations for the conditional covari-

ance of concentration prediction errors, Q̂
(2)
c and solute mass flux.

Eqs. (3.1) and (3.5) are Laplace-transformed equivalents of a standard advection-
dispersion problem but with nonstandard forcing terms and variables (including param-
eters) that constitute deterministic estimators of their random counterparts. Eqs. (3.1)-
(3.8) can therefore be solved using existing numerical methods supplemented with rou-
tines to compute the forcing terms. Morales-Casique et al. [38] solve these recursive mo-
ment equations by Galerkin finite elements in a rectangular domain Ω subject to deter-
ministic initial and boundary conditions, taking the velocity to be uniform in each ele-
ment and the local dispersion-diffusion coefficient to be a constant deterministic scalar,
Dd. They invert the results back into the time domain using a numerical algorithm due to
Crump [9] and De Hoog et al. [14]. The authors demonstrate that an improved solution
is obtained upon adopting the iterative solution algorithm (Algorithm 3.1).

The results form an incomplete third order approximation, as indicated by the super-
script (2+) in that the algorithm excludes the third-moment ∇z ·〈ĉ′v′v′i〉c.
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Algorithm 3.1:

a) Solve (3.1)-(3.4) for 〈ĉ〉(0)
c and set 〈ĉ〉old

c = 〈ĉ〉(0)
c .

b) Evaluate Q̂
(2+)
ci using 〈ĉ〉old

c instead of 〈ĉ〉(0)
c .

c) Solve (3.5)-(3.8) for 〈ĉ〉(2+)
c using 〈ĉ〉(0)

c and Q̂
(2+)
c .

d) Compute 〈ĉ〉new
c = 〈ĉ〉(0)

c +〈ĉ〉(2+)
c .

e) If
∣

∣

∣
〈ĉ〉new

c −〈ĉ〉old
c

∣

∣

∣
exceeds a predetermined tolerance, set 〈ĉ〉old

c =〈ĉ〉new
c and go back to step b.

f) Evaluate Ĉ
(2+)
cc using 〈ĉ〉new

c and Q̂
(2+)
c instead of 〈ĉ〉(0)

c and Q̂
(2)
c .

Morales-Casique et al. [38] also examine a space-localized finite element solution (des-
ignated by the superscript L) with dispersive flux

Q̂L
ci(x,λ)= D̂(2)(x,λ)∇

〈

c′(x,λ)
〉L

c
,

which becomes a time-convolution integral in the time domain.

4 Comparison of FELT with another high-accuracy scheme

We compare below the Laplace transform finite element algorithm (FELT) used by
Morales-Casique et al. [37, 38] with another high-accuracy approach, motivated by the
following considerations. Solving the stochastic transport problem by numerical Monte
Carlo simulation requires a computational grid that is fine enough to resolve ω-scale
random velocity fluctuations. As ω-scale dispersivities are relatively small, each Monte
Carlo run tends to be dominated by advection. Each conditional Monte Carlo run pro-
duces a space-time realization of ω-scale velocity, solute concentration and mass flux
which, upon averaging over numerous realizations, yields sample statistical moments
of these quantities. An alternative method of solving stochastic transport problems is
to compute ensemble moments of these quantities directly by solving a system of en-
semble moment equations such as those mentioned earlier. The corresponding zero-
order moment equations entail only a local, ω-scale dispersion term that render them
advection-dominated in many cases of interest. Second-order moment equations include
a macrodispersion term that is initially zero but grows with solute residence time toward
values that may become large in comparison to local dispersion [56]. Hence second-order
moment equations are advection dominated at early time while tending to be less so at
later times. It follows that solving stochastic transport equations, by whatever method,
is subject to the usual numerical difficulties associated with advection-dominated prob-
lems. In particular, standard upstream numerical schemes tend to exhibit artificial smear-
ing of sharp concentration fronts and centered schemes tend to generate spurious oscilla-
tions that may manifest themselves as concentration overshoot, undershoot and clipping
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of peaks. The first phenomenon results from truncation errors of insufficiently high or-
der, the second from variable propagation speeds of short-wave components in a Fourier
representation of the numerical solution [21].

Among modern computational approaches designed to deal with some of these prob-
lems we count the Eulerian-Lagrangian localized adjoint method (ELLAM) [5, 29], the
streamline method [2, 12], total-variation-diminishing (TVD) methods [35], essentially
(ENO) and uniformly (UNO) nonoscillatory methods [26, 27], and Laplace-transform fi-
nite elements (FELT) [42,46,53] in which a finite element solution of Laplace-transformed
transport equations is transformed back into the time domain using numerical inver-
sion. A summary of some of these and other approaches was published by Ewing
and Wang [18]. Al-Lawatia et al. [1] compared Runge-Kutta characteristic ELLAM
methods with Crank-Nicholson finite element (Galerkin, Quadratic and Cubic Petrov-
Galerkin), streamline diffusion, continuous and discontinuous Galerkin and two high-
accuracy finite volume schemes (monotone upstream-centered scheme for conservation
laws MUSCL [51, 52] and MINMOD [35]) for one-dimensional advection-dispersion.
They found ELLAM to be more accurate and efficient than other schemes: whereas
second-order TVD schemes generated monotonous profiles with some numerical disper-
sion, all other schemes but ELLAM developed spurious oscillations, all requiring finer
space-time grids and much more computer time than ELLAM. However, the authors
noted that ELLAM might not work well in the case of multidimensional problems with
spatially varying velocity.

Farthing and Miller [20] conducted a thorough review and comparison of leading
high-accuracy finite-volume schemes. Among 14 such schemes (including MUSCL and
MINMOD) they found two higher-order TVD schemes, ULTIMATE-QUICKEST [33] and
the piecewise parabolic method PPM [6], to perform well on their test problems and to be
generally more efficient than the best lower order TVD method (MUSCL) and the three
uniformly nonoscillatory (UNO) and essentially nonoscillatory (ENO) schemes they had
evaluated. In particular ULTIMATE-QUICKEST seemed to offer the most attractive bal-
ance between accuracy and computational efficiency. The scheme was recently incorpo-
rated in the popular groundwater transport code MT3DMS [57].

Stochastic moment equations include temporal convolution integrals which FELT re-
duces to simple products in the Laplace-transformed domain. In addition, FELT provides
time-continuous solutions that are free of restrictions on the Courant number, mutually
independent and so amenable to parallel computation, and independent of solutions at
previous time values. On the other hand FELT is limited to linear transport equations as-
sociated with time-independent velocity fields, may suffer from oscillations (Gibbs phe-
nomenon) near discontinuities due to truncation errors, and may be less efficient than
time marching schemes when a solution is required at many time values. Based on these
considerations we decided to compare FELT with ULTIMATE-QUICKEST identified by
Farthing and Miller [20] as one of the best performing higher-order TVD schemes. Our
numerical examples include a composite 1-D concentration profile in a uniform velocity
field, 1-D transport due to an instantaneous point source in such a field, 2-D transport in a
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randomly varying velocity field arising from random medium heterogeneity, and Monte
Carlo simulated mean 2-D transport in mildly and strongly heterogeneous random me-
dia.

4.1 Background

Total variation diminishing (TVD) finite volume schemes

In one-dimension the advection equation can be approximated by the finite difference
conservation form

cn+1
i = cn

i −
∆t

∆x
[F(ci+1/2)−F(ci−1/2)], (4.1)

where i is sequential node number, cn
i is an approximation of the cell averaged con-

centration c̄n
i = 1

∆x

∫ xi+1/2

xi−1/2
c(x,tn)dx at time tn (time step n) in a cell bounded by xi−1/2

and xi+1/2, and F(ci+1/2) = 1
∆t

∫ tn+1

tn
f (ci+1/2)dt is time-averaged advective solute flux

f (ci+1/2)= vi+1/2ci+1/2 at xi+1/2. The total variation (TV) of cn across the grid is defined
as [35]

TV(cn)=
N−1

∑
i=1

∣

∣cn
i+1−cn

i

∣

∣, (4.2)

where N is the number of nodes. A numerical scheme is said to be total-variation-
diminishing or TVD if

TV(cn+1)≤TV(cn) for every n.

Spurious oscillations bring about an increase in TV which may cause (4.2) to be vi-
olated. One way to suppress such oscillations is to enforce (4.2) by adding numerical
diffusion to a higher-order scheme near sharp fronts using flux- or slope-limiters [35].

Early TVD methods such as the flux-corrected approach [4], Superbee limiter [43],
MUSCL [52] and MINMOD [35] were second-order accurate. Current schemes such as
that of Cox and Nishikawa [8], ULTIMATE-QUICKEST [33] and PPM [6] include mod-
ifications to improve accuracy in smooth regions. We focus below on the ULTIMATE-
QUICKEST scheme.

ULTIMATE-QUICKEST scheme

Consider a monotonic one-dimensional concentration profile cn
i−1 ≤ cn

i ≤ cn
i+1 ≤ cn

i+2 ad-
vected by a positive spatially varying velocity v > 0. The conservation expression (4.1)
now takes the form

cn+1
i = cn

i −
∆t

∆x

[

vi+1/2ci+1/2−vi−1/2ci−1/2

]

, (4.3)

where c1+1/2 is limited by cn
i ≤ ci+1/2≤ cn

i+1. Maintaining monotonicity requires

cn
i−1≤ cn+1

i ≤ cn
i+1.



E. Morales-Casique and S. P. Neuman / Commun. Comput. Phys., 6 (2009), pp. 131-161 139

By virtue of (4.3) and considering that vi−1/2 >0, the left inequality transforms into

vi+1/2ci+1/2≤vi−1/2ci−1/2+
(

cn
i −cn

i−1

)

∆x/∆t,

which, for a worst-case estimate of cn
i−1/2, yields

vi+1/2ci+1/2≤vi−1/2ci−1+
∆x

∆t

(

cn
i −cn

i−1

)

. (4.4)

Likewise, the right inequality in cn
i ≤ ci+1/2≤ cn

i+1 transforms into

vi−1/2ci−1/2≤vi+1/2ci+1/2+
(

cn
i+1−cn

i

)

∆x/∆t.

Viewing ci+1/2 as concentration at the left face of a cell centered about i+1 and adopting
a worst-case estimate for ci+3/2 yields

vi+1/2ci+1/2≤vi+3/2ci+1+
∆x

∆t

(

cn
i+2−cn

i+1

)

, vi+3/2 >0. (4.5)

For constant advective velocity (4.5) is replaced by ci+1/2≤cn
i+1 in cn

i ≤ci+1/2≤cn
i+1. For lo-

cal extrema one sets ci+1/2=cn
i . Inequalities (4.4) and (4.5) constitute the universal limiter

ULTIMATE [33]. In practice, it needs to be applied only near sharp gradients where the
constraints could be violated. Leonard [33] considered several high-order interpolation
schemes to compute the cell-face values ci+1/2 among which the simplest, yet sufficiently
accurate, is the third order QUICKEST interpolator. The algorithm implemented in this
work for a constant positive velocity is [33]:

Algorithm 4.1:

a) Compute |DEL|=
∣

∣cn
i+1−cn

i

∣

∣ and |CURV|=
∣

∣cn
i+1−2cn

i +cn
i−1

∣

∣.

b) If |CURV|≤0.6|DEL| use the unconstrained QUICKEST face value

c
QUICK
i+1/2 =

1

2

(

cn
i+1+cn

i

)

− Cr

2

(

cn
i+1−cn

i

)

− 1

6

(

1−Cr2
)

CURV,

where Cr=v∆t/∆x is the Courant number.

c) If |CURV|> |DEL| (local extrema) set ci+1/2 = cn
i .

d) Otherwise use the ULTIMATE limiter to set c
re f
i+1/2 = cn

i−1+ 1
Cr

[

cn
i −cn

i−1

]

.

e) If DEL>0 (monotonic increasing) limit ci+1/2 first by ci+1/2 =max
(

cQUICK
i+1/2 ,cn

i

)

and then by

ci+1/2 =min
(

ci+1/2,c
re f
i+1/2,cn

i+1

)

.

f) If DEL<0 (monotonic decreasing) limit ci+1/2 first by ci+1/2 =min
(

cQUICK
i+1/2 ,cn

i

)

and then by

ci+1/2 =max
(

ci+1/2,c
re f
i+1/2,cn

i+1

)

.
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The extension to two dimensions of the ULTIMATE-QUICKEST algorithm for advec-
tive transport is detailed in Leonard and Niknafs [34]; we employ this algorithm in our
two-dimensional simulations as implemented in the code MT3DMS [57].

In applying the one- and two-dimensional algorithms to advective-dispersive trans-
port we adopt an alternating split operator approach [36,45] as implemented by Farthing
and Miller [20]:

a) Solve a pure dispersion problem using a Crank-Nicholson scheme over the first half
of a time step [t,t+∆t/2] with c(x,t) as initial concentration.

b) Solve a pure advection problem over the entire time step [t,t+∆t/2] with c from (a)
as initial concentration.

c) Solve a pure dispersion problem using a Crank-Nicholson scheme over the second
half of the time step [t+∆t/2,t+∆t] with c from (b) as initial concentration.

FELT scheme

Applying the Laplace transform to the advection dispersion equation yields

λĉ(x,λ)+∇·[v(x) ĉ(x,λ)−Dd∇ĉ(x,λ)]− ĝ(x,λ)−C0(x)=0, (4.6)

where λ is a complex parameter with Re(λ) > 0, ĉ and ĝ are Laplace transforms of c
and g, respectively, and C0 is initial concentration. In FELT (4.6) is solved by finite el-
ements and the results are inverted numerically back into the time domain. As the
finite element equations entail complex, generally nonsymmetric coefficient matrices,
we presently solve them using the IMSL (http://www.vni.com/products/imsl/) LU-
factorization subroutine DLSACB with iterative refinement for improved accuracy.

To obtain a solution in the time domain Sudicky [46] used the Crump inverse Laplace
transform algorithm [9] due to its accuracy and reasonable performance near discontinu-
ities. For a given point in space, the corresponding inverse is given by

c(x,t)=
eλ0t

T

{

ĉ(x,λ0)

2
+

2M+1

∑
k=1

Re
[

ĉ(x,λk)e(i πk
T t)

]

}

, (4.7)

where the inverse Laplace transform is discretized using a trapezoidal rule with mesh
size π/T and the Laplace parameter is expressed as λk =λ0+iπk/T, k=1,··· ,2M+1. Al-
though the optimal selection of parameters is problem dependent, Crump recommended
λ0 = µ−ln(Er)/T where T = 0.8tmax, tmax being the maximum time of interest, µ = 0,
10−2≤Er≤10−8, Er being a measure of accuracy, and the inverse is computed within the
interval 0< t <2T. To avoid instability at early time Gallo et al. [22] recommend setting
t>0.1tmax. They also recommend limiting M≤25 to minimize roundoff errors; however,
we found that in the presence of sharp gradients a more accurate solution is obtained by
setting M=30.

Crump [9] employed a so-called epsilon algorithm to evaluate (4.7). de Hoog et al. [14]
improved the rate of convergence by computing a diagonal Padé approximation to the
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series in (4.7), known as the quotient-difference (q-d) algorithm. They proposed an addi-
tional accelerated convergence procedure that estimates the remainder of the continued
fraction. The q-d algorithm leads to a significant improvement in accuracy and is highly
efficient when inversion is required for many time values. This is the algorithm we use
below. To solve for ĉ(x,λk) we use standard finite elements with linear and bilinear inter-
polation functions in 1-D and 2-D, respectively.

FELT suffer from oscillations (Gibbs phenomenon) arising from non-uniform conver-
gence of the series in (4.7) near discontinuities. This means that the number of terms in
(4.7) needed for a given improvement in accuracy tends to become arbitrarily large as one
approaches a discontinuity (e.g. [32]). In general, ĉ(x,λk) is an oscillatory function with
period Φ that increases with k and depends additionally on D, v, and λk. Sudicky [46]
showed that for fixed v and λk, Φ in 1-D increases with D; for fixed D and λk, Φ decreases
as v increases. It is easy to show [46] that, under pure advection in a semi-infinite 1-D
domain with zero initial concentration and Dirichlet inlet condition, the discretization
interval needed for an accurate solution is ∆x=2vtmax/n(2M+1) where n is the number
of nodes needed to resolve ĉ(x,λk) over a distance Φ and 2M+1 is the last term in the
series (4.7). Therefore, near concentration discontinuities in fixed grid, increasing M in
(4.7) leads to improved accuracy up to some limit beyond which ĉ(x,λk) cannot be ac-
curately resolved; to further reduce (though not necessarily eliminate) oscillations, one
must increase M and refine the grid simultaneously. Yet when c(v,t) is smooth, a coarse
grid produces accurate results with a relatively small value of M [19, 46].

4.2 Numerical comparison of ULTIMATE-QUICKEST and FELT

1-D composite initial concentration profile in uniform velocity field

To compare ULTIMATE-QUICKEST with FELT we start by considering the 1-D dimen-
sionless ADE

∂c

∂t
+

∂c

∂x
− 1

Pe

∂2c

∂x2
=0, Pe=

vL

D
>0, (4.8)

on a finite interval x∈ [0,1] subject to Dirichlet boundary conditions c(0,t)=1, c(1,t)=0
and a composite initial concentration profile

c(x,0)=































1 if x∈ [0.1,0.15] (square),

cos2
( πx

20∆x

)

if x∈ [0.25,0.35] (squared cosine),
(

1− (x−0.5)2

0.052

)1/2

if x∈ [0.45,0.55] (semi-ellipse),

0 otherwise.

(4.9)

Here x is normalized by the length L of the flow domain, c = C/C0 is dimensionless
concentration where C0 is the peak of the initial concentration profile, and t = vτ/L is
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dimensionless time. We use a discretization interval ∆x = 0.005 associated with a grid
Peclet number Peg = v∆x/D. For finite Peclet numbers Pe < ∞, an analytical solution
exists in the form [3]

c(x,t)= e
Pe
2 (x− t

2 )
1

∫

0

G(x−x′,t)c(x′,0)e−
Pe
2 x′dx′+0.5

[

er f c(A)+exPeer f c(B)
]

, (4.10)

where G is a Green’s function, A=(x−t)/
√

4t/Pe and B=(x+t)/
√

4t/Pe. For simplicity
we adopt the semi-infinite Green’s function

G(x−x′,t−τ)=
e
−Pe (x−x′)2

4(t−τ) −e
−Pe (x+x′)2

4(t−τ)

√

4π(t−τ)/Pe
, (4.11)

set τ = 0 and evaluate the integral by Gaussian quadrature. To avoid dependence of
the numerical solution on the downstream boundary we terminate it before any notable
change in concentration would take place close to it.

Preliminary runs of FELT with c(x,0)= 0 and c(0,t)= 1 have suggested M = 30, µ =
0 and Er = 10−8. We kept these parameters fixed for all simulations, including those
associated with small Peg values. We consider two cases:

a) Infinite Peg (pure advection). Fig. 1 (left) shows results obtained with ULTIMATE-
QUICKEST (ULT) with Cr = 0.5 (∆t = 0.0025) and Cr = 0.05 (∆t = 0.00025) at t = 0.2 and
0.4; we note that even though optimal results would be obtained with Cr =1, in variable
velocity fields one often has to limit Cr to smaller values, hence these are of practical
interest. Fig. 1 (right) shows corresponding results obtained with FELT using the q-d
algorithm without (FELT 1) and with (FELT 2) improvement of convergence based on
estimates of the continued fraction remainder [14]. FELT 1 and 2 produce oscillatory
solutions near discontinuities and appear to have comparable accuracy except at t = 0.2
near x=0.3 where FELT 1 produces stronger oscillations. Increasing the value of M to 35
produces a less oscillatory solution for FELT 1 (not shown), similar to that of FELT 2 in
Fig. 1; increasing the value of M further reduces accuracy in both FELT versions due to
an enhancement of discretization and roundoff errors. Increasing M to 60 while reducing
∆x by 1/5 reduces significantly the period of the oscillations and the magnitude of the
largest (overshoot) and smallest (undershoot) concentrations at t = 0.2 from 2.46 and -
0.38 (Fig. 1) to 1.12 and -0.03 (not shown), respectively. Fig. 2 compares the performance
of ULT with Cr = 0.5 and FELT 2 at t = 0.2 and 0.4. ULT generates monotonous results,
free of spurious oscillations, though it introduces some smearing of sharp fronts. FELT
resolves better the profile of sharp fronts but suffers from spurious oscillations. Since
these oscillations depend on the number of terms in (4.7) and the spatial discretization,
reducing them requires increasing M and refining the grid to allow better resolution of
the complex (periodic) solution in Laplace space.

b) Peg finite (advection-diffusion). Fig. 3 compares results obtained by the two methods
for Peg = 100 (left) and Peg = 20 (right), respectively. Here FELT with and without im-
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Figure 1: ULTIMATE-QUICKEST (left) and FELT (right) solutions for composite initial concentration and
infinite grid Peclet number.
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Figure 2: Results of ULT and FELT for com-
posite initial concentration and infinite grid
Peclet number.

provement of convergence based on estimates of the continued fraction remainder gave
similar results, and we therefore present only those obtained with FELT 2. At Peg = 100
FELT still suffers from spurious oscillations but to a lesser degree than under pure advec-
tion. On the other hand, the FELT solution for Peg =20 is free of such oscillations. FELT
resolves the squared cosine and semi-elliptic profiles more accurately than does ULT in
both cases. The ULT solution is free of oscillations at all times; however, it smears sharp
fronts even at the relatively small grid Peclet value of Peg =20.

Table 1 compares the solutions in terms of mean squared error (MSE) relative to the
analytical solution. Smearing of sharp fronts has an adverse effect on the overall accuracy
of ULT, leading to relatively high MSE values. FELT is consistently more accurate except
at early time under pure advection where it produces an oscillatory solution. Table 1
also compares execution times. Both schemes were run on a PC with AMD AthlonTM

processor. ULT with Cr=0.5 required about four times less central processor (CPU) time
than did FELT; however, with Cr=0.05 ULT required almost an order of magnitude more
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Figure 3: Results of ULT and FELT for composite initial concentration at Peg =100 (left) and Peg =20 (right).

CPU time. Table 1 also lists the efficiency index E f f = [(MSE)(CPUT)]−1 for t = 0.4
where CPUT is CPU time: whereas the efficiency index of ULT with Cr = 0.5 is 2 to 3
times higher than that of FELT, with Cr=0.05 it is 3 to 7 times lower.

Table 1: Results for composite initial concentration.

Method MSE (×10−3) CPU time (msec) Eff (×10−3)
t=0.2 t=0.4 t=0.4

Peg = infinite
ULT, Cr=0.5 5.07 6.25 16 10.0
ULT, Cr=0.05 6.02 7.40 139 1.0

FELT 1 15.60 4.61 71 (13) a 3.1
FELT 2 7.30 5.66 b 2.5

Peg =100
ULT, Cr=0.5 2.09 1.75 16 35.8
ULT, Cr=0.05 2.51 2.21 157 2.9

FELT 1 0.82 0.73 71 (12) a 19.3
FELT 2 1.22 0.75 b 18.8
Peg =20

ULT, Cr=0.5 0.82 0.62 17 95.6
ULT, Cr=0.05 0.90 0.69 156 9.3

FELT 1 0.40 0.27 69 (11) a 52.2
FELT 2 0.37 0.27 b 52.2

a The first number indicates total execution time. The number in parenthesis indicates
execution time devoted to finite element solution in Laplace space.
b Computed together with FELT 1 as corresponding computational effort is low.

FELT 1 and 2 yield virtually identical results for Peg =5, 50, 500 at all t when tmax =1.
The MSE of FELT increases with Peg. For a given Peg it is relatively small in the time
range 0.1tmax<t<1.1tmax, the lower limit providing a confirmation of similar findings by
Gallo et al. [22]. This is expected as at early time the solute has not undergone enough
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spreading to smooth out sharp fronts at which truncation errors have the greatest effect.
At t>1.1tmax the solution oscillates at low values of x.

1-D initial delta pulse in uniform velocity field

In our second one-dimensional example we replace the Dirichlet by Neumann boundary
conditions ∂c/∂x|x=0,x=1=0 and the initial concentration by c(x,0)=δ(x−0.2) where δ is
the Dirac delta function. In the ULT finite-volume method we interpret the concentration
c as a cell-averaged value c(x,t)=

∫

∆x cp(x′,t)dx′/∆x where cp is point concentration and
set the initial concentration accordingly to c(x = 0.2,0) = 1/∆x. Results for Peg = 5, 10,
20 and t = 0.2, 0.4 show (Fig. 4 does so for Peg = 20) that FELT performs better than
ULT across this range of grid Peclet numbers, becoming comparatively more accurate as
Peg increases. At Peg = 10 and 20 ULT suffers from peak clipping and some numerical
dispersion. On the other hand, FELT at Peg = 20 suffers from mild oscillations at early
time (t = 0.2) which disappear at late time (t = 0.4); this is due to the fact that spreading
smoothes the profile, allowing a more accurate solution at late time. Table 2 shows that
FELT outperforms ULT in terms of the efficiency index E f f in all three cases.

Table 2: Results for initial concentration pulse.

Method MSE (×10−3) CPU time (msec) Eff (×10−3)
t=0.2 t=0.4 t=0.4

Peg =5
ULT, Cr=0.5 9.09 1.77 20 28.3

ULT, Cr=0.05 23.74 5.09 150 1.3
FELT 1 0.36 0.06 160 (100) a 100.6
FELT 2 0.36 0.06 b 100.6
Peg =10

ULT, Cr=0.5 148.67 35.94 20 1.4
ULT, Cr=0.05 313.08 86.31 160 0.1

FELT 1 2.91 0.42 170 (110) a 13.9
FELT 2 3.04 0.42 b 13.9
Peg =20

ULT, Cr=0.5 1185.80 380.83 20 0.1
ULT, Cr=0.05 1972.76 713.11 150 0.01

FELT 1 458.75 5.86 170 (110) a 1.07
FELT 2 715.83 6.13 b 1.02

a The first number indicates total execution time. The number in parenthesis indicates
execution time devoted to finite element solution in Laplace space.
b Computed together with FELT 1 as corresponding computational effort is low.

2-D transport in single realization of random velocity field

Next we consider a rectangular domain with discretization intervals ∆x1 = ∆x2 = 0.2
(Fig. 5). We start by generating a single unconditional realization of a random log hy-
draulic conductivity field Y(x)=lnK(x) at element centers using the sequential Gaussian



146 E. Morales-Casique and S. P. Neuman / Commun. Comput. Phys., 6 (2009), pp. 131-161

+++++++++++++++++++++++++

+

+

+

+

+++

+

+

+

+

++++++++++++++++++++++++

x

C
o
n
c
e
n
tr
a
ti
o
n

0.3 0.4 0.5
0

20

40

Analytical

ULT Cr=0.5

FELT 2

+

Pe
g
= 20

t = 0.2

+++++++++++++++++++++
+
+

+

+

+

+

+

+++

+

+

+

+

+

+
+++++++++++++++++++++++

x

C
o
n
c
e
n
tr
a
ti
o
n

0.5 0.6 0.7
0

10

20

30
Analytical

ULT Cr=0.5

FELT 2

+

Pe
g
= 20

t = 0.4

Figure 4: Results of ULT and FELT for initial delta concentration pulse x=0.2.

simulation code SGSIM [16]; the point values are then ascribed to the entire element.
The generated field has zero mean, variance σ2

Y = 3.0 (made purposely large to generate
large-amplitude spatial fluctuations in Y) and isotropic exponential spatial correlation
CYY(r) = σ2

Y exp(−r/IY), where IY = 1.0 is integral scale (made purposely small to gen-
erate rapidly fluctuating variations in Y), r being separation distance between any two
points in the domain.
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x1

0
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x
2

Figure 5: Computational domain with uniform non-zero initial concentration zone (shaded).

We test two solutions of the flow problem. First we use standard Galerkin finite ele-
ments with bilinear weight and interpolation functions to compute the steady state distri-
bution of hydraulic heads at all grid nodes subject to prescribed heads of H=0.8 at x1 =0
and H =0 at x1 =8 and no-flow across x2 =0 and x2 =4. Then, using a uniform advective
porosity arbitrarily set equal to 1, we compute velocity at the center of each element and
ascribe it to the entire element. The resulting velocity field is globally conservative but
locally discontinuous and non-conservative which, as will be illustrated, has an adverse
affect on the transport solution (e.g. [13, 17]). The velocity field obtained by the stan-
dard Galerkin approach can be post-processed to recover local mass conservation [7, 47].
Alternatively we solve the flow problem by cell-centered finite differences and compute
velocity at the faces of the elements; the resulting velocity field is locally continuous nor-
mal to element faces and locally and globally conservative. By construction ULT requires
velocity to be defined at the faces of each element. In the case of FELT, we accommodate
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this variable velocity field by using linear interpolation,

v1(x)≈v1(x1)=wL(x1)v1L +wR(x1)v1R,

where wL(x1)= 0.5(1−x1), wR(x1)= 0.5(1+x1) and v1L and v1R are the velocity values
at the left and right face, respectively; v2 is interpolated in a similar manner in the x2 di-
rection. Linear interpolation yields discontinuous tangential velocities leading to discon-
tinuities in a velocity-dependent dispersion tensor and affecting mass conservation [31];
however, since in our examples we take local dispersion to be constant, this does not
affect our results.
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Figure 6: Concentration at t=40 for D=0.02 (∆x1 =
∆x2 = 0.2): (a) FELT solution with locally discontin-
uous velocity field, (b) ULT and (c) FELT solutions
with locally conservative velocity field.

Transport is computed for three scalar dispersion coefficients D = 0.02, 0.002, and
0.0002, corresponding to maximum grid Peclet numbers of approximately 5, 50 and 500
in the x1 direction and 1.7, 17 and 170 in the x2 direction, respectively. To compute con-
centration we set [vc−D∇c]·n = 0 at x2 = 0, x2 = 4 and at x1 = 0, ∂c/∂x1 = 0 at x1 = 8,
C0(x)=1 at 0.6≤x1≤1.4 and 1.6≤x2≤2.4, and C0(x)=0 at all other points. The computa-
tional grid is the same as that used for flow (Fig. 5). Fig. 6 depicts concentrations at t=40
obtained for D=0.02 using (a) FELT with a locally discontinuous velocity field, and both
(b) ULT and (c) FELT with a locally conservative velocity field. Discontinuity of velocity
at element faces yields oscillatory concentration values; these unphysical oscillations are
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Figure 7: Concentrations at t=40 obtained for D=0.0002 (maximum grid Peclet number of 500) using (upper
left) ULT and (upper right) FELT with ∆x1 = ∆x2 = 0.2 and (lower left) ULT and (lower right) FELT with
∆x1 =∆x2 =0.05. The velocity field is locally conservative.
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absent when the velocity field meets local mass conservation criteria (Fig. 6). Hence in
the remainder of this section we present only results obtained using a locally conserva-
tive velocity field; however, in a later section we will revisit the locally non-conservative
velocity field in the context of Monte Carlo simulations.

Upon decreasing D from 0.02 to 0.002 both ULT and FELT yield accurate solutions
when the velocity field is locally conservative (not shown). Fig. 7 depicts ULT and FELT
solutions based on a locally conservative velocity field for D = 0.0002 (increasing the
maximum grid Peclet number to 500) for a coarse (∆x1=∆x2=0.2) and a fine (∆x1=∆x2=
0.05) grid. In this case ULT results show a marked sensitivity to grid refinement (Figs. 7(a)
and 7(b)) while the coarse-grid FELT solution is plagued by nonphysical negative values
of concentration (Fig. 7(c)); these oscillations are greatly reduced when the grid is refined
(Fig. 7(d)). FELT oscillations occur in the vicinity of sharp fronts which, in heterogeneous
media at high grid Peclet numbers, tend to develop in areas of large velocity contrast.

Fig. 8 shows how the average and variance of the absolute differences AD be-
tween coarse- and fine-grid solutions for D = 0.02 and 0.0002 vary with time. Values
of AD(xi,t) =

∣

∣ccoarse(xi,t)−c f ine(xi,t)
∣

∣ are computed at grid nodes in comparing FELT
results on coarse and fine grids, at element centers in comparing ULT results on coarse
and fine grids, and at element centers in comparing FELT (interpolated by standard finite
elements) and ULT results on fine grids. Fig. 8 confirms that, in the case of D=0.02, FELT
is less sensitive (has smaller average and variance of AD values) to grid refinement than
is ULT, suggesting that FELT is more accurate. By the same standard, ULT and FELT are
equally accurate in the case of D=0.002 (not shown) but ULT is more accurate than FELT
in the case of D=0.0002 (Fig. 8). In all three cases the variance of AD diminishes rapidly
at early time and much more slowly at later time.
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Figure 9: Global mass balance fraction versus time for coarse grid (∆x1 = ∆x2 =0.2) ULT and FELT solutions
corresponding to various D values.

Global mass balance is expressed by the fraction MB = [M(t)+BF(t)]/M(t0) where
M(t0) and M(t) stand for total mass in the domain at times t0 and t, respectively, and
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BF(t) is cumulative net solute flux through the boundaries (positive out, negative in).
Fig. 9 shows how MB varies with time in the case of coarse grid (∆x1 = ∆x2 = 0.2) ULT
and FELT solutions corresponding to the above three D values. Both methods exhibit
excellent global mass balance before the plume reaches the boundary at approximately
t=50; for t>50 the mass balance of ULT deteriorates slightly due to insufficient accuracy
when computing the time integral representing cumulative mass flux at the boundary;
the latter is easier to compute in Laplace space. FELT, despite its oscillatory nature, main-
tains excellent global mass balance even at high grid Peclet numbers.

Table 3 compares execution times for the above coarse grid solutions. Though FELT
required 2 – 2.5 more CPU-time than did ULT, we note that the efficiency of FELT could
be improved substantially by taking advantage of its amenability to parallel computation
(e.g. [54]), which we have not done in this work.

Table 3: Comparison of execution times for coarse grid solutions (∆x1 =∆x2 =0.2).

Cases Stability criterion for ULT Execution time
in consistent units in seconds

ULT FELT
D =0.02 0.2991 0.951 2.213

D =0.002 1.022 2.243
D =0.0002 1.032 2.243

Monte Carlo analysis of mean 2-D transport in random velocity field

We end our comparative analysis of ULT and FELT by conducting Monte Carlo (MC)
simulations of transport for σ2

Y = 0.3, D = 0.005 (case I) and σ2
Y = 3, D = 0.002 (case II)

on the rectangular domain depicted in Fig. 5. We adopt the previous procedure to gen-
erate numerous (1000 in case I and 3000 in case II) unconditional realizations of Y(x),
corresponding realizations of velocity and time-varying concentration fields. In comput-
ing each realization of the velocity field we employ both approaches described in the
previous section, namely locally discontinuous velocities from standard Galerkin inter-
polation and locally conservative velocities from a finite difference solution. Comparing
these two approaches to obtain the velocity field is of interest because previous stochastic
analysis of flow and transport [24, 25, 37, 38, 54] have relied on the first approach. Fig. 10
depicts mean concentration at t=40 for cases I and II when the underlying velocity field
is locally conservative; both methods yield similar mean concentrations with minor dif-
ferences. We thus proceed to compare FELT results when the velocity field is not locally
conservative. Fig. 11 shows that oscillations present when the velocity field is not locally
conservative (Fig. 6(a)) are smoothed when one averages many realizations (dashed in
Fig. 11). For small values of σ2

Y the mean and variance of concentration obtained with
locally nonconservative velocities are reasonably accurate, though they deteriorate as σ2

Y

increases. Fig. 12 shows the same to hold for mean solute flux. This confirms the accuracy
of results presented elsewhere [37, 38] for σ2

Y ≤0.3, summarized in the next section.
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Table 4: Comparison of execution times for coarse grid solutions (∆x1 =∆x2 =0.2).

Case σ2
Y Execution time (h:min:s)

FELT ULT
I (1000 MC runs) 0.3 1:23:45 22:51
II (3000 MC runs) 3.0 4:13:50 7:47:16

Table 4 compares execution times for MC simulations using the two methods. In case
I ULT required roughly one fourth the CPU time needed for FELT to attain comparable
accuracy; in case II this difference was reduced to about one half. The increase in execu-
tion time was caused by a need to reduce ULT time step size in order to comply with the
Courant-Friedrich-Lewy condition when higher values of σ2

Y produced larger contrasts
in velocity.

We conclude by observing that whereas the plume of mean concentrations is sym-
metric in case I, it is non-symmetric in case II (Fig. 10). The lack of symmetry is due to
our imposition of zero solute mass flux across the upstream boundary, which prevents
spread (macrodispersion) of the mean plume across it. We emphasize that this spread
does not represent physical dispersion but loss of information about the unknown true
(random) concentration, as explained by Morales-Casique et al. [37, 38].

5 Conditional nonlocal and localized FELT solution compared

with Monte Carlo simulations

We review below selected computational results of those previously reported by Morales-
Casique et al. [38].

Computational domain and random velocity field

Morales-Casique et al. [38] consider advective-dispersive transport in a rectangular do-
main of length 8IY and width 4IY, discretized into square elements of size ∆x1 = ∆x2 =
0.2IY (Fig. 13); all variables are expressed in arbitrary consistent units. Though the mo-
ment equations are distribution-free, for purposes of Monte Carlo simulation they take Y
to be multivariate Gaussian with mean zero, variance σ2

Y and isotropic exponential spatial
correlation function CYY(r)= σ2

Y exp(−r/Iy) where r is separation distance. The authors
generate a single unconditional realization of Y at element centers using the sequential
Gaussian simulation code SGSIM [16] and ascribing it to the entire element. They then
“measure Y exactly” at 18 conditioning points shown by solid squares in Fig. 13, use
SGSIM in the above manner to generate numerous realizations of Y conditioned on these
“measurements”, and evaluate the corresponding first and second sample moments of
the generated conditional Y fields.

To generate corresponding statistics of time-independent advective velocity, Morales-
Casique et al. [38] use conditional Monte Carlo simulations and the recursive finite ele-
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Figure 13: Computational domain and grid, conditioning points and location of initial non-zero concentration
(shaded).

ment moment algorithm of Guadagnini and Neuman [24, 25], both on the above grid.
In the case of Monte Carlo simulations, they use standard finite elements to solve a de-
terministic steady state flow problem for each conditional realization of Y and compute
first and second sample moments of the corresponding advective velocity realizations.
The resulting velocity in each realization is constant in each element and thus not lo-
cally conservative; however, we are interested in moments of these realizations which, as
shown in the previous section, are reasonably accurate for small values of σ2

Y. The mo-
ment algorithm uses first and second conditional moments of Y to compute directly first
and second conditional velocity moments to second order in σY. In both cases advective
porosity is set (for simplicity) equal to 1, head is set equal to H=0.8 at x1 =0 and H=0 at
x1 =8, and no-flow conditions are imposed across x2 =0 and x2 =4. For 〈Y〉c =0, σ2

Y =0.3
and IY =1, 3000 Monte Carlo simulations and the recursive algorithm yield comparable
first and second conditional velocity moments. The authors found that for σ2

Y = 0.3 the
unconditional longitudinal velocity v1 follows closely a lognormal distribution. Uncon-
ditional transverse velocity decays more slowly than a Gaussian distribution at the tails,
most likely due to the effect of boundaries. Conditioning brings the distributions of both
velocity components closer to Gaussian.

Transport computations

To compute transport variables Morales-Casique et al. [38] set Dd = DdI where I is the
identity tensor, [vc−Dd∇c]·n=0 at x2=0 and x2=4, [vc−Dd∇c]·n=0 at x1=0, ∂c/∂x1=0
at x1=8, C0(x)=1 at 0.6≤x1≤1.4 and 1.6≤x2≤2.4, and C0(x)=0 at all other points. They
present results in terms of a Peclet number Pe=u1IY/Dd where u1=0.1 is the (theoretical)
unconditional mean velocity parallel to x1, and a grid Peclet number Peg=u1∆x1/Dd. All
results, including Monte Carlo simulations, are obtained using FELT. For the recursive
and iterative algorithms the authors use ensemble velocity moments obtained using the
flow moment algorithm of Guadagnini and Neuman [24, 25]. They conduct Monte Carlo
simulations of transport by solving the stochastic transport equations (2.1)-(2.6), for each
conditional realization of velocity, using the above grid.
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Figure 14: Conditional mean concentration profile at x2 =2.0 and t=10, 20, 30, 40, 50, 60 for σ2
Y =0.3, IY =1,

Dd =0.001, Pe=100 and Peg =20 based on 3000 Monte Carlo simulations 〈c〉MC, second-order recursive 〈c〉[2]

and iterative 〈c〉[2+] nonlocal moment equations.

Fig. 14 depicts conditional mean concentration profile at x2 =2.0 and t=10, 20 30, 40,
50, 60 for σ2

Y = 0.3, IY = 1, Dd = 0.001, Pe = 100 and Peg = 20 based on 3000 Monte Carlo

simulations 〈c〉MC, second-order recursive 〈c〉[2] and iterative 〈c〉[2+] nonlocal moment
equations. There is a pronounced bimodal behavior of the recursive mean concentration.
Neither the Monte Carlo nor the iterative mean concentration, which are in close agree-
ment with each other, exhibit such bimodality. These results and 1D simulations (not
shown) indicate that second and third-order perturbation terms are oscillatory, that this
oscillatory behavior increases with time, and that many terms in a standard perturbation
series may be needed for convergence. This oscillatory behavior is not caused by the
mean velocity being constant in each element (and thus locally nonconservative). This
is evidenced by (a) the smooth and nonoscillatory nature of the zero-order concentration
〈c〉(0) (Fig. 9 in [38]) and (b) the frequency of the oscillations in the second-order correc-
tion 〈c〉(2) (Fig. 9 in [38]) being much larger than that due to discontinuities in the velocity
field (see Fig. 6(a)). The iterative solution provides more accurate results than does stan-
dard perturbation because it approximates the dispersive flux more closely and could be
improved further by accounting for velocity moments of order higher than two.

Fig. 15 shows conditional mean concentration profiles at x2 =2 and t =10, 50 for the
above parameters based on Monte Carlo simulations compared with iterative nonlocal
and space-localized moment solutions. The space-localized solution is seen to be infe-
rior, exhibiting spurious oscillations (undershoot) at early time while underestimating
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Figure 16: Conditional concentration variance profile at x2 =2 and t=10, 20, 30, 40, 50, 60 for σ2
Y =0.3, IY =1,

Dd =0.001, Pe=100 and Peg =20 based on 3000 Monte Carlo simulations 〈c〉MC, second-order recursive 〈c〉[2]

and iterative 〈c〉[2+] nonlocal moment equations.

dispersion, overestimating the peak and causing a downstream shift in the peak and the
receding limb of the mean concentration profile.

Fig. 16 depicts profiles of conditional concentration variance about the mean values
in Fig. 14 based on 3000 Monte Carlo simulations (σ2

c )MC, second-order recursive (σ2
c )(2)

and iterative (σ2
c )(2+) nonlocal moment equations. Although both moment solutions de-

teriorate with time and overestimate the peak variance, (σ2
c )(2+) is much closer to (σ2

c )MC
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with second-order recursive (a - b) and iterative (c - d) nonlocal moment solutions.

than (σ2
c )(2) and thus considerably more accurate.

Fig. 17 depicts contours of the longitudinal component (parallel to x1) of conditional
mean solute mass flux at t =30, 50 for the above parameters based on 3000 Monte Carlo
simulations compared with second-order recursive and iterative nonlocal moment solu-

tions 〈J1〉[2]
c and 〈J1〉[2+]

c . Whereas the iterative solution is quite accurate, the same is not
true about the recursive solution which exhibits some unwarranted bimodality due to

the bimodal behavior of 〈c〉[2]
c and inaccurate resolution of the dispersive flux.

Execution time

Morales-Casique et al. [38] conducted their analysis on a HP/Compaq Alpha supercom-
puter at the University of Arizona in Tucson. Since their emphasis was on accuracy rather
than computational efficiency, they have not made an attempt to optimize their codes or
take advantage of parallelization. For their parameters 3000 conditional Monte Carlo
runs (of transport only) required 16,558 seconds to execute, in comparison to 226 seconds
for the non-iterative second-order recursive moment approach and 1,500 for 15 iterations
of the higher-accuracy iterative moment approach. In other words, conditional Monte
Carlo simulation required over 73 times more computer time than the second-order re-
cursive moment solution and 11 times more than the iterative solution.
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6 Conclusions

Our analysis leads to the following conclusions:

1. It is possible and computationally feasible to obtain accurate, unbiased predic-
tions of nonreactive solute transport in bounded randomly heterogeneous porous media,
and to assess the corresponding predictive uncertainty, without Monte Carlo simulation.
We have shown results for time-independent velocity in two dimensions obtained with
an iterative finite element algorithm based on Laplace-transformed conditional moment
equations and numerical inversion of the results back into the time domain, FELT.

2. We compared FELT numerically with a high-accuracy ULTIMATE-QUICKEST
(ULT) algorithm coupled with an alternating split operator approach. In the relatively
simple 1-D case of a composite concentration profile propagating at uniform velocity,
both methods do an excellent job in controlling (FELT) or eliminating (ULT) oscillations
even under pure advection; however, FELT becomes more accurate as the grid Peclet
number diminishes. In the corresponding case of an instantaneous point source, FELT
is more accurate than ULT for grid Peclet numbers as high as 20, the latter exhibiting
peak clipping and some numerical smearing. In the more complex 2-D case of transport
in a randomly varying velocity field arising from random medium heterogeneity, FELT
at relatively small (≤ 5) grid Peclet numbers is less sensitive to grid refinement than is
ULT and is correspondingly more accurate. ULT and FELT are equally accurate at in-
termediate grid Peclet numbers (≤50) but ULT is more accurate than FELT at large grid
Peclet numbers (≤500) , the later producing negative concentrations that can be reduced
through grid refinement.

3. Our results illustrate the importance of rendering velocity locally conservative; not
doing so leads to unphysical oscillations in the transport solution near discontinuities
in velocity. In mildly heterogeneous random media (natural log hydraulic conductivity
variance σ2

Y = 0.3) averaging random oscillatory solutions corresponding to nonconser-
vative velocities has the effect of smoothing such oscillations. Consequently, the mean
and variance of concentration and mean solute flux are not sensitive to how conservative
the local velocity may or may not be. However the accuracy of results obtained with
nonconservative velocities deteriorates as σ2

Y increases beyond 0.3.

4. Conditional results compare well with Monte Carlo simulations for σ2
Y =0.3 (vari-

ance of natural log hydraulic conductivity Y) and Peclet number Pe = 100 (defined in
terms of mean velocity and the integral scale of Y). In the unconditional case this is true
only for Pe = 10. As σ2

Y, Pe and time increase the quality of our iterative moment solu-
tion deteriorates. We attribute this to our disregard of the space-time correlation function
〈c′v′v′〉c in the computation of dispersive flux. To leading order, this function depends
on third velocity moments, which have been shown to gain significance with increasing
σ2

Y, Pe and time but loose significance with conditioning. This appears to be linked to the
fact that both longitudinal and transverse velocities depart from Gaussian distribution as
σY increases and the level of conditioning decreases.

5. Second-order recursive nonlocal and space-localized results are considerably less
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accurate than those obtained with the iterative nonlocal algorithm.

6. In runs conducted on a relatively small grid without optimizing any of the al-
gorithms and without parallelization, the moment solutions required considerably less
computer time than did Monte Carlo simulations.
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