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Abstract. In this paper, a multilevel domain decomposition approach based on multi-
grid methods for obtaining fast solutions for coupled engineering flow applications
arising on complex domains is presented. The proposed technique not only allows
solutions to be computed efficiently at the element level but also helps us to achieve
proper accuracy, load balancing and computational efficiency. Numerical results pre-
sented demonstrate the robustness of the proposed technique.
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1 Introduction

Over the last decade, there have been significant advances in developing solution method-
ologies for studying complex dynamics of coupled processes arising in a variety of ap-
plications that involve multiple interactions between flow, temperature and structures
[3, 4, 9–11, 25, 33, 34, 37]. Domain decomposition techniques with non-matching grids
have become increasingly popular in studying such coupled processes [2, 5, 29, 30]. In
particular, they help achieve fast and accurate solutions to various applications involv-
ing coupled processes when used in conjunction with multigrid techniques [19,32]. They
also allow coupling of different subdomains with nonmatching grids and different dis-
cretization techniques and the solution can be efficiently implemented even over parallel
architectures.
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The purpose of this paper is to introduce a flexible domain decomposition approach
that involves multigrid algorithm that will be used to study different engineering appli-
cations that involve flow mechanics. The first two applications involve flows through a
channel with square cavities. The third and the fourth applications involve interaction
between flow and large deforming structures.

2 Model and governing equations

We denote by Hs(O), s∈ℜ, the standard Sobolev space of order s with respect to the set O,
which is either the flow domain Ω, or its boundary Γ, or part of its boundary. Hence, we
associate with Hm(O), its natural norm ‖·‖m,O. For 1≤ p<∞, the Sobolev space Wm,p(O)
is defined as the closure of C∞(O) in the norm

‖ f‖
p

Wm,p(O)
= ∑

|α|≤m

∫

O

∣∣∣∣

(
∂

∂x

)α

f (x)

∣∣∣∣
p

dx.

The closure of C∞
0 (O) under the norm ‖·‖Wm,p(O) will be denoted by W

m,p
0 (O). Whenever

possible, we will neglect the domain label in the norm.

For vector-valued functions and spaces, we use boldface notation. For example,
Hs(Ω) = [Hs(Ω)]n denotes the space of ℜn-valued functions such that each component
belongs to Hs(Ω). Also we denote the space of square integrable functions having zero
mean over Ω by L2

0(Ω) and the space of solenoidal functions

V(Ω)={u∈H1(Ω) |∇·u =0}.

For Γ1⊂Γ with non-zero measure, we also consider the subspace

H1
Γ1

(Ω)={v∈H1(Ω) |v=~0 on Γ1}.

Also, we denote H1
0(Ω)=H1

Γ(Ω). For any v∈H1(Ω), we write ‖∇v‖ for the semi-norm.
Let (H1

Γ1
)∗ denote the dual space of H1

Γ1
. Note that (H1

Γ1
)∗ is a subspace of H−1(Ω), where

the latter is the dual space of H1
0(Ω). The duality pairing between H−1(Ω) and H1

0(Ω) is
denoted by < · ,·>.

Let g be an element of H1/2(Γ). It is well known that H1/2(Γ) is a Hilbert space with
norm

‖g‖ 1
2 ,Γ = inf

v∈H1(Ω);γΓv=g
‖v‖1 ,

where γΓ denotes the trace mapping γΓ : H1(Ω)→H1/2(Γ). We let (H1/2(Γ))∗ denote the
dual space of H1/2(Γ) and < · ,·>Γ denote the duality pairing between (H1/2(Γ))∗ and
H1/2(Γ).
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2.1 Model problem and variational formulation

Let us consider the time-dependent Navier-Stokes problem describing the flow of a fluid
in a region Ω∈ℜ2 given by:

ρ
∂u

∂t
−µ∆u+(u·∇)u+∇p= f in Ω×(0,T), (2.1)

∇·u=0 in Ω×(0,T), (2.2)

u= g on Γ1 =∂Ω×(0,T), (2.3)

where ρ and µ are the density and the viscosity, f is the body force and g is the prescribed
imposed velocity over Γ1 satisfying the compatibility condition.

Let f ∈H−1(Ω) and g ∈H1/2(Γ1). Then the velocity, the pressure and the stress vec-
tor fields (u,p,τ) ∈ H1(Ω)×L2(Ω)×H−1/2(Γ) satisfy the weak variational form of the
unsteady incompressible Navier-Stokes equations given by

<ρ
∂u

∂t
,v>+a(u,v)+c(u;u,v)+b(v,p)+<τ,v>Γ=< f ,v>, (2.4)

b(u,r)=0, (2.5)

<u,s>Γ1
=< g,s>Γ1

(2.6)

for all (v,r,s)∈H1(Ω)×L2(Ω)×H−1/2(Γ1). Here the continuous bilinear forms are de-
fined as

a(u,v)=2µ
∫

Ω
D(u) : D(v)dx ∀u,v∈H1(Ω), (2.7)

b(v,r)=−
∫

Ω
r∇·vdx ∀r∈L2(Ω), ∀v∈H1(Ω), (2.8)

and the trilinear form

c(w;u,v)=ρ
∫

Ω
(w·∇)u ·vdx=

2

∑
i,j=1

ρ
∫

Ω
wj

(
∂ui

∂xj

)
vi dx ∀w,u,v∈H1(Ω). (2.9)

For details concerning the function spaces, the bilinear and the trilinear forms and their
properties, one may consult [18, 35]. In system (2.4)-(2.6),

τ =−µ∇u ·n+pn∈H−1/2(Γ)

is the stress vector. In domain decomposition methods, its computation across differ-
ent subdomains is an important issue. The interested reader can consult [18] and cita-
tions therein. Existence and uniqueness results for solutions of the above system are well
known; see, e.g., [15–17].
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2.2 Non-conforming domain decomposition

Let the fluid domain Ω be partitioned into m non-overlapping sub-domains {Ωi}m
i=1 such

that the closure of the union of Ωi is equivalent to the closure of Ω. Note that the pre-
sentation in the paper is in two dimensions and one can extend this to three dimensions
which will be considered in a forthcoming paper. Hence we consider ∂Ωi∩∂Ωj (i 6= j) to
be either empty, a vertex, or a collection of edges of Ωi and Ωj. In the latter case, we
denote this interface by Γ ij which consists of individual common edges from Ωi and Ωj.
The velocity, the pressure and the stress field (ui,p i,τ ij)∈H1(Ω i)×L2(Ω i)×H−1/2(Γ ij))
satisfy

<ρ
∂u i

∂t
,vi

>+a(u i,v i)+c(u i;ui,v i)+b(v i,p i)+<τ
ij,vi

>Γ ij=< f ,vi
>, (2.10)

b(u i,r i)=0, (2.11)

<ui,s i
>Γi

1
=< g,s i

>Γi
1
, (2.12)

<ui−u j,s ij
>Γ ij =0 (2.13)

for all v i∈H1(Ωi), r i∈L2(Ωi), s i∈H−1/2(Γi
1) and s ij∈H−1/2(Γ ij), for i=1,2,··· ,m. Here Γi

1

is Γ∩Ω̄i and the stress on the main boundary Γ is set to be equal to zero where Dirichlet
boundary conditions are not imposed. Note that in the continuous case, on the boundary
Γij, the velocity vectors, u i and u j, and the stress vectors τ ij and τ ji are in the same spaces,
H1/2(Γ ij) and H−1/2(Γ ij) respectively, namely

ui =u j and τ
ij =−τ

ji,

where the equivalences are in the strong form. Also we remark that the computation of
τ ij ∈ H−1/2(Γ ij) cannot be in general accurate, especially at corners or singular points,
due to its poor regularity. However it is possible to compute τ ij from u i by using the con-
cept of extended function and extended domain. The reader interested in the numerical
computation of the stress vector can refer to [14]. In order to facilitate the computation
of the stress at the boundary or mesh interfaces we introduce the extended domain Ω̂i of
Ωi as Ω= Ω̂i. The solution u i over the domain Ωi can be extended by using the standard
theory [17]. In the rest of the paper we write u i to denote the function over Ωi and û i its
extension to Ω. The stress τ ij can then be computed via,

<τ
ij,v̂ i

>Γ ij=−<
∂û i

∂t
,v̂ i

>−a(û i,v̂ i)−c(û i;û i,v̂ i)−b(v̂ i, p̂ i)+< f ,v̂ i
> (2.14)

for all v̂ i ∈H1
Γ1

(Ω−Ωi) which also yields an expression for computing the lagrange mul-

tipliers τ ij.
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3 Finite element discretization

3.1 The multilevel domain decomposition

Let us introduce a finite element discretization in each subdomain Ωi through the mesh
parameter h which tends to zero. We consider our discretized domain Ωh to be parti-
tioned into m non-overlapping polygonal subdomains Ωi

h. Now, by starting at the multi-
grid coarse level l0, we subdivide Ωi

h and consequently Ωh into triangles or rectangles by

unstructured families of meshes Ti,l0
h . At this coarse level l0, as at the generic multigrid

level l, the triangulation over all Ωi
h are dependent and satisfy finite element compatibil-

ity constraints along the interfaces Γ
ij
h . Based on the simple element midpoint refinement,

different multigrid levels can be built to reach a complete unstructured mesh Ti,l
h of finite

elements over the entire domain Ωh at the top finest multigrid level nt. Let the maximum
size of the triangulation of the multigrid level l be hl . For details on multigrid levels
and their construction one may consult [6, 27, 36]. Now we have complete unstructured
meshes at each multigrid level in a standard finite element fashion with compatibility
enforced across all the element interfaces built over midpoints refinements. Over every
macro domain Ωi

h the Navier-Stokes equation can be solved over a different level li gen-
erating a solution mesh over Ωh consisting of different meshes over each subdomain. Let
us denote Ωi

hli
to be the subdomain i where the solution will be computed at the finest

multigrid level li, with hli
denoting the maximum size of the triangulation of subdomain.

It should be noted that the multigrid levels at which the solution is computed over in-

dividual subdomains Ωi
h and Ω

j
h maybe different from each other, with no compatibility

enforced across the interface Γ
ij
h .

The recursive generation of finer grid levels may be used to generate an appropriate
mesh discretization in the boundary layers subdomains, where generally a finer mesh
is needed. This can be achieved with a correct/smart choice of the coarse level trian-
gulation and eventually with midpoint refinement made only in preferential direction:
perpendicular to the boundary.

Finite element approximation spaces can be generated regularly, as function of the
characteristics length hl over each multigrid level l resulting in different approximation
spaces over the solution mesh Ωi

h. Note that on the solution mesh, we compute the
velocity field ui

h at the level l over Ωi
hl

but, the extended function û i
h is defined over all

Ωh. There maybe parts of the domain where the solution is not computed at the top level
but a projection operator from the coarser level can always be used to approximate the
solution over the extended domain Ωh and therefore an approximation to the extended
function û i

h is always available. This extended function has the same value at those nodes
in the coarser mesh that are included in the finest mesh. This is always the case if the
different levels are generated by successive midpoint refinements.

Let us choose the families of finite-dimensional spaces Xhl
⊂H1(Ω) and Shl

⊂ L2
0(Ω).

We make the following assumptions on Xhl
and Shl

for the extended functions defined
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over Ωh (see, e.g., [16]):

(a) Approximation hypotheses: For each multigrid level l there exists an integer l1 and a
constant C, independent of hl ,û and p, such that

inf
ûhl

∈Xhl

‖u−ûhl
‖1≤Chk

l ‖u‖k+1 ∀u∈Hk+1(Ω)∩H1
0(Ω), 1≤ k≤ l1,

inf
p̂hl

∈Shl

‖p− p̂hl
‖≤Chk

l ‖p‖k ∀p∈Hk(Ω)∩L2
0(Ω), 1≤ k≤ l1 ;

(b) Inf-sup or LBB condition: There exists a constant C′, independent of hl , such that

inf
0 6=q̂hl

∈Shl

sup
0 6=ûhl

∈Xhl

∫

Ω
q̂hl

∇·ûhl
dx

‖ûhl
‖1‖q̂hl

‖0
≥C′

>0

for all multigrid levels l ≤ nt. This condition assures the stability of the Navier-
Stokes discrete solutions.

(c) Let Phl
= Xhl

|∂Ω, i.e., Phl
consists of all the restrictions of functions belonging to Xhl

to the boundary Γ. For the subspaces Phl
= Xhl

|Γ, we assume the approximation
property: For each multigrid level l there exists an integer l1 and a constant C,
independent of s such that

inf
0 6=shl

∈Phl

‖s−shl
‖− 1

2 ,Γ ≤Chk
l ‖s‖k− 1

2
∀s∈Hk− 1

2 (Γ), 1≤ k≤ l1 .

See [14, 16] for details concerning the approximation on the boundary. With these hy-
potheses we can build regular conforming approximations over each grid while the ap-
proximate solution belongs to Xhl

corresponding to the subdomain Ωi
hl

.

The multilevel domain decomposition problem over the domains Ωi
h (i = 1,2,··· ,m)

solved on the level li surrounded by the domains Ω
j
h with j ∈ Ii (Ii being the set of the

neighboring regions of i) can be obtained by discretizing (2.10)-(2.13). Given f ∈L2(Ω)
and g ∈H1/2(Γ), employing an implicit Euler time discretization with time step ∆t, our
problem then becomes the following:

Find (u i
hli

,n,p i
hli

,n,τ
ij
h ) ∈ Xhli

(Ω i
h)×Shli

(Ω i
h)×Phli

(Γ
ij
h ) satisfying the weak form of the

Navier-Stokes equations

1

∆t
<u i

hli
,n,vi

hli
>+a(u i

hli
,n,vi

hli
)+c(u i

hli
,n;ui

hli
,n,v i

hli
)+b(vi

hli
,p i

hli
,n)

+<τ
ij
h,n,vi

hli
>

Γ
ij
h

=
1

∆t
<ui

hli
,n−1,vi

hli
>+< f ,vi

hli
>, (3.1)

b(u i
hli

,n,r i
hli

)=0, (3.2)

<u i
hli

,n,s i
hli

>Γ1h
=< g i

hli
,s i

hli
>Γ1h

, (3.3)

< Pli,lk
(u i

hli
)−Plj,lk

(u
j
hli

),s
ij
hlk

>
Γ

ij
h

=0, (3.4)
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∀vi
hli
∈Xhli

(Ω i
h)∩H1

Γ1
(Ωi

h), ∀r i
hli
∈Sh(Ωi

h), ∀s i
hli
∈Phlk

(Γi
1h),

∀s
ij
hlk

∈Phlk
(Γ

ij
h ) for n=1,2,··· ,N and i=1,2,··· ,m,

where j∈ Ii,Γ
i
1h = Γ1h∩∂Ωi

h and lk = max{li,lj} over the multigrid levels available at the

boundary Γ
ij
h . Here Pli,lk

(u) are canonical prolongation operators and in order to ensure
maximum accuracy they project the velocity from the level li to the level lk which is the

finest grid present on the boundary Γ
ij
h . For details and properties of these operators, one

can consult [6,21] and citations therein. With this hypotheses, the lagrange multipliers τ
ij
h

can also be discretized and projected on the finest grid available on Γ
ij
h . Since the mesh

on the multigrid are unstructured and quite openly constructed the mesh between the
subdomain Ω i

h and the neighboring subdomain Ω i
h can be quite different, as mentioned

earlier. Moreover, very fine meshes in the region of interest and coarse meshes elsewhere
can be handled with little effort.

Equation system (3.1)-(3.4) is non-linear due to the term c(u i
hli

,n;ui
hli

,n,v i
hli

). For its

treatment, we have adopted the FEM flux-corrected transport algorithm proposed in [40],
where the non-linear operator is re-written in term of fluxes and linearized. By using
this technique, as soon as a new value of velocity is available, it is possible to update
the linearized convective term c(a;ui

hli
,n,vi

hli
) with no additional assembly time. In all

numerical examples analyzed in this work the Reynolds number is always laminar and
no-flux corrections are used.

3.2 Solution methodology

We solve the system (3.1)-(3.4) by computing simultaneously the solution for both pres-
sure and velocity. In order to optimally solve this system involving the unknown variable

τ
ij
h , we choose a Vanka smoother [22–24, 26, 27, 36, 38] which involves the solution of the

minimal number of degrees of freedom for standard conforming Taylor-Hood finite ele-
ments but meets enough requirements of robustness. This smoother can be considered
as block Gauss-Seidel method, where one block consists of a small number of degrees of
freedom. A typical smoothing step consists of a loop over all the blocks, solving only the
equations involving the unknowns inside the elements that are around the considered
pressure vertices. The velocity and pressure variables are updated many times in one
smoothing step. The Vanka smoother, employed herein involves the solution of a small
number of degrees of freedom given by the conforming Taylor-Hood finite element dis-
cretization used. For this kind of element the pressure is computed in the vertices while
the velocity field is computed in both the vertices and the midpoints. Over the internal
part of the generic subregion Ωi

h, where there are no boundary elements, our Vanka-block
consists of an element and all its neighboring elements. We solve for all the degrees of
freedom inside the block, with boundary condition taken on the external boundaries.
For example, in Fig. 1, our block consists of four vertex points and 12 midpoints to be
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a b

Figure 1: Unknowns (black circles) and boundary conditions (white circles) shown for (a) the velocity field uh
(b) pressure ph for our Vanka-block smoother.

solved, for a total of 36 unknowns. We have also used different blocks with different
performances but we have found this particular block to be very robust and reliable even
at high Reynolds numbers. Examples of computations with this kind of solvers can be
found in [27, 36].

It should be noticed that if no boundaries Γ
ij
h cut the computational block, no La-

grange multiplier terms <τ
ij
h ,v i

hli
>

Γ
ij
h

should be considered. In the other case the bound-

ary Γ
ij
h will become the boundary of the computational block as well. Two different sub-

cases are possible: (a) the block belongs to the subdomain with the finest mesh; (b) the
block belongs to the subdomain with the coarsest mesh. In case (a) the velocity and the
pressure on the boundary are considered as given boundary conditions from the coarsest

mesh, after projection, and no stress tensor τ
ij
h should be considered. In case (b) the ve-

locity and the pressure are computed on the boundary, while each Lagrange multiplier

term < τ
ij
h ,vi

hli
>

Γ
ij
h

is given explicitly as a linear combination (restriction) of the corre-

sponding Lagrange multiplier terms on the fine grid. It should be noticed that on the fine
grid the Lagrange multiplier terms are evaluated using (2.14); in other words the compu-
tational block can be considered as an extended computational block, part in the coarse

subdomain and part in the fine subdomain with no boundary Γ
ij
h . This corresponds to an

overlapping domain decomposition strategy.

To increase the convergence rate, the Vanka-smoother is coupled with a standard V-
cycle multigrid algorithm. The multigrid does not change the nature of the solver, but
allows the information to travel faster between different parts of the domain. A global
rough solution is evaluated in the coarsest mesh and propagated immediately all over the
domain. Solving the equation system in finer and finer meshes improves the solution de-
tails, but at the same time reduces the propagation of the information inside the domain.
However this does not affect the global convergence rate, since the influence of small
local changes is more and more irrelevant as soon as the distance increases. The analy-
sis of the convergence of Vanka-type multigrid solvers for Navier-Stokes can be found
in [26]. In order to prove the convergence of the proposed multilevel domain decompo-
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sition algorithm, we plan to combine the approach used in [26] together with Schwarz
alternating type approaches. We are currently working on this proof and it will be the
focus of a forthcoming paper. At this moment, we have proved geometrical convergence
only for elliptic problems.

4 Numerical experiments

In this section, we apply the flexible domain decomposition approach introduced in this
paper to study different engineering applications that involve flow mechanics. The first
two application involve flows through a channel with a square cavities. The third ap-
plication involves a flow-structure interaction that describes a biological application that
involves blood flow interacting with a deforming aneurysm. In the fourth application a
fluid-structure benchmark problem recently proposed [3], that involves large deforma-
tion of a thin membrane structure is considered.

4.1 Flow through a channel with one square cavity

The first numerical experiment is to investigate the effectiveness of the domain decom-
position approach described to study flow through a channel with a square cavity. The
Reynolds number for the experiment is set to be 250. We assume that the fluid flows in
a symmetric channel between two parallel plates. In the channel interior there are two
symmetric square cavities and due to the symmetry only half of the domain is used and
the simulation is modeled as in Fig. 2 computing only the flow close to the cavity.

inflow

outflow

Ω Ω21

Figure 2: Configuration of the domain.

The computational domain Ωh is a rectangular region divided in two subregions: the
cavity Ω1

h and the channel Ω2
h. The flow enters from the bottom of the subregion Ω2

h
and reaches the outlet at the top of Ω2

h. Therefore we impose a symmetric parabolic
flow profile at the inlet with unit maximum velocity on the symmetric line and outflow
boundary condition at the top of the subregion Ω2

h. On the right side of Ω2
h we impose

symmetric boundary conditions. On the cavity Ω1
h homogeneous Dirichlet boundary

conditions are enforced over the three sides of the subregion Ω1
h. The fluid enters into the

cavity from the right side of Ω1 domain and generates a vortex in the cavity. Since the
flow is laminar inside the channel Ω2

h we keep the finest grid on the domain Ω1
h and try
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Figure 3: Computational domain showing coupled multigrid levels l4− l3 (on the right) and level l4− l2 (on the
left).

to use a coarse grid on the channel region Ω2. We consider an unstructured coarse mesh
of isoparametric rectangular finite elements for P2/P1 velocity/pressure representation.
After the construction of the mesh at the level l0 the other mesh levels li (i =1,2,3,4 ) are
generated by an unstructured grid generator by midpoint refinements.

Fig. 3 (on the right) shows the grid configuration for the domain decomposition when
the mesh level l4 in Ω1

h is coupled with the level l3 and (on the left) with level l2 in Ω2
h. In

this test we try to compute the solution in domain decompositions with three different
mesh configurations: A) the standard configuration where the solution is computed over
Ωh at level l4; B) the mesh configuration where the solution is computed at mesh level l4
(over Ω1

h) and level l3 (over Ω2
h) ; C) the mesh configuration where the solution is com-

puted at l4 (over Ω1
h) and level l2 (over Ω2

h). In the configuration A of this experiment the
solution is obtained at the level l4 by a standard multigrid technique relaxing, projecting
and interpolating over all the available levels (from l0 to l4) and it is stopped when the
residual of the linear system is 10−4 for the velocity with referee velocity of 1m/s. In the
case B and C the multigrid V cycle is regularly applied over the coarse grid at the level l3
and l2 respectively.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

v

A
B
C

0 0.2 0.4 0.6 0.8 1
x

-0.02

-0.01

0

0.01

0.02

u

A
B
C

Figure 4: The v and u velocity components at the centerline as a function of x.

In Figs. 4-5 the extended velocity ûhl4
=(u,v) is plotted for the different mesh config-

uration A, B and C The extended solution for case A is the regular solution uhl4
defined



E. Aulisa et al. / Commun. Comput. Phys., 6 (2009), pp. 319-341 329

0 0.2 0.4 0.6 0.8 1
y

0

0.05

0.1

0.15

0.2

v

A
B
C

Figure 5: The v component of the velocity field along the mesh interface Γ12
h .

over the domain Ωh. In the cases B and C the velocity field is computed at mesh level l3
and l1 respectively and projected but not solved over the mesh on the level l4. The results
in Fig. 4 are satisfactory and the difference between the solution in A and the solution in
the configuration C is not due to the use of different meshes but to the fact that the grid
at the level l2 cannot handle the sharp velocity gradients. Nevertheless, the results show
that one can efficiently use domain decomposition with different meshes to capture im-
portant features of the flow. By refining only in the regions of interest, one can still obtain
a good solution at the cost of lower number of degrees of freedom.

4.2 Flow through a channel with eight square cavities

In the second numerical experiment we illustrate an example in which the multilevel
method can be efficiently applied to problems in fluid dynamics. We consider challeng-
ing domains where small regions of fluids are coupled with large ones, for example the
geometry in Fig. 6 where a L-shape domain Ω0 is shown with eight unitary small square
cavities Ωi i = 1,··· ,8. Here the use of a single grid level leads to a very cumberstone
implementation since the cavity flow must be solved with different resolution. As in the
previous test the first multigrid level l0 is the coarse mesh designed to contain all the
relevant information such as boundary conditions and geometric details. The boundary
conditions for this problem are inflow boundary conditions on the bottom of the first
branch with parabolic profile (max vel. 1m/s ) and outflow boundary conditions on Γ2.
Dirichlet boundary conditions are applied in the rest of the boundary. The computations
are performed in laminar regime for Reynolds number of 20 and rectangular finite ele-
ments Q2/Q1 velocity/pressure are used. The other levels li (i=1,2,3,4 ) are generated by
midpoint refinement. The computations in the cavity regions Ωi (i = 1,2,3,··· ,8) should
be accurate and therefore solved on the finest grid l4. The levels l4, l3, l2 or l1 are consid-
ered for computation over Ω0. In Figs. 6-7 we can see the multilevel configurations on
nonmatching grids considered in this test when the mesh level l4 over the cavities Ωi is
coupled with the mesh levels l3, l2 and l1 over Ω0 (case B, C and D respectively). The so-
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Figure 6: Geometry for the numerical experiment 2 on the left and domain decomposition with coupled levels
l4− l3 (case B) on the right.

Figure 7: Multilevel decomposition with coupled levels l4−l2 (case C) on the left and with coupled levels l4−l1
(case D) on the right.

lution, over the uniform level l4 (case A), is taken as reference solution and is obtained by
standard V-cycle multigrid with residual norm in velocity and pressure approximately
10−13. The reference velocity is 1m/s which is the maximum velocity of the parabolic

inflow profile at the inlet. The procedure computes the Lagrange multipliers τ
ij
h on the

boundary, implicitly. In this case the solution ui
hli

is projected by the standard finite ele-

ment projection operator (the same of the standard multigrid) over the finest grid at level
l4 obtaining the extended solution for ûh over Ω0. The extended solution generates the
boundary conditions for the computation of the solution on the finest grid, which is the
union of all Ωi (i=1,2,··· ,8).

The solution along the channel centerlines is reproduced accurately in both branches
for all cases A, B, C and D. The solution over all the regions Ωi for i=1,2,··· ,8 cannot be
captured with a low resolution mesh (for example level l2) and therefore the multilevel
technique becomes a powerful tool in such configurations. Even with very coarse mesh in
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the channel the fine grid on the cavity allows a good and accurate simulation of the cavity
flows. As example in Fig. 8 the v-component of the velocity field is plotted as across the
cavities in the regions Ω1, Ω2 as a function of the x-coordinate and Ω6, Ω7 as a function
of the y-coordinate from the top to the bottom and from left to right. The velocity field
computations over the different configurations A, B and C cannot be distinguished. The
solution for the case D shows that the solution is starting to be different due to the very
coarse mesh matching.
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Figure 8: V-component along the midline in the cavity regions Ω1 (top left), Ω2 (top right) as a function of
the x-coordinate and Ω6 (bottom left) Ω7 (bottom right) as a function of the y-coordinate for the different
case A,B,C and D.

By using nonmatching grids, the number of nodes (and hence the degrees of free-
dom) decreases and so does the necessary cpu time. In Table 1 a quantitative comparison
between the number of unknowns and the relative CPU time is shown. There is clear
advantage of using domain configuration B with respect to A and of using domain con-
figuration C with respect to A and B. From a computational point of view case D is not
much better then case C. There is a saturation due to the fact that in both cases most
of the computational time is spent in the cavity regions where the fine level l4 is used.
Furthermore we have already pointed out that in case D the solution slightly degener-
ates. This result suggests that the better configuration is not necessarily the one with the
lowest number of nodes.
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Table 1: Results for the computational experiment 2.

case grids unknowns rel. cpu time

A l4−l4 53504 1

B l4−l3 22210 0.425

C l4−l2 14124 0.275

D l4−l1 11962 0.243

4.3 Bifurcating artery with aneurysm

In this section, the performances of the computational methodology developed in this pa-
per are tested for a specific biological application that involves a coupled flow-structure
interaction problem. In this last decade there has been a lot of interest in developing
mathematical models to understand the vasculature better [7,8,28]. More specifically, we
model the effects on the morphology of an aneurysm due to changes in the blood pres-
sure in a hemodynamics problem. The motivation for considering this application is be-
cause cardiovascular diseases and cerebral disorders, such as arteriosclerosis or cerebral
aneurysm, are reported to depend on hemodynamics factors. It is therefore important to
obtain detailed information on the hemodynamics and structural quantities of the cardio
and cerebral vascular systems.

According to medical statistics [39] and clinical observations, pathological alter-
ations such as cerebral aneurysm occur mainly in region of arterial branching where
the aneurysm tends to appear and to grow at the apex of artery bifurcations. A quite
complex flow structure interaction is associated with the biological problem. In Fig. 9
the flow computational domain Ω is shown together with all the geometrical details. It
is possible to recognize the inlet region Γ1 and the two outlet regions Γ2 and Γ3, on the
top and bottom branches. The circular cavity region on the apex of the bifurcation is the
aneurysm which deforms preserving its circular shape. The flow computational domain
Ω is divided into the two subdomains Ω1 and Ω2, where Ω1 is the left part of the main
channel and Ω2 is the other part, consisting of the ending right part of the main channel,
the top and the bottom branches, and the aneurysmal cavity.

We assume that the boundary of the domain Ω consists of a rigid and a deformable
part. The deformable part models the aneurysm, which is the common boundary ΓSF

where the fluid-structure interaction occurs (where the subscripts F and S stand for fluid
and solid respectively.) In Fig. 9, ΓSF is the arc BC with initial radius of R0. Let λ be the
stretch ratio between the deformed radius r and the initial undeformed radius R0. We
compute the two-dimensional solution of the coupled problem assuming that the arc BC
deforms according to the relation

P(r)= P0+
C

r

(
1−

1

λ6

)
, (4.1)

where P is the average pressure in the aneurysmal cavity and C is a constant equal to
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0.88N/m. Here we have assumed that the aneurysm deforms always preserving its cir-
cular shape and remains tangent to the two branches.
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Figure 9: Bifurcating artery with an aneurysm.

In Fig. 10, the radius-pressure relation is shown around the chosen equilibrium point
(P0,R0). This relation is derived by assuming a neo-Hookean material law for the mem-
brane [1]. Note that this model has been chosen only for the purposes of illustrations;
others constitutive relations for soft tissues [12, 20, 31] may also be employed.

To simulate the flow-structure interaction, the flow described by Eqs. (2.10)-(2.13) is
coupled with a structural model through a governing equation given in operator form

A(u,p)= F(xS), (4.2)

where the right hand side may be a non-linear function that depends on the displacement
of the structure. The conditions of displacement compatibility, xF = xS, and force equi-
librium, f F = f S, along the structure-fluid interfaces ΓSF are satisfied. The fluid is fully
coupled to the structure that can undergo nonlinear response due to large deformations
or inelasticity. The fluid and solid equations are solved iteratively, in succession, always
using the latest information provided by the other part of the coupled system. From the
solution of the fluid-dynamics problem the pressure and the velocity field are evaluated,
and the boundary forces for the structural problem are computed. The structural dynam-
ics system is then solved for the displacements, and modification of the fluid domain Ω,
satisfying the displacement compatibility conditions, xF = xS, are made along the com-
mon boundaries ΓSF. The whole procedure is repeated iteratively until convergence for
both the fluid and the structural parts is reached.



334 E. Aulisa et al. / Commun. Comput. Phys., 6 (2009), pp. 319-341

3.5×10
-4

4.0×10
-4

4.5×10
-4

5.0×10
-4

5.5×10
-4

6.0×10
-4

r

4000

5000

6000

7000

8000

9000

P

 Ro,Po 

Figure 10: Radius-pressure constitutive relation.

The first multigrid level l=0 is the coarse mesh designed to contain all relevant infor-
mation such as boundary conditions and geometric details. The mesh is an unstructured
coarse mesh of isoparametric rectangular finite elements Q2/P1 for the velocity/pressure
representation. The other levels (l = 1,2,3) are generated by midpoint refinement tech-
niques. The computations in the outlet region Ω2

h should be accurate and therefore solved
on the finest grid, l = 3. The mesh levels l = 3,2 and 1 are considered for computations
over the region Ω1

h. Fig. 11 on the top, shows the grid configuration for the mesh levels
l=3 (top left) and l=2 (top right). Fig. 11 on the bottom, shows two non-conforming grid
configurations. On the bottom left, the subdomains Ω1

h and Ω2
h are considered at the two

different levels l =1 and l =3. On the bottom right the same subdomains are considered
at the two different levels l =2 and l =3.

First we compute the solution of our coupled problem for the stationary equations
by using the multilevel configuration l3−l2 previously described. The parallelization of
this problem over a multiple processor architecture computer is done by simply cluster-
ing blocks of elements. There are numerous possibilities for this but if the clustering is
performed at the level l0 then this does not introduce any supplementary work since it is
strictly embedded in the multigrid technique.

We set ρ=1060kg/m3 , µ=0.25Kg/ms and initial radius R0 =4.00×10−4m. The initial
pressure evaluated at R0=4.00×10−4m with velocity u=0.3m/s is P0=7220Pa as shown in
Fig. 10. For an initial steady velocity of u=3.55×10−1m/s applied, the system increases
the pressure in the region of interest to 8517Pa with corresponding deformation of the
radius to 4.99×10−4m. The initial and final deformed mesh is shown in Fig. 12.

Next we perform the simulation for the time dependent case. Again we assume
the configuration in Fig. 11 with ρ = 1060kg/m3 , µ = 0.25Kg/ms with a time depen-
dent inlet velocity u = 0.3+0.058sin(t)m/s. The initial radius is R0 = 4.00×10−4m with
u = 0.3m/s and P0 = 7220Pa. The deformed body is subject to the law in (4.1) and the
radius oscillates and the deformed body expands and contracts periodically accordingly.
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Figure 11: Grid configurations at the mesh levels l =3 and l =2, on the top, and non-conforming grid configu-

rations Ω
1,1
h −Ω

2,3
h and Ω

1,2
h −Ω

2,3
h , on the bottom.

Figure 12: Initial (left) and final (right) configuration over level l2.

For the simulation, maximum and minimum radii are obtained as Rmax = 5.264×10−4m
(Rmax/R0 = 1.316) and Rmin = 3.701×10−4m(Rmin/R0 = 9.254×10−1), respectively, at
Pmax =8571Pa and Pmin =5814Pa. The pressure-velocity oscillations are compared when
the body in Ω4

h is considered rigid (case 1) and deformed (case2). Figs. 13-14 show a
comparison when the deformed body is allowed to oscillate and when it is kept fixed. In
Fig. 13 we plot the u-component (left) and the v-component (right) of the velocity field
along the line ABCD as defined in Fig. 11 at time t=π/2, t=π and t=3π/2. In Fig. 14 we
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plot the pressure p along the line ABCD. We remark that the presence of the deformed
body changes the velocity profile due to its expansions and contractions even at this low
Reynolds numbers. If the Reynolds number were increased than the change becomes
more and more remarkable.

4.4 Large deformation membrane fluid-structure interaction

We now test the proposed domain decomposition methodology for a fully-coupled fluid-
structure interaction (FSI) problem, where different subdomains are subjected to different
physical laws and compatibility conditions are enforced on the common interface. Note
that a fully coupled FSI means that the response of the solid is strongly affected by the
response of the fluid, and vice versa and hence we employ a monolithic approach.

In this experiment, we consider a large deformation membrane test that was recently



E. Aulisa et al. / Commun. Comput. Phys., 6 (2009), pp. 319-341 337

Figure 15: Model dimensions and boundary conditions, solid and fluid properties.

proposed [3] as benchmark test for FSI. Fig. 15 shows the problem considered where
two fluid regions are separated by a slightly compressible membrane of thickness 5×
10−5 m Time dependent pressure boundary condition, τn = 5.×106 tPa., is considered on
the bottom edge of the lower fluid domain. The membrane is considered clamped on
the left and right extrema. All the remaining boundary conditions are shown in Fig. 15
together with the fluid and solid properties. In the solid region the following plain stress
equilibrium equation is considered

ρsẅ−∇·σ =0 in Ωs×(0,T), (4.3)

where w is the displacement. The stress tensor σ depends upon left Cauchy-Green tensor
B [13] by the following equation

σ =− p̃ I+2c1B−2c2B−1 . (4.4)

The left Cauchy-Green tensor is defined as B= FFT where the F is deformation gradient
tensor given by F = I+∇w. Also, in (4.4) p̃ represents the Lagrange multiplier due to the
incompressibility of the solid, ∇·w=0, and can be considered analogous to the pressure
in the fluid flow equation. The momentum equations of the fluid and the solid are cou-
pled on the common interface Γ f s through the compatibility condition between the fluid
flow velocity and the solid displacement

ẇ=u on Γ f s (4.5)

and the force equilibrium

λs f =−τ f s on Γ f s . (4.6)

Here λs f = −σ ·ns f represents the force exerted by the fluid on the solid while τ f s =
−µ∇u·n f s+pns f represents the force exerted by the solid on the fluid; ns f and n f s rep-
resent the external normals. The compatibility conditions (4.5) and (4.6) can be used in
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equation system (3.1)-(3.4), where different equations for different subdomains should be
used. In order to take into account the large deformation of the domain a moving grid is
considered in both the fluid and the solid regions via an arbitrary Lagrangian-Eulerian
formulation. We solve the transient response with ∆t = 0.00005s until 0.25. The mem-
brane undergoes under large displacements and large strains. The time history of the
coarse mesh is displayed in Fig. 16. The results qualitatively reproduces the results in [3].

Time=0.0 Time=0.10 Time=0.20 Time=0.25

Figure 16: Large deformation membrane test: time histories of the coarse mesh.

Note that this is only a preliminary result and the multilevel algorithm for this ap-
plication has not been implemented yet. The experiment has been performed to verify
that the Vanka-smoother is suitable to solve these applications and can be implemented
in an easy and straightforward way. When solving computational blocks inside the fluid
domain only the Navier-Stokes equation is considered; and similarly inside the solid do-
main only the Mooney-Rivlin equation is used. For computational blocks on the bound-
ary the compatibility conditions should be taken into account. When solving boundary
blocks in the fluid domain, the time derivative of the solid displacement should be used
as Dirichlet boundary condition. When solving boundary blocks in the solid domain,
the stress tensor generated from the fluid into the solid should be used as a Neumann
non-homogeneous boundary condition. The stress tensor is explicitly evaluated using
Eq. (2.14), once again the computational block can be considered as an extended compu-
tational block, part in the solid and part in the fluid subdomain with no boundary and
this corresponds to an overlapping domain decomposition strategy. We hope to imple-
ment the multilevel algorithm discussed for this application and analyze it. This work is
in preparation.

5 Conclusion

This paper presents a multilevel domain decomposition technique for solving coupled
flow applications. The technique has been employed to numerically simulate four differ-
ent applications. Note that the focus of the paper was to present the performance of the
domain decomposition method presented herein. The four applications presented in this
paper provide a good insight and demonstrate the viability of the domain decomposition
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technique developed. The numerical studies clearly suggest that by efficiently employing
domain decomposition algorithms one can obtain the solution to complex problems with
relatively less number of degrees of freedom. These results provide further impetus to
examine more complex applications involving flow structure interactions that naturally
arise in biological and bio-inspired applications.
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