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Abstract. The society structure plays an important role in shaping the attitudes, beliefs
and public opinion. For studying the role of the society structure in opinion dynamics,
we analyze the Sznajd model on small-world network formed by adding shortcuts in a
lattice consisting of N nodes arranged in a ring and on two-dimensional (2-D) regular
lattice. Through computer simulation, we find that there exists a pseudo-phase transi-
tion from the coexistence state for φ < φc to the consensus state for φ > φc, where φc is
some threshold for the shortcut density φ, which is dependent of the complex network
topology and the dimensionality of complex networks. Our observations indicate the
dependence of the opinion dynamics on the complex system topology.

PACS: 89.75.-k, 89.65.-s, 68.08.De
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1 Introduction

Our local society, which can be well modeled as complex network, has its own structure
depending on the geography, culture and history. Recently it has also been realized that
many real social networks arising in society, such as networks of collaborations between
actors [1, 2] and scientists [3, 4], web-based social networks [5], peer-to-peer social net-
work [6], and the social networks of a bulletin board system in a university [7] all share
the small-world effects, including the shortest path length and higher clustering coeffi-
cient, which probably caused by the shortcuts in society systems. Those features will
affect the dynamics in society systems, especially the opinion dynamics. Many natural
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and man-made networks have been successfully studied as a framework of several cel-
ebrated opinion models. Nevertheless, the understanding of the opinion dynamics on
complex networks remains a challenge.

The Ising model, one of the fundamental models of Statistical Mechanics, has been
modified to model the problem of opinion formation [8–11]. Since many real questions
have only two possible answers (yes or no), the Ising model with two possible spins
(up or down) is suitable in describing such systems [12]. Following the Ising model
and the old principle ”united we stand, divided we fall”, a celebrated consensus model
[8] (Sznajd model) is proposed by K. Sznajd-Weron and J. Sznajd to describe a simple
mechanism of making up decisions in a closed community. In the Sznajd model, the
opinion Si of individual i is a binary variable assuming the value +1 (↑) and -1 (↓) that
referring to two opposite opinions on a certain thing. Assume that each pair of adjacent
individuals can affect the state of their nearest neighbors using the following updating
rule:

if SiSi+1 =+1, then Si−1 =Si+2 =Si,
if SiSi+1 =−1, then Si−1 =Si+1, Si+2 =Si.

(1.1)

Simulating the model for the long time, where at each time step the individual i is chosen
randomly, one finally obtains one of the three fixed states: ↑↑↑↑, ↓↓↓↓ and ↑↓↑↓, with
probabilities, refer to an initially random distribution, 0.25, 0.25 and 0.5, respectively
[8, 12].

During those years, many physicists have been studied the Sznajd model on two-
dimension lattices [9], deterministic pseudo-fractal networks [13], small-world networks
[12,14] and scale-free networks [15] through numerical simulation and got some interest-
ing results. However, all those works can not show the important role of the structure of
complex systems in opinion formation completely that we will do in our present work.
On the other hand, the Sznajd model has been applied in marketing [16, 17] and poli-
tics [18–20], and investigated also from the theoretical point of view [21, 22].

The main goal of this paper is to analyze the crucial role of complex network topology
in opinion dynamics. we find that, by numerical simulation, there exists a long-range
opinion-opinion correlation due to the shortcuts added randomly. On the other hand, the
probability that there exists a phase transition from the coexistence state to the complete
consensus state is one when the shortcut density φ > φc, where φc is dependent of the
complex network size N, its first neighbor parameter (FNP) K and the dimensionality of
complex network. Maybe, our present work can explain why a phase transition was not
found in [8] and [10], and is helpful for studying the interaction between dynamics and
complex system topology.

2 The Sznajd model on complex networks

Many real society systems can be mapped to undirected complex networks, which is a
set of agents with relationships of different kinds among them, such as friendship, col-
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laboration, business, sexual and other interactions [23]. The undirected complex network
can be described as a graph consisting of N nodes (agents) and L edges. The connectivity
is represented by the N×N adjacency matrix A whose element aij is equal to one when
agent i and agent j can affect each other and zero otherwise. There are no self-connections
or multiple edges.

Next, we generate the underlying complex network using the algorithm of the
Newman-Watts small-world network model [24]. The SWN is defined on a lattice consist-
ing of N nodes arranged in a ring. Initially each node is connected to all of its neighbors
up to some fixed range K to make the network with average coordination number z=2K,
randomness is then introduced by adding edges between two randomly chosen nodes
with probability φ, so that there are again φN shortcuts on average. For convenience, we
call K the first neighbor parameter (FNP) and φ the shortcut density. Tuning K and φ, we
can get a series of complex networks with different structural properties. This model is
equivalent to the Watts-Strogatz model for small φ, whilst being better behaved when φ

becomes comparable to 1 [24].
Then the Sznajd model is generalized to complex networks [12]. The opinions of

individuals can be described by the spins of nodes in complex network. For studying
the role of structure of underlying complex network in opinion formation simply, we
consider a one-dimensional lattice with periodic boundary conditions and the tunable
shortcut density φ. These shortcutting edges are fixed beforehand. The updating rule is
generalized to include the shortcutting neighbors, if exist, as follow:

if SiSi+1 =+1, then Sn(i, ¯(i+1)) =Sn(i+1,ī) =Scn(i,i+1) =

Ssc(i, ¯(i+1))(if exists)=Ssc(i+1,ī) (if exists)=Si,

if SiSi+1 =−1, then Sn(i, ¯(i+1)) =Ssc(i, ¯i+1) (if exists)=Si+1,

Sn(i+1,ī) =Ssc(i+1,ī) (if exists)=Si, and Scn(i,i+1) fixed,

(2.1)

where sc(i, j̄) is the shortcutting neighbor of the ith node and not of the jth node, if exists;
n(i, ¯(i+1)) is the first neighbor of the ith node and not of the (i+1)th node in the regular
lattice before the randomness is introduced. For example, the (i−K)th node is the first
neighbor n(i, ¯(i+1)) of the ith node and not of the (i+1)th node, and on the other hand,
the (i+1+K)th node is the first neighbor n(i+1, ī) of the (i+1)th node and not of the ith
node in the one dimensional regular lattice with z = 2K. And cn(i,i+1) is the common
neighbor of both the ith and (i+1)th nodes.

3 Numerical results and discussions

We realize our model on complex network with 1000 nodes and the results are averaged
over 100 independent samples. Initially the opinions of nodes are distributed randomly,
+1 with the probability p and -1 with the probability (1−p). Here, we call p the initial
opinion probability. For simplicity and studying the role of complex network topology,
we set p=0.5.
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The primary interest is the dynamical evolution of the average magnetization of the
system,

m(t)=
1

N

N

∑
i=1

Si(t) (3.1)

which is the difference in the number of opinions with +1 and -1. In Fig. 1 we repre-
sent the evolution of the average magnetization m(t) as a function of time t on the one
dimensional small-world networks. We find that there exists a phase transition from
the coexistence state to the complete consensus state (+1 consensus state or -1 consensus
state) when the shortcut density φ > φc = 0.14 for N = 1000,K = 4. Here, the coexistent
state is defined as that the individuals can be divided into two or more camps with +1
or −1 opinion. The consensus state is defined as that all the individuals share the same
opinion. On the other hand, the φc is dependent on the FNP K and the complex system
size N, which will be shown below.

What’s more, we also mimic the opinion dynamics of the Sznajd model on 2-D regu-
lar lattice with periodic boundary condition and each node having four neighbors. The
boundary condition here is different from that in [9]. In Fig. 2 (a), we represent the evo-
lution of the average magnetization m(t) as a function of time t on the 2-D regular lattice.
Interestingly, We find that there exists a phase transition from the coexistence state to the
consensus state, which also be found in [9], on the 2-D regular lattice. The larger the
regular lattice is, the more difficult the system reaches the consensus state. On the other
hand, the randomness is introduced in the 2-D regular lattice with the shortcut density
φ, following the algorithm of Newman-Watts small-world network model. In Fig. 2 (b),
we plot the evolution of m(t) as a function of time t on 2-D small-world networks with
various φ and the same size N = 20×20. We find that the larger the shortcut density
φ, the easier the system reaches the consensus state. Our results on 2-D regular lattice,
along with that of [9], indicate that the dimensionality of complex system also plays an
important role in the opinion dynamics of the Sznajd model.

In order to study the spatial correlation of opinion dynamics on small-world network,
we study the opinion-opinion correlation on small-world network and on regular lattice
(i.e., φ=0). Just as the spin-spin correlation in Ising model, we define the opinion-opinion
correlation function as follows:

g(r)= |〈sisj〉−〈si〉〈sj〉|, for r=dij , (3.2)

where 〈·〉 means the ensemble average over at least 100 different networks — and in
each of them selected all node pairs — in this paper and dij is the shortest path length
from node i to node j in the underlying small-world networks. The opinion-opinion
correlation, also called spatial correlation, describes the correlations in the fluctuations
of the opinions si and sj around their average values 〈si〉 and 〈sj〉. If the average of the
product 〈sisj〉 is equal to the product of the averages 〈si〉 and 〈sj〉, the opinion-opinion
correlation function is zero. In the zero shortcut density φ = 0, this is the case for the
parameter K > Kc 6= 0, where all individuals share the same opinion, i.e., |m| = 1, and
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Figure 1: The plots for the evolution of magnetiza-
tion m(t) as a function of time t, with different short-
cut density φ and the same initial opinion probability
p=0.5. The five curves correspond to φ=0.14, 0.02,
0, 0.04 and 0.18, from top to bottom. The param-
eters of the complex network are N = 1000,K = 4.
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Figure 2: The plots for the evolution of magnetization m(t) as a function of time t on 2-D small-world network
with various shortcut density φ. The parameters are: (a) φ=0 and N =100×100, i.e., the 2-D regular lattice
with the size N=100×100 and each node having four neighbors; (b) φ=0.01, 0.05, 0.36 and 0.81, and the size
N =20×20.

at K = 0, where all individuals do not exchange their opinions at all and the society is
an isolated one, where individuals share the +1 opinion and -1 opinion randomly, i.e.,
|m| = 0. Hence, the change between g(r) > 0 and g(r) = 0 is the fingerprint of phase
transition of opinion formation on the small-world networks.

In Fig. 3 we represent the evolution of the spatial correlation g(r) as a function of the
shortest path length r on small-world network with various shortcut density φ. Compar-
ing the evolution of the correlation function with the shortcut density φ=0 and φ=0.01,
we find that there exists both the short- and long-range spatial correlation simultane-
ously on complex network with shortcuts. Namely, the nearest neighbors and the farthest
neighbors share the same opinion easily on small-world network, probability caused by
the small-world effects of shortest path length and larger clustering coefficient. Interest-
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ingly, for intermediate r and a given K, the correlation function decreases with increasing
the shortcut density φ as more and more individuals share the same opinion. The cor-
relation function g(r) = 0 and the average magnetization |m| = 1 for φ > φc, i.e., there
exists a phase transition from the coexistence state to the consensus state when φ > φc.
The most important thing is that the result of the spatial correlation of opinion formation
indicates the crucial role of the local topology and the shortcuts in complex system in
opinion dynamics. What’s more, comparing the evolution of m(t) as a function of t on
one dimensional regular lattice and on 2-D regular lattice, we find that the dimensionality
of complex system also plays an important role in the opinion dynamics.

Furthermore, we also focus on the effects of the small-world network topology on
opinion dynamics using the finite-size effect [25]. In order to do this, we define the prob-
ability, denoted by Pc, as the probability that the consensus state occurs on small-world
network with various size N and the FNP K. During simulation, we find that the proba-
bility Pc is equal to one when the shortcut density φ>φc, where φc is defined as the critical
shortcut density that is related to the FNP K and the small-world network size N, see the
insets in Fig. 4 and Fig. 5 respectively. The larger the FNP K is and the smaller the small-
world network size N is, the smaller the critical shortcut density φc will be. Namely, the
small-world network reaches the consensus state easily for the smaller size N and larger
FNP K.

In Fig. 4 we represent the evolution of the critical shortcut density φc as a function
of the FNP K on small-world network with the same size N = 1000. We find that φc = 0
when K > Kc, where Kc is the critical FNP that is dependent of the system size N and
Kc = 20 for N = 1000. The larger the system size N is, the larger the Kc will be. In the
thermodynamical limit, i.e., N → ∞, the critical FNP Kc also tends to infinity. Namely,
in φ = 0 (i.e., the regular lattice), the system also produces a phase transition from the
coexistence state to the consensus state for the FNP K > Kc. On the other hand, we find
that there also exists a phase transition from the coexistence state when φ < φc to the
consensus state when the shortcut density φ>φc for the FNP 3≤K<20, which shows the
role of shortcuts in small-world network in opinion formation. Surprisingly, φc=0.135(5)
is a constant for 3≤K <12 and φc decreases with increasing K for 12≤K <20.

Fig. 5 represents the evolution of the critical shortcut density φc as a function of the
network size N. For a given FNP K, the critical shortcut density φc increases as the com-
plex size N increases. Namely, the larger the complex network is, the more difficult the
consensus phase is reached. In the thermodynamic limit, i.e., N → ∞, the consensus
phase does not emerge at all. In a strict sense, the behavior from the coexistence state to
the consensus state can not be called phase transitions since they disappear in the ther-
modynamic limit [25]. This behavior may be called the pseudo-phase transition. Hence,
the emergence of the phase transition of opinion dynamics is dependent of the number of
individuals or agents considered in a society. Furthermore, the complex system topology
parameters are K =2,N =1000, and φ=0 for [8] and K =3,N =61×61, and φ=0 for [10].
Their FNP K is too small to see the phase transition. Hence, our present work can explain
why a phase transition was not found in [8, 10].
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Figure 3: The plots for the evolution of spatial correlation g(r) as a function of r with various shortcut density
φ and the same initial opinion probability p=0.5. The four curves correspond to φ=0, 0.01, 0.05 and 0.1, from
top to bottom. The parameters of the complex network are N =1000,K =4.
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Figure 4: The plots for the critical shortcut density φc as a function of the first neighbor parameter K on
complex network of the same size N =1000. Inset: the probability Pc of phase transition occurring versus the
shortcut density φ with various K and the same size N =1000.
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Figure 5: The plots for the critical shortcut density φc as a function of the complex network size N. The lines
are guides to the eye. Inset: the probability Pc of phase transition occurring versus the shortcut density φ with
various size N =1000, 2000, and 3000, from left to right, and the same first neighbors K =4.
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4 Conclusions

In this paper, we study the dependence of opinion formation on small-world network
topology. By large-scale numerical simulations, we find that there exists a pseudo-phase
transition from the coexistence state to the consensus state for the FNP K > Kc (Kc 6=
0) in zero shortcut density (i.e., in the regular lattice). On the other hand, for a given
FNP K, the spatial correlation g(r) decreases with increasing shortcut density as more
and more individuals share the same opinion, just as that in Ising model. For φ > φc,
g(r) = 0 and |m| = 1, i.e., all individuals share the same opinion. Finally, we analyze
the emergence of phase transition by using the finite-size effect, and find that the critical
shortcut density φc is related to the small-world network size N and the FNP K. Hence,
there exists the behavior of opinion dynamics from the coexistence state to the consensus
state only in finite systems. The changes of behavior is called as pseudo-phase transition.
Interestingly, our results can explain why a phase transition of opinion dynamics was not
found in [8,10]. Our present work provides a new perspective to understand the opinion
dynamics in our society.
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