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Abstract. In this paper, a level set method is applied to the inverse problem of 2-D
wave equation in the fluid-saturated media. We only consider the situation that the
parameter to be recovered takes two different values, which leads to a shape recon-
struction problem. A level set function is used to present the discontinuous parameter,
and a regularization functional is applied to the level set function for the ill-posed
problem. Then the resulting inverse problem with respect to the level set function is
solved by using the damped Gauss-Newton method. Numerical experiments show
that the method can recover parameter with complicated geometry and the noise in
the observation data.
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1 Introduction

The wave propagation theory in the fluid-saturated porous media was first established
by Biot [1, 2], in which equations for acoustic propagation in a porous elastic isotropic
solid containing a viscous fluid have been developed. Over the past decades, Biot theory
has become a popular model for presenting the property of elastic wave propagation in
the fluid-saturated porous media. In this paper, we consider the inverse problem with
the coupling governing equations of u-w form given by Biot [3]:

µ∇2u+(λ+µ)grad(divu)+αMgrad(divw)=ρ
∂2u

∂t2
+ρ f

∂2w

∂t2
, (1.1a)

αMgrad(divu)+Mgrad(divw)=ρ f
∂2u

∂t2
+m

∂2w

∂t2
+

η

k

∂w

∂t
, (1.1b)
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where u denotes the solid-frame displacement, w is the fluid displacement relative to
solid-frame, λ is the Lamé coefficient, the quantity κ is the Darcy permeability coefficient,
η is the viscosity of the pore fluid, ρ f is the density of the pore fluid, ρs is the density of
the solid grain, ρ is the bulk density defined by ρ= βρ f +(1−β)ρs, and β is the porosity.
The relationship of the tortuosity α, added mass density m, and coupling constant M is
given by

α=1−
Ks

Kr
, M=

K2
r

Dr−Ks
, Dr =Kr[1+β(

Kr

K f
−1)], m=

ρ f

β
,

where Kr is the bulk modulus of the grain, K f is the bulk modulus of the pore fluid, and
Ks is the bulk modulus of the skeletal frame.

The inverse problem discussed in this paper is to identify the porosity β from the
measurements of the solid-frame displacement u, which can be viewed as a parametric
data-fitting problem. It is possible to formulate such problem as an optimization problem
where a functional defined by the discrepancy between the observed and computed data
is minimized over a model space. In general, such problem is very difficult to solve, since
it is nonlinear and ill-posed. For approximating the ill-posed and nonlinear problem, we
utilize a regularized level set method. Level set method, originally introduced by Os-
her and Sethian [11] is a general framework for computation of evolving interfaces using
the implicit representations and has been used successfully in many fields such as image
processing [9, 10]. Hintermuller and Ring [7] applied a level set approach for the image
segmentation. Recently, the level set method has received growing attention as a flexible
algorithm for inverse problem [12] and shape optimization due to the ability to handle
topological changes and to compute reconstructions with the minor priori information.
Burger [4] studied the level set solution of shape reconstruction problems, in which the
rigorous mathematical theory of level set regularization was established. van den Doel
and Ascher [6] considered the level set regularization to recover the distributed param-
eter function with discontinuities for highly ill-posed inverse problem and the regular-
ization functional was applied to the level set function rather than to the discontinuous
function to be recovered. Tai and Li [13] applied a piecewise constant level set method to
elliptic inverse problems and used the variational penalization method with the variation
regularization of the coefficients to solve the inverse problem. Rondi [14] considered the
regularization of the inverse conductivity problem with discontinuous conductivities.

In this paper, we will apply a level set method for parameter identification problem
with the wave equations in the fluid-saturated porous media. For convenience, we only
treat the case of the solution domain Ω = Ω1∪Γ∪Ω2, in which the materials in two sub-
regions Ω1 and Ω2 are different and separated by closed interface Γ. We assume the
unknown parameter β takes the value β1 in Ω1 and takes the value β2 in Ω2. The pur-
pose of this paper is that instead of recovering the parameter β, we want to implicitly
capture the interface Γ by solving the optimal problem for the level set function, as Γ is
usually the zero isocontour of the level set function. First, the unknown parameter β can
be presented by a level set function. Then we formulate the inverse problem by minimiz-
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ing an output least-squares functional with respect to the level set function. The resulting
optimization problem is solved by using the damped Gauss-Newton method.

The structure of this paper is organized as follows. We start with presenting the elastic
wave equations for the inverse problem in the fluid-saturated porous media based on
Biot theory in Section 2. In Section 3, we list key terms defined by the level set function
and construct a level set algorithm for our problem. In Section 4, in order to illustrate the
performance of this algorithm, we carry out some numerical simulations for the wave
equations in the fluid-saturated porous media. The results show that the level set method
is effective and feasible to the inverse problem.

2 Formulations for the inverse problem in the fluid-saturated

porous media

In the present study, we ignore viscous effects and rewrite Eq. (1.1) in 2-D in the Cartesian
coordinates:

2
∂

∂x

(

µ
∂ux

∂x

)

+
∂

∂z

(

µ
∂ux

∂z
+µ

∂uz

∂x

)

+
∂

∂x

(

λ
∂ux

∂x
+λ

∂uz

∂z

)

+
∂

∂x

(

αM
∂ωx

∂x
+αM

∂ωz

∂z

)

=ρ
∂2ux

∂t2
+ρ f

∂2ωx

∂t2
− f1, (2.1)

∂
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)

+
∂
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)
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∂
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(
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∂ωx

∂x
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∂z
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∂2uz

∂t2
+ρ f

∂2ωz

∂t2
− f2, (2.2)

∂

∂x

(

αM
∂ux

∂x
+αM

∂uz

∂z
+M

∂ωx

∂x
+M

∂ωz

∂z

)

=ρ f
∂2ux

∂t2
+m

∂2ωx

∂t2
− f1, (2.3)

∂

∂z

(

αM
∂ux

∂x
+αM

∂uz

∂z
+M

∂ωx

∂x
+M

∂ωz

∂z

)

=ρ f
∂2uz

∂t2
+m

∂2ωz

∂t2
− f2, (2.4)

where ux,uz,ωx,ωz are the components of the displacement vectors u and w in the x,z di-
rections, respectively; f1 and f2 denote the functions associated with the source function
f defined by

f1 = β f , f2 =(1−β) f .

The boundary conditions for the problem considered here are

∂ux(x,z,t)

∂x
|x=0=

∂ux(x,z,t)

∂x
|x=L=0,

∂ux(x,z,t)

∂z
|z=H=0, (2.5)

∂uz(x,z,t)

∂x
|x=0=

∂uz(x,z,t)

∂x
|x=L=0,

∂uz(x,z,t)

∂z
|z=H=0, (2.6)

∂ωx(x,z,t)

∂x
|x=0=

∂ωx(x,z,t)

∂x
|x=L=0,

∂ωx(x,z,t)

∂z
|z=H=0, (2.7)

∂ωz(x,z,t)

∂x
|x=0=

∂ωz(x,z,t)

∂x
|x=L=0,

∂ωz(x,z,t)

∂z
|z=H=0, (2.8)
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where the rectangular domain of solution is Ω={(x,z) : x∈ [0,L],z∈(0,H]}. Let the initial
conditions be given as

ux(x,z,0)=0,
∂ux(x,z,0)

∂t
=0, (2.9)

uz(x,z,0)=0,
∂uz(x,z,0)

∂t
=0, (2.10)

ωx(x,z,0)=0,
∂ωx(x,z,0)

∂t
=0, (2.11)

ωz(x,z,0)=0,
∂ωz(x,z,0)

∂t
=0. (2.12)

Using Eqs. (2.1)-(2.4) and the boundary and initial conditions (2.5)-(2.12), we deter-
mine the wave fields u(x,z),w(x,z) with the known porosity β(x,z), such problem is
identified as a direct problem for the wave equations in the porous media. While the
objective of the inverse problem is to identify the porosity β(x,z) from measurements u∗

x

of the wave function ux.
In general, the inverse problem in the fluid-saturated porous media can be viewed as

a parametric data-fitting problem. It is possible to formulate such problem as an opti-
mization problem where a functional defined by the discrepancy between the observed
and computed data is minimized over a model space. Now, for formulating such in-
verse problem to a nonlinear operator equation, we discretize the Eqs. (2.1)-(2.12) by a
second-order finite difference equations as follows:

ux(i, j,k+1)=
mU1−ρ f U2

mρ(i, j)−ρ2
f

, uz(i, j,k+1)=
mU3−ρ f U4

mρ(i, j)−ρ2
f

,

ωx(i, j,k+1)=
ρ(i, j)U2−ρ f U1

mρ(i, j)−ρ2
f

, ωz(i, j,k+1)=
ρ(i, j)U4−ρ f U3

mρ(i, j)−ρ2
f

,

ux(0, j,k)=ux(1, j,k), ux(m−1, j,k)=ux(m, j,k), ux(i,n−1,k)=ux(i,n,k),

uz(0, j,k)=uz(1, j,k), uz(m−1, j,k)=uz(m, j,k), uz(i,n−1,k)=uz(i,n,k),

ωx(0, j,k)=ωx(1, j,k), ωx(m−1, j,k)=ωx(m, j,k), ωx(i,n−1,k)=ωx(i,n,k),

ωz(0, j,k)=ωz(1, j,k), ωz(m−1, j,k)=ωz(m, j,k), ωz(i,n−1,k)=ωz(i,n,k),

ux(i, j,0)=ux(i, j,1)=0, uz(i, j,0)=uz(i, j,1)=0,

ωx(i, j,0)=ωx(i, j,1)=0, ωz(i, j,0)=ωz(i, j,1)=0,

where

ρ(x,z)= β(x,z)ρ f +(1−β(x,z))ρs ,

m(x,z)=
ρ f

β(x,z)
, M(x,z)=

Ks

α+β(x,z)( Ks
K f
−1)

,
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β(x,z) is the model to be recovered, ux is the wave function, ux(i, j,k)=ux(i×hx, j×hz,k×
τ), ωx(i, j,k)= ωx(i×hx, j×hz,k×τ), hx,hz are the step sizes of the rectangle grid in the x
and z directions, respectively, τ is the time step size, m= L/hx, n= H/hz, l =T/τ.

The above difference equations define an operator equation as

F(β)=U, (2.13)

where β and U are vectors with the following form:

β=(β(1,1),··· ,β(1,n),β(2,1),··· ,β(2,n),··· ,β(m,n))T,

U=(ux(1,1),··· ,ux(m,1),ux(2,1),··· ,ux(m,2),··· ,ux(m,l))T.

Here m,n,l denote the number of mesh nodes for the x,z,t components, respectively.
In order to identify the porosity β from the observed data U∗ containing noise, we

solve such inverse problem by minimizing an output least-squares functional

min
β

1

2
‖F(β)−U∗‖2, (2.14)

where the notation ‖·‖ refers to the L2 norm.
In general, such inverse problem is ill-posed, i.e., the parameter to be reconstructed

does not depend continuously on the data. Therefore, regularization methods have to be
used in order to compute a stable approximation of the minimizer, i.e., to minimize the
associated least-squares problem

1

2
‖F(β)−U∗‖2+αR(β)−→min

β
, (2.15)

where R(β) is the regularization term and α>0 is the regularization parameter.

3 Level set method to recover the closed curve Γ

3.1 A regularized level set method

For solving the optimization problem (2.15), in this paper we only consider the solution
domain Ω = Ω1∪Γ∪Ω2 and assume the unknown parameter β takes on two values β1,
β2, i.e.,

β(x)=

{

β1, x∈ interior of Γ,
β2, x∈ exterior of Γ,

where x = (x,z)T. The interface Γ can be represented implicitly as zero isocontour of a
level set function φ, i.e., Γ = {x : φ(x)= 0}. Theoretically, we can use a level set function
to represent the curve Γ. However, in practice we take a signed distance function as the
level set function for numerical stability and accuracy. This turns out to be a good choice,
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since steep and flat gradients as well as rapidly changing features are avoided as much
as possible. Then the level set function is represented as

φ(x,t)=

{

distance(x,Γ), x∈ interior of Γ,
−distance(x,Γ), x∈ exterior of Γ.

In addition, level set function φ satisfies |∇φ| = 1. However even if we start with
a signed distance function, as the interface evolves the level set function will generally
drift away from its initialized value as signed distance. We need a procedure called reini-
tialization to be applied periodically in order to keep the level set function φ equal to
the signed distance. The function φ is the steady state of the following time dependent
equation

∂φ

∂t
+sign(φ)(|∇φ|−1)=0,

φ(x,0)= φ̃(x),
(3.1)

where φ̃ is the starting level set function. This reinitialization equation can be solved by
using many methods, such as finite-difference method. The details can be found in [10].

If a level set function φ satisfying (3.1) is given, the unknown parameter β can be
described by the level set function as follows

β(x,z)= β1 H(φ)+β2(1−H(φ)),

where H(φ) is the Heaviside function defined by H(φ)=1 for φ >0 and H(φ)=0 other-
wise. Since we want to identify discontinuous parameter β with large jump, in this paper
we use the total variation regularization described in [5]. The resulting new minimization
problem for the unknown parameter φ is given as follows

1

2
‖F̃(φ)−U∗‖2+αR(φ)−→min

φ
, (3.2)

where F̃(φ)=F(β(φ)),

αR(φ)=αTV(φ)=α
∫

Ω

|∇φ|dx

which was presented and analyzed by Leitao and Scherzer [8].

3.2 The algorithm of the level set function recovery

In the following subsection, we will construct efficient, accurate and flexible algorithm
for the parameter minimization problem (3.2) by applying the damped Gauss-Newton
method. If φ is a minimizer of the problem (3.2), the necessary condition can be expressed
as

JT(φ)(F̃(φ)−U∗)+αR′(φ)=0, (3.3)
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where J(φ)=∂F̃/∂φ and T denotes the transpose operator.
We use the damped Gauss-Newton method to solve Eq. (3.3). Thus the iteration for-

mulation can be given as

φk+1 =φk−(JT J(φk)+αR′′(φk))
−1 JT(φk)(F̃(φk)−U∗), k=0,1,··· . (3.4)

Before using the iteration formulation (3.4), the sensitivity matrix J(φ) needs to be
computed. This can be done with the chain rule

J(φ)=
∂F̃

∂φ
=

∂F

∂β

∂β

∂φ
=(β1−β2)δ(φ)

∂F

∂β
, (3.5)

where δ(φ) denotes the Dirac function defined by δ(φ) = H′(φ). The Jacobian matrix
∂F/∂β is approximated by using standard central differences.

To find a minimizer of (3.2), we use the following general algorithm.

Algorithm 3.1:

Choose initial level set function φ0(x,z)=φ(x,z,0), and the initial interface Γ0 ={(x,z)| φ0(x,z)=0}.
For k=1,2,···, do:

• Choose a regularization parameter αk.

• Find the minimizer φk(x,z) of the optimization problem (3.2) by using the iteration formulation (3.4).

• Update Γk ={(x,z)|φk(x,z)=0}.

• Reinitialize the level set function φk(x,z), i.e., set φ̃ = φk and choose an appropriate time point t0.
Solve the state equation (3.1) and define the solution φ(x,z) as φk(x,z).

• Check the convergence, if not converged: set k=k+1 and go to step 1.

There are two key details when carrying out Algorithm 3.1. The first is how to de-
termine the regularization parameters αk,k=0,1,··· , which plays an important role of the
inverse problems. In this paper, the regularization parameters αk are chosen according
to αk+1 =0.9αk. The iteration procedure is stopped as soon as the Morozov’s discrepancy
principle is satisfied. Another important point in Algorithm 3.1 is when to reinitialize the
level set function. From the point of view of computational efficiency, it is not necessary
for us to reinitialize the level set function at each iteration. After the level set function is
solved by using Algorithm 3.1, we check the nodal values of the level set function. If the
most sign of nodal values is changed, we just do the reinitialization procedure.

4 Numerical implementation

To test the efficiency of the level set method for the wave equations in the fluid-saturated
porous media, we consider some numerical examples.

We take the exact values of distributed parameter β(x,z) as

β(x,z)=

{

0.2, (x,z)∈ interior of Γ,
0.6, (x,z)∈ exterior of Γ.

(4.1)
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Figure 1: The source function f .

Let the square domain Ω = (0,1)×(0,1) to be divided into a square mesh with uniform
mesh size h in both x and z directions. We take h= 1

32 , i.e., Ω is divided into 25×25 grid
points. In all examples, the source function is Ricker function with the amplitude 0.8m
and the frequency 40Hz, as showed in Fig. 1. The parameters describing the physical
properties of the media are given as

λ=3.3568×106Pa, µ=2.32×106Pa, K f =1.25×106Pa,

Ks =6.296×106Pa, ρ f =1.000kg/m3 , ρs =2.400kg/m3 .

In our numerical experiments, we do the reinitialization procedures as long as 80%
nodal values of the level set function have changed sign. Note that all calculations have
been performed on a PC with an Intel Core Dou T2050 processor.

Example 4.1. We first consider a simple example. In this example we assume the initial
regularization parameter α0=2×10−4. To test the effectiveness of the regularized parame-
ter, we also set the regularized parameter α0=2×10−3,α0=2×10−5, but the results are not
sensitive to the values of the regularized parameter. Figs. 2 and 3 show the initial level
set curve and the curves after different iterations obtained by applying Algorithm 3.1,
respectively. Comparing Fig. 2 with Fig. 3, we find that the interface curve Γ is recovered
very well. However, it is observed that the method is not fast.

Example 4.2. In the second example, a complicatedly exact porosity model is considered.
The parameters describing the physical properties of the media are the same as the first
example. Assume that the initial regularization parameter is α0 = 10−4. To illustrate the
noise sensitivity, we perform this example by adding 5% random noisy to the observed
data, and then we recover the parameter from noise data. The results are displayed in
Fig. 4, which indicate that the method has the ability of noise suppression.
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Figure 2: Example 4.1: Initial level set curve Γ and exact porosity β(x,z).

40 iterations 80 iterations

120 iterations Final curve 150 iterations

Figure 3: Example 4.1: The computed level set curves at different iterations.

5 Conclusion

In this paper, based on the Biot theory the level set regularized method is used success-
fully for solving inverse problem in the fluid-saturated porous media. The reinitializa-
tion procedure is used to preserve stable curve evolution and ensure desirable results.
Through the numerical experiments, the level set method is robust with respect to recov-
ering the parameter with the noise in the observation data. In the future study, we will
solve more complicated problems with large solution region and high noise levels.
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Initial curve 100 iterations 200 iterations

300 iterations 400 iterations 500 iterations

Figure 4: Example 4.2: The computed level set curves at different iterations.
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