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Abstract. In this paper, a new symmetric energy-conserved splitting FDTD scheme
(symmetric EC-S-FDTD) for Maxwell’s equations is proposed. The new algorithm in-
herits the same properties of our previous EC-S-FDTDI and EC-S-FDTDII algorithms:
energy-conservation, unconditional stability and computational efficiency. It keeps the
same computational complexity as the EC-S-FDTDI scheme and is of second-order ac-
curacy in both time and space as the EC-S-FDTDII scheme. The convergence and error
estimate of the symmetric EC-S-FDTD scheme are proved rigorously by the energy
method and are confirmed by numerical experiments.
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1 Introduction

For solving multidimensional partial differential equations, specially for parabolic prob-
lems, the alternating direction implicit methods (ADI) and the fractional step methods
(FS) are very attractive and popular (see, e.g., [6, 8, 26, 27, 29]; and more recent works
[5,7,18,20], etc). In computations of Maxwell’s equations, many works related to the ADI
technique have been studied for reducing the complexities and the large computational
costs. For example, Holland in [16] discussed the ADI method combining with Yee’s
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scheme for the two-dimensional problems. However, the proposed scheme was diffi-
cult to obtain the unconditional stability property for three-dimensional Maxwell’s equa-
tions. Zheng et al. in [33] first proposed an unconditionally stable ADI-FDTD scheme
for the three-dimensional Maxwell’s equations with an isotropic and lossless medium.
The accuracy and dispersion of this scheme was further studied in [14, 32]. Meanwhile,
Namiki [23] proposed a kind ADI-FDTD scheme for the Maxwell’s equations in two-
dimensions. The unconditional stability of the scheme was analyzed in [23,31]. Recently,
combining the splitting technique with the staggered Yee’s grid, Gao et al. in [11,12] pro-
posed the splitting finite-difference time-domain methods for Maxwell’s equations: the
S-FDTDI and S-FDTDII schemes for the two-dimensional problems and the S-FDTD and
IS-FDTD schemes for three-dimensional problems. All the schemes are efficient and easy
to be implemented.

On the other aspect, to keep the original physical features of problems is of great im-
portance in constructing numerical schemes for the long time computations. In the prop-
agation of electromagnetic wave in lossless medium without sources, it is well known
that the density of the electromagnetic energy of the wave is constant at different times.
The previous ADI or splitting schemes are unconditionally stable and effective for high
dimensional problems but often break the property of energy conservation of Maxwell’s
equations. More recently, in [4] we developed two energy-conserved splitting finite-
difference time-domain schemes (EC-S-FDTDI and EC-S-FDTDII), which have important
properties: i) Energy-conservation; ii) Unconditional stability; iii) Efficient computation
at each time step; iv) Dissipation-free.

Based on the staggered Yee’s grid, by applying the splitting technique, the proposed
energy-conserved splitting finite-difference time-domain scheme (EC-S-FDTDI) in [4] con-
sists of two stages at each time step and therefore is simple in computational complexity.
However, it is only first-order accurate in time. The EC-S-FDTDII scheme in [4] is a three
stages scheme, which keeps all the above mentioned properties i) - iv) as the EC-S-FDTDI
scheme and is of second-order accuracy in time. The EC-S-FDTDII scheme improves the
accuracy of the EC-S-FDTDI scheme but it contains three stages at each time step, i.e.,
three tri-diagonal systems are to be solved at each time step. By analyzing these two
schemes, we note that the EC-S-FDTDI is just symmetric in space but not in time, which
may explain its first-order convergence in the time direction. Thus, we propose to mod-
ify the EC-S-FDTDI scheme by distinguishing the time steps between the even time step
and the odd time step so that the derived scheme is symmetric in the time direction.
The new scheme is called the symmetric EC-S-FDTD scheme, which has the same com-
putational complexity as the original EC-S-FDTDI scheme. We prove that the symmet-
ric EC-S-FDTD scheme is energy-conserved, unconditionally stable and dissipative-free.
Furthermore, it is shown that the scheme is of second-order accuracy in both time and
space. These properties are confirmed by numerical experiments as well.

The remaining of the paper is organized as follows. In Section 2, the conservation
properties of Maxwell’s equations are introduced and the new symmetric EC-S-FDTD
scheme is proposed for the two-dimensional case. In Section 3, the energy conserva-



806 W. Chen, X. Li and D. Liang / Commun. Comput. Phys., 6 (2009), pp. 804-825

tions, stability and convergence of the symmetric EC-S-FDTD scheme will be established
by using the energy method. The divergence-free property is also analyzed. Numeri-
cal experiments for problems with the constant and piecewise constant coefficients are
presented in Section 4.

2 Maxwell’s equations and energy-conserved splitting FDTD

schemes

Let ~E be the electric field, ~H the magnetic filed, ~D the electric displacement, and ~B the
magnetic flux density. The Maxwell’s equations in the differential form are given as (see,
e.g., [1, 9]):

∇×~E=−∂~B

∂t
, ∇× ~H =~J+

∂~D

∂t
, (2.1)

∇·~B=0, ∇·~D =ρ, (2.2)

where ρ is the charge density, ~J is the current density. The electric and magnetic field
variables are related through the constitutive relations as

~D=ǫ~E, ~B=µ~H, ~J =σ~E, (2.3)

where ǫ is the electric permittivity, µ is the magnetic permeability, and σ is the electric
conductivity. We note that the current density~J typically includes different types of con-
tributions to the current, e.g., eddy current σ~E and impressed currents. In this work, we
regard this current~J as a pure eddy current σ~E.

Consider a two-dimensional transverse electric (TE) polarization case in a lossless
medium without sources. We thus get ρ = 0,~J = 0, ~E = (Ex(x,y,t),Ey(x,y,t),0) and ~H =
(0,0,Hz(x,y,t)). Therefore, the Maxwell’s equations (2.1)-(2.2) become:

∂Ex

∂t
=

1

ǫ

∂Hz

∂y
, (2.4)

∂Ey

∂t
=−1

ǫ

∂Hz

∂x
, (2.5)

∂Hz

∂t
=

1

µ

(

∂Ex

∂y
− ∂Ey

∂x

)

, (2.6)

where ~E=(Ex(x,y,t),Ey(x,y,t)) and Hz = Hz(x,y,t) denote the electric field and the mag-
netic field respectively. For simplicity, we consider the perfectly electric conducting (PEC)
boundary condition on the boundary ∂Ω of the rectangle domain Ω=[0,a]×[0,b]:

(~E,0)×(~n,0)=0, on (0,T]×∂Ω, (2.7)
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where~n is the outward normal vector on ∂Ω. The PEC condition (2.7) can be recast as

Ex(x,0,t)=Ex(x,b,t)=Ey(0,y,t)=Ey(a,y,t)=0, on (0,T]×∂Ω. (2.8)

To solve the system, the initial conditions are needed:

~E(x,y,0)=~E0(x,y)=(Ex0(x,y),Ey0(x,y)), and Hz(x,y,0)= Hz0 (x,y). (2.9)

The problem (2.4)-(2.9) has a unique solution for suitably smooth data (see [19]).

For ease of in notations, ǫ and µ are assumed to be constant. The algorithms described
in this paper can be easily extended to the case of variable coefficients. In the numerical
experiments, the constant and discontinuous electric permittivity cases are considered to
confirm our theoretical results.

2.1 Energy conservations in lossless medium

In a lossless medium without sources,~J=0 in the Maxwell’s equations. We then have two
energy conservation properties (see [4]).

Theorem 2.1 (Energy conservations). If ~E and ~H are the solutions of the Maxwell’s equations
(2.1)-(2.2) in lossless medium, and satisfy the boundary conditions:

~E×~n=0, or ~H×~n=0, (2.10)

then it holds that energy conservation I

∫

Ω
ǫ
∣

∣

∣

~E(x,t)
∣

∣

∣

2
dx+

∫

Ω
µ
∣

∣

∣

~H(x,t)
∣

∣

∣

2
dx≡Constant, (2.11)

and energy conservation II

∫

Ω



ǫ

∣

∣

∣

∣

∣

∂~E

∂t

∣

∣

∣

∣

∣

2

+µ

∣

∣

∣

∣

∣

∂~H

∂t

∣

∣

∣

∣

∣

2


dx≡Constant. (2.12)

The energy conservation I is just the well-known Poynting theorem [1, 9], which
means that the total electromagnetic energy in losses medium without sources keeps con-
stant at any time.

Now for the electromagnetic waves in the lossless medium, there are two conserva-
tion laws, namely, (2.11) and (2.12). Therefore it is natural to ask whether the numerical
schemes can keep these properties. To answer the question, in our previous paper [4],
two energy-conserved splitting FDTD methods (EC-S-FDTDI and EC-S-FDTDII) are pro-
posed.
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Figure 1: Staggered grid,‘�’ for Hz
n
i+ 1

2 ,j+ 1
2

, ‘△’ for Ey
n
i,j+ 1

2
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2.2 Energy-conserved splitting FDTD schemes

The staggered Yee’s grid is used in the FDTD methods (see Fig. 1). Let ∆x and ∆y be
the mesh sizes along the x and y directions respectively, and ∆t the time step size. For
i=0,1,··· , I, j=0,1,··· , J and n=0,1,··· ,N, define (xi,yj,t

n)=(i∆x, j∆y,n∆t), xi+ 1
2
=xi+

1
2 ∆x,

yj+ 1
2
=yj+

1
2 ∆y and tn+ 1

2 =tn+ 1
2 ∆t. The grid function Un

α,β is defined on the staggered grid

where α= i or i+ 1
2 and β= j or j+ 1

2 , and δxU, δyU and δuδvU are defined as follows:

δtU
n
α,β =

U
n+ 1

2
α,β −U

n− 1
2

α,β

∆t
, δxUn

α,β =
Un

α+ 1
2 ,β

−Un
α− 1

2 ,β

∆x
,

δyUn
α,β =

Un
α,β+ 1

2

−Un
α,β− 1

2

∆y
, δuδvUm

α,β =δu(δvUn
α,β),

where u and v can be taken as x- or y-direction. For the grid function Un
α,β, we may drop

the subscript if there is no confusion.

Before we introduce the new symmetric EC-S-FDTD scheme, let us firstly review the
two EC-S-FDTD algorithms in our previous paper [4].

2.2.1 The EC-S-FDTDI scheme

Stage 1: Compute En+1
y and the intermediate variable H∗

z from Hn
z and En

y :

Ey
n+1
i,j+ 1

2

−Ey
n
i,j+ 1

2

∆t
=− 1

2ǫ
δx{Hz

∗
i,j+ 1

2
+Hz

n
i,j+ 1

2
}, (2.13)

Hz
∗
i+ 1

2 ,j+ 1
2
−Hz

n
i+ 1

2 ,j+ 1
2

∆t
=− 1

2µ
δx{Ey

n+1
i+ 1

2 ,j+ 1
2

+Ey
n
i+ 1

2 ,j+ 1
2
}. (2.14)
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Stage 2: Compute En+1
x and Hn+1

z from En
x and H∗

z :

Ex
n+1
i+ 1

2 ,j
−Ex

n
i+ 1

2 ,j

∆t
=

1

2ǫ
δy{Hz

n+1
i+ 1

2 ,j
+Hz

∗
i+ 1

2 ,j
}, (2.15)

Hz
n+1
i+ 1

2 ,j+ 1
2

−Hz
∗
i+ 1

2 ,j+ 1
2

∆t
=

1

2µ
δy{Ex

n+1
i+ 1

2 ,j+ 1
2

+Ex
n
i+ 1

2 ,j+ 1
2
}. (2.16)

2.2.2 The EC-S-FDTDII scheme

Stage 1: Compute the intermediate variables E∗
x and H∗

z from En
x and Hn

z :

Ex
∗
i+ 1

2 ,j
−Ex

n
i+ 1

2 ,j

∆t
=

1

4ǫ
δy{Hz

∗
i+ 1

2 ,j
+Hz

n
i+ 1

2 ,j
}, (2.17)

Hz
∗
i+ 1

2 ,j+ 1
2
−Hz

n
i+ 1

2 ,j+ 1
2

∆t
=

1

4µ
δy{Ex

∗
i+ 1

2 ,j+ 1
2
+Ex

n
i+ 1

2 ,j+ 1
2
}. (2.18)

Stage 2: Compute Ey
n+1 and the intermediate variable Hz

∗∗ from Ey
n and H∗

z :

Ey
n+1
i,j+ 1

2

−Ey
n
i,j+ 1

2

∆t
=− 1

2ǫ
δx{Hz

∗∗
i,j+ 1

2
+Hz

∗
i,j+ 1

2
}, (2.19)

Hz
∗∗
i+ 1

2 ,j+ 1
2
−Hz

∗
i+ 1

2 ,j+ 1
2

∆t
=− 1

2µ
δx{Ey

n+1
i+ 1

2 ,j+ 1
2

+Ey
n
i+ 1

2 ,j+ 1
2
}. (2.20)

Stage 3: Compute Ex
n+1 and Hn+1

z from H∗∗
z and E∗

x:

Ex
n+1
i+ 1

2 ,j
−Ex

∗
i+ 1

2 ,j

∆t
=

1

4ǫ
δy{Hz

n+1
i+ 1

2 ,j
+Hz

∗∗
i+ 1

2 ,j
}, (2.21)

Hz
n+1
i+ 1

2 ,j+ 1
2

−Hz
∗∗
i+ 1

2 ,j+ 1
2

∆t
=

1

4µ
δy{Ex

n+1
i+ 1

2 ,j+ 1
2

+Ex
∗
i+ 1

2 ,j+ 1
2
}. (2.22)

According to the PEC boundary conditions (2.8), the boundary conditions for symmetric
EC-S-FDTD scheme (2.13)-(2.22) are:

Ex
n
i+ 1

2 ,0
=Ex

n
i+ 1

2 ,J
=Ey

n
0,j+ 1

2
=Ey

0
I,j+ 1

2
=0, (2.23)

and the initial values E0
α,β and H0

α,β are

Ex
0
α,β =Ex0(α∆x,β∆y); Ey

0
α,β

=Ey0(α∆x,β∆y); Hz
0
α,β = Hz0(α∆x,β∆y). (2.24)

From the analysis of [4], we know that although the EC-S-FDTDI scheme has many
advantages: several advantages i)-iv) as mentioned in the previous section, it is only of
first-order accuracy in time. While the EC-S-FDTDII scheme keeps all the above proper-
ties of the EC-S-FDTDI scheme and is of second-order accuracy in time, it is a three-stages
scheme, i.e., for every time step three computation processes are needed. To overcome
this disadvantage, we propose a new symmetric EC-S-FDTD scheme by distinguishing
the time steps between the even time step and the odd time step.
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2.2.3 Symmetric EC-S-FDTD scheme

1. At every odd time step, i.e., from t2k to t2k+∆t, use E2k
x , E2k

y and H2k
z to compute

E2k+1
x , E2k+1

y and H2k+1
z by the EC-S-FDTDI scheme.

Stage 1.1: use H2k
z and E2k

y to compute E2k+1
y and temperate variable H∗

z :

Ey
2k+1
i,j+ 1

2

−Ey
2k
i,j+ 1

2

∆t
=− 1

2ǫ
δx{Hz

∗
i,j+ 1

2
+Hz

2k
i,j+ 1

2
}, (2.25)

Hz
∗
i+ 1

2 ,j+ 1
2
−Hz

2k
i+ 1

2 ,j+ 1
2

∆t
=− 1

2µ
δx{Ey

2k+1
i+ 1

2 ,j+ 1
2

+Ey
2k
i+ 1

2 ,j+ 1
2
}. (2.26)

Stage 1.2: use E2k
x and H∗

z to compute E2k+1
x and H2k+1

z :

Ex
2k+1
i+ 1

2 ,j
−Ex

2k
i+ 1

2 ,j

∆t
=

1

2ǫ
δy{Hz

2k+1
i+ 1

2 ,j
+Hz

∗
i+ 1

2 ,j
}, (2.27)

Hz
2k+1
i+ 1

2 ,j+ 1
2

−Hz
∗
i+ 1

2 ,j+ 1
2

∆t
=

1

2µ
δy{Ex

2k+1
i+ 1

2 ,j+ 1
2

+Ex
2k
i+ 1

2 ,j+ 1
2
}. (2.28)

2. At every even time step, i.e., from t2k+∆t to t2k+2∆t, use E2k+1
x , E2k+1

y and H2k+1
z to

compute E2k+2
x , E2k+2

y and H2k+2
z by the (reverse) EC-S-FDTDI scheme.

Stage 2.1: use E2k+1
x and H2k+1

z to compute E2k+2
x and temperate variable H∗∗

z :

Ex
2k+2
i+ 1

2 ,j
−Ex

2k+1
i+ 1

2 ,j

∆t
=

1

2ǫ
δy{Hz

∗∗
i+ 1

2 ,j
+Hz

2k+1
i+ 1

2 ,j
}, (2.29)

Hz
∗∗
i+ 1

2 ,j+ 1
2
−Hz

2k+1
i+ 1

2 ,j+ 1
2

∆t
=

1

2µ
δy{Ex

2k+2
i+ 1

2 ,j+ 1
2

+Ex
2k+1
i+ 1

2 ,j+ 1
2

}. (2.30)

Stage 2.2: use H∗∗
z and E2k+1

y to compute E2k+2
y and H2k+2

z :

Ey
2k+2
i,j+ 1

2

−Ey
2k+1
i,j+ 1

2

∆t
=− 1

2ǫ
δx{Hz

2k+2
i,j+ 1

2

+Hz
∗∗
i,j+ 1

2
}, (2.31)

Hz
2k+2
i+ 1

2 ,j+ 1
2

−Hz
∗∗
i+ 1

2 ,j+ 1
2

∆t
=− 1

2µ
δx{Ey

2k+2
i+ 1

2 ,j+ 1
2

+Ey
2k+1
i+ 1

2 ,j+ 1
2

}. (2.32)

Note that the total number of time steps N should satisfy N =2m and 0≤ k≤m−1.

Remark 2.1. It is obvious that the symmetric EC-S-FDTD scheme is a symmetric version
of the EC-S-FDTDI scheme and both two schemes have the same computational com-
plexity. In the following sections, our further analysis and numerical experiments will
show that this symmetric version is of second-order accuracy in time.
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3 Stability and convergence analysis

For grid functions defined on the staggered grid:

U :={Ui+ 1
2 ,j}, V :={Vi,j+ 1

2
}, W :={Wi+ 1

2 ,j+ 1
2
}, ~F :={(Ui+ 1

2 ,j,Vi,j+ 1
2
)},

the discrete L2 energy norms are used:

‖U‖2
Ex

=
I−1

∑
i=0

J−1

∑
j=0

∣

∣

∣
Ui+ 1

2 ,j

∣

∣

∣

2
∆x∆y, ‖V‖2

Ey
=

I−1

∑
i=0

J−1

∑
j=0

∣

∣

∣
Vi,j+ 1

2

∣

∣

∣

2
∆x∆y,

‖W‖2
H =

I−1

∑
i=0

J−1

∑
j=0

∣

∣

∣
Wi+ 1

2 ,j+ 1
2

∣

∣

∣

2
∆x∆y, ‖~F‖2

E =‖U‖2
Ex

+‖V‖2
Ey

.

3.1 Energy conservations and unconditional stability

Theorem 3.1 (Discrete energy conservations). For integer n≥0, if ~En :={(Ex
n
i+ 1

2 ,j
,Ey

n
i,j+ 1

2
)}

and Hn
z := {Hz

n
i+ 1

2 ,j+ 1
2
} are the solutions of symmetric EC-S-FDTD (2.25)-(2.32), then the fol-

lowing discrete energies are constants:

‖ǫ
1
2 ~En+1‖2

E+‖µ
1
2 Hn+1

z ‖2
H =‖ǫ

1
2 ~En‖2

E+‖µ
1
2 Hn

z ‖2
H, (3.1)

and

‖ǫ
1
2

(

~En+2−~En
)

/(2∆t)‖2
E +‖µ

1
2
(

Hn+2
z −Hn

z

)

/(2∆t)‖2
H

=‖ǫ
1
2

(

~En+1−~En−1
)

/(2∆t)‖2
E +‖µ

1
2

(

Hn+1
z −Hn−1

z

)

/(2∆t)‖2
H . (3.2)

Proof. The first energy conservation relationship (3.1) can be immediately induced from
the property of the EC-S-FDTDI scheme (see Theorem 10 in [4]).

For Eq. (3.2), let us consider one time period. At the even time step (n = 2k), we use
(2.29)-(2.32). Subtracting the 2kth step from the (2k+2)-th step of the symmetric EC-S-
FDTD scheme, we obtain

Ex
2k+2
i+ 1

2 ,j
−Ex

2k
i+ 1

2 ,j

∆t
−

Ex
2k+1
i+ 1

2 ,j
−Ex

2k−1
i+ 1

2 ,j

∆t

=
1

2ǫ
δy

[(

Hz
∗∗
i+ 1

2 ,j
−Hz

∗∗−2
i+ 1

2 ,j

)

+
(

Hz
2k+1
i+ 1

2 ,j
−Hz

2k−1
i+ 1

2 ,j

)]

, (3.3)

Hz
∗∗
i+ 1

2 ,j+ 1
2
−Hz

∗∗−2
i+ 1

2 ,j+ 1
2

∆t
−

Hz
2k+1
i+ 1

2 ,j+ 1
2

−Hz
2k−1
i+ 1

2 ,j+ 1
2

∆t

=
1

2µ
δy

[(

Ex
2k+2
i+ 1

2 ,j+ 1
2

−Ex
2k
i+ 1

2 ,j+ 1
2

)

+
(

Ex
2k+1
i+ 1

2 ,j+ 1
2

−Ex
2k−1
i+ 1

2 ,j+ 1
2

)]

, (3.4)
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Ey
2k+2
i,j+ 1

2

−Ey
2k
i,j+ 1

2

∆t
−

Ey
2k+1
i,j+ 1

2

−Ey
2k−1
i,j+ 1

2

∆t

=
−1

2ǫ
δx

[(

Hz
2k+2
i,j+ 1

2

−Hz
2k
i,j+ 1

2

)

+
(

Hz
∗∗
i,j+ 1

2
−Hz

∗∗−2
i,j+ 1

2

)]

, (3.5)

and

Hz
2k+2
i+ 1

2 ,j+ 1
2

−Hz
2k
i+ 1

2 ,j+ 1
2

∆t
−

Hz
∗∗
i+ 1

2 ,j+ 1
2
−Hz

∗∗−2
i+ 1

2 ,j+ 1
2

∆t

=
−1

2µ
δx

[(

Ey
2k+2
i+ 1

2 ,j+ 1
2

−Ey
2k
i+ 1

2 ,j+ 1
2

)

+
(

Ey
2k+1
i+ 1

2 ,j+ 1
2

−Ey
2k−1
i+ 1

2 ,j+ 1
2

)]

. (3.6)

Again, using the same method as in Theorem 10 in [4], we can show that (3.2) is true for
even n. Similarly, it is also true for odd n.

The above theorem shows that the symmetric EC-S-FDTD scheme satisfies the Poynt-
ing theorem, i.e., (2.11), in the discrete sense. Moreover, the energy conservation (2.12)
holds at every two time steps.

From the above theorem, the stability of the scheme can be immediately obtained.

Corollary 3.1 (Unconditional stability). The symmetric EC-S-FDTD scheme is uncondition-
ally stable for the two-dimensional Maxwell’s equations with the PEC boundary conditions.

3.2 Truncation errors

The symmetric EC-S-FDTD scheme can be recast as another equivalent form:

Ex
2k+2
i+ 1

2 ,j
−Ex

2k
i+ 1

2 ,j

∆t

=
1

2ǫ
δy

{

Hz
2k+1
i+ 1

2 ,j
+Hz

2k
i+ 1

2 ,j

}

+
1

2ǫ
δy

{

Hz
2k+2
i+ 1

2 ,j
+Hz

2k+1
i+ 1

2 ,j

}

+
∆t

4µǫ
δxδy

{

Ey
2k+2
i+ 1

2 ,j
−Ey

2k
i+ 1

2 ,j

}

, (3.7)

Ey
2k+2
i,j+ 1

2

−Ey
2k
i,j+ 1

2

∆t

=− 1

2ǫ
δx

{

Hz
2k+1
i,j+ 1

2

+Hz
2k
i,j+ 1

2

}

− 1

2ǫ
δx

{

Hz
2k+2
i,j+ 1

2

+Hz
2k+1
i,j+ 1

2

}

− ∆t

4µǫ
δxδy

{

Ex
2k+2
i,j+ 1

2

−Ex
2k
i,j+ 1

2

}

,

(3.8)

and

Hz
2k+2
i+ 1

2 ,j+ 1
2

−Hz
2k
i+ 1

2 ,j+ 1
2

∆t

=
1

2µ

{

δy

(

Ex
2k+2
i+ 1

2 ,j+ 1
2

+2Ex
2k+1
i+ 1

2 ,j+ 1
2

+Ex
2k
i+ 1

2 ,j+ 1
2

)

−δx

(

Ey
2k+2
i+ 1

2 ,j+ 1
2

+2Ey
2k+1
i+ 1

2 ,j+ 1
2

+Ey
2k
i+ 1

2 ,j+ 1
2

)}

.

(3.9)
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According to [4], the truncation errors of the Crank-Nicolson scheme at each time
step are of second-order accuracy in both time and space. Then comparing the Crank-
Nicolson scheme with the equivalent form of the symmetric EC-S-FDTD scheme (3.7)-
(3.9), the truncation errors of the equivalent form of the symmetric EC-S-FDTD scheme
are just second-order perturbations of the Crank-Nicolson scheme. Note that

∆t

4µǫ
δxδy{Ey(t2k+2,xi+ 1

2
,yj)−Ey(t2k,xi+ 1

2
,yj)}

and
∆t

4µǫ
δxδy{Ex(t2k+2,xi,yj+ 1

2
)−Ex(t2k,xi,yj+ 1

2
)}

can be regarded as approximations of

∆t2

2µǫ

∂2Ew(t2k+1)

∂x∂y
, (w= x,y)

respectively. Thus, we obtain the following lemma.

Lemma 3.1 (Truncation errors). Suppose that the exact solutions of the Maxwell’s equation Ex,
Ey and Hz are sufficiently smooth:

~E∈C3
(

[0,T];[C3(Ω̄)]2
)

and Hz ∈C3
(

[0,T];C3(Ω̄)
)

.

Let ξx
2k+1
i+ 1

2 ,j
, ξy

2k+1
i,j+ 1

2

and ηz
2k+1
i+ 1

2 ,j+ 1
2

be the truncation errors of (3.7)-(3.9) at time t2k+1. Then they

satisfy:
max

k
{|ξx

2k+1|,|ξy
2k+1|,|ηz

2k+1|}≤C{∆t2 +∆x2+∆y2}. (3.10)

3.3 Convergence analysis

Now, let us provide a rigorous analysis of convergence of the symmetric EC-S-FDTD
scheme.

Theorem 3.2 (Convergence analysis). Suppose that the exact solutions of the Maxwell’s equa-
tion Ex, Ey and Hz are smooth enough:

~E∈C3
(

[0,T];[C3(Ω̄)]2
)

and Hz ∈C3
(

[0,T];C3(Ω̄)
)

.

Let Ex
n, Ey

n and Hz
n be the numerical solutions of the symmetric EC-S-FDTD scheme

(2.25)-(2.32). Then, for any fixed time interval T >0, there exists a constant Cµǫ independent of
∆t, ∆x and ∆y such that for n≥0,

max
0≤n≤N

{‖ǫ
1
2 [E(tn)−En]‖2

E +‖µ
1
2 [Hz(tn)−Hn

z ]‖2
H}

≤ eT
(

‖ǫ
1
2 (~E(t0)−~E0)‖2

E+‖µ
1
2 (Hz(t0)−H0

z )‖2
H

)

+CµǫeT(∆t2+∆x2+∆y2)2. (3.11)
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Proof. Firstly, let us define the error functions on the staggered grid:

Ew
n
α,β =Ew(xα,xβ,tn)−Ew

n
α,β,Hz

n
α,β = Hz(xα,xβ,tn)−Hz

n
α,β,

where Ew(xα,yβ,tn) (w = x,y) and Hz(xα,yβ,tn) denote the values of exact solutions Ew

and Hz on the point (xα,yβ,tn). Then, we focus on the following error equations:

Ey
2k+1
i,j+ 1

2

−Ey
2k
i,j+ 1

2

∆t
=− 1

2ǫ
δx{Hz

∗
i,j+ 1

2
+Hz

2k
i,j+ 1

2
}+e1 i,j+ 1

2
, (3.12a)

Hz
∗
i+ 1

2 ,j+ 1
2
−Hz

2k
i+ 1

2 ,j+ 1
2

∆t
=− 1

2µ
δx{Ey

2k+1
i+ 1

2 ,j+ 1
2

+Ey
2k
i+ 1

2 ,j+ 1
2
}+e2 i+ 1

2 ,j+ 1
2
, (3.12b)

Ex
2k+1
i+ 1

2 ,j
−Ex

2k
i+ 1

2 ,j

∆t
=

1

2ǫ
δy{Hz

2k+1
i+ 1

2 ,j
+Hz

∗
i+ 1

2 ,j
}+e3 i+ 1

2 ,j, (3.12c)

Hz
2k+1
i+ 1

2 ,j+ 1
2

−Hz
∗
i+ 1

2 ,j+ 1
2

∆t
=

1

2µ
δy{Ex

2k+1
i+ 1

2 ,j+ 1
2

+Ex
2k
i+ 1

2 ,j+ 1
2
}+e4 i+ 1

2 ,j+ 1
2
, (3.12d)

Ex
2k+2
i+ 1

2 ,j
−Ex

2k+1
i+ 1

2 ,j

∆t
=

1

2ǫ
δy{Hz

∗∗
i+ 1

2 ,j
+Hz

2k+1
i+ 1

2 ,j
}+e5 i+ 1

2 ,j, (3.12e)

Hz
∗∗
i+ 1

2 ,j+ 1
2
−Hz

2k+1
i+ 1

2 ,j+ 1
2

∆t
=

1

2µ
δy{Ex

2k+2
i+ 1

2 ,j+ 1
2

+Ex
2k+1
i+ 1

2 ,j+ 1
2

}+e6 i+ 1
2 ,j+ 1

2
, (3.12f)

Ey
2k+2
i,j+ 1

2

−Ey
2k+1
i,j+ 1

2

∆t
=− 1

2ǫ
δx{Hz

2k+2
i,j+ 1

2

+Hz
∗∗
i,j+ 1

2
}+e7 i,j+ 1

2
, (3.12g)

Hz
2k+2
i+ 1

2 ,j+ 1
2

−Hz
∗∗
i+ 1

2 ,j+ 1
2

∆t
=− 1

2µ
δx{Ey

2k+2
i+ 1

2 ,j+ 1
2

+Ey
2k+1
i+ 1

2 ,j+ 1
2

}+e8 i+ 1
2 ,j+ 1

2
, (3.12h)

where e1i,j+ 1
2
,e2i+ 1

2 ,j+ 1
2
,e3i+ 1

2 ,j, etc. are the truncation errors.

Without loss of generality, we regard Ex
2k+1
i+ 1

2 ,j
, Ey

2k+1
i,j+ 1

2

, Hz
∗
i+ 1

2 ,j
and Hz

∗∗
i+ 1

2 ,j
as the tem-

perate variables from the (2k+1)-th step to the (2k+2)-th step. Thus we get:

e1 i,j+ 1
2
=

1

2
ξy

2k+1
i,j+ 1

2

, e2i+ 1
2 ,j+ 1

2
=0, e3i+ 1

2 ,j =
1

2
ξx

2k+1
i+ 1

2 ,j
, e4 i+ 1

2 ,j+ 1
2
=

1

2
ηz

2k+1
i+ 1

2 ,j+ 1
2

,

e5 i+ 1
2 ,j =

1

2
ξx

2k+1
i+ 1

2 ,j
, e6i+ 1

2 ,j+ 1
2
=0, e7 i,j+ 1

2
=

1

2
ξy

2k+1
i,j+ 1

2

, e8 i+ 1
2 ,j+ 1

2
=

1

2
ηz

2k+1
i+ 1

2 ,j+ 1
2

.

Note that the truncation errors ξy
2k+1
i,j+ 1

2

,ξy
2k+1
i,j+ 1

2

and ηz
2k+1
i+ 1

2 ,j+ 1
2

satisfy (3.10). From (3.12a)-
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(3.12b) and using Lemma 9 in [4], we obtain:

I−1

∑
i=0

J−1

∑
j=0

(

ǫ(E2k+1
y i,j+ 1

2

)2+µ(H∗
z

i+ 1
2 ,j+ 1

2

)2−ǫ(E2k
y i,j+ 1

2

)2−µ(H2k
z

i+ 1
2 ,j+ 1

2

)2

)

=
1

2
∆t

I−1

∑
i=0

J−1

∑
j=0

(

ǫξ2k+1
y

i,j+ 1
2

(E2k+1
y i,j+ 1

2

+E2k
y i,j+ 1

2

)+µη2k+1
z

i+ 1
2 ,j+ 1

2

(H∗
z

i+ 1
2 ,j+ 1

2

+H2k
z

i+ 1
2 ,j+ 1

2

)

)

.

By the Schwartz inequality, we have

(1−∆t

4
)
(

ǫ‖E2k+1
y ‖2

Ey
+µ‖H∗

z‖2
H

)

≤C1∆t(∆t2 +∆x2+∆y2)2+(1+
∆t

4
)(ǫ‖E2k

y ‖2
Ey

+µ‖H2k
z ‖2

H). (3.13)

Similarly, it follows from (3.12c) to (3.12h) that

(1−∆t

4
)
(

ǫ‖E2k+1
x ‖2

Ex
+µ‖H2k+1

z ‖2
H

)

≤C1∆t(∆t2 +∆x2+∆y2)2+(1+
∆t

4
)(ǫ‖E2k

x ‖2
Ex

+µ‖H∗
z‖2

H), (3.14)

(1−∆t

4
)
(

ǫ‖E2k+2
x ‖2

Ex
+µ‖H∗∗

z ‖2
H

)

≤C1∆t(∆t2 +∆x2+∆y2)2+(1+
∆t

4
)(ǫ‖E2k+1

x ‖2
Ex

+µ‖H2k+1
z ‖2

H), (3.15)

and

(1−∆t

4
)
(

ǫ‖E2k+2
y ‖2

Ey
+µ‖H2k+2

z ‖2
H

)

≤C1∆t(∆t2 +∆x2+∆y2)2+(1+
∆t

4
)(ǫ‖E2k+1

y ‖2
Ey

+µ‖H∗∗
z ‖2

H). (3.16)

Multiplying both sides of (3.13) and (3.15) with (1−∆t/4), both sides of (3.14) and (3.16)
with (1+∆t/4), and adding (3.13) to (3.14) and (3.15) to (3.16) respectively, we can get

ǫ‖E2k+1
y ‖2

Ey
+

1− ∆t
4

1+ ∆t
4

(

ǫ‖E2k+1
x ‖2

Ex
+µ‖H2k+1

z ‖2
H

)

≤C2∆t(∆t2 +∆x2+∆y2)2+ǫ‖E2k
x ‖2

Ex
+

1+ ∆t
4

1− ∆t
4

(

ǫ‖E2k
y ‖2

Ey
+µ‖H2k

z ‖2
H

)

, (3.17)

ǫ‖E2k+2
x ‖2

Ex
+

1− ∆t
4

1+ ∆t
4

(

ǫ‖E2k+2
y ‖2

Ey
+µ‖H2k+2

z ‖2
H

)

≤C3∆t(∆t2 +∆x2+∆y2)2+ǫ‖E2k+1
y ‖2

Ey
+

1+ ∆t
4

1− ∆t
4

(

ǫ‖E2k+1
x ‖2

Ex
+µ‖H2k+1

z ‖2
H

)

. (3.18)
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Again multiplying both sides of (3.18) with (1− ∆t
4 )2(1+ ∆t

4 )−2, we obtain

(1− ∆t
4 )2

(1+ ∆t
4 )2

ǫ‖E2k+2
x ‖2

Ex
+

(1− ∆t
4 )3

(1+ ∆t
4 )3

(

ǫ‖E2k+2
y ‖2

Ey
+µ‖H2k+2

z ‖2
H

)

≤C4∆t(∆t2+∆x2+∆y2)2+
(1− ∆t

4 )2

(1+ ∆t
4 )2

ǫ‖E2k+1
y ‖2

Ey
+

1− ∆t
4

1+ ∆t
4

(

ǫ‖E2k+1
x ‖2

Ex
+µ‖H2k+1

z ‖2
H

)

≤C4∆t(∆t2+∆x2+∆y2)2+ǫ‖E2k+1
y ‖2

Ey
+

1− ∆t
4

1+ ∆t
4

(

ǫ‖E2k+1
x ‖2

Ex
+µ‖H2k+1

z ‖2
H

)

. (3.19)

Adding (3.17) to (3.19) yields

(1− ∆t
4 )2

(1+ ∆t
4 )2

ǫ‖E2k+2
x ‖2

Ex
+

(1− ∆t
4 )3

(1+ ∆t
4 )3

(

ǫ‖E2k+2
y ‖2

Ey
+µ‖H2k+2

z ‖2
H

)

≤C5∆t(∆t2 +∆x2+∆y2)2+ǫ‖E2k
x ‖2

Ex
+

1+ ∆t
4

1− ∆t
4

(

ǫ‖E2k
y ‖2

Ey
+µ‖H2k

z ‖2
H

)

. (3.20)

Note that
1+ ∆t

4

1− ∆t
4

>1. Therefore,

ǫ‖E2k+2
x ‖2

Ex
+ǫ‖E2k+2

y ‖2
Ey

+µ‖H2k+2
z ‖2

H

≤C6∆t(∆t2 +∆x2+∆y2)2+
(1+ ∆t

4 )4

(1− ∆t
4 )4

(

ǫ‖E2k
x ‖2

Ex
+ǫ‖E2k

y ‖2
Ey

+µ‖H2k
z ‖2

H

)

. (3.21)

Since ∆t=T/N and the total number of time steps N is even, i.e., N=2m, it can be verified
that

(

(1+ ∆t
4 )4

(1− ∆t
4 )4

)m

≤ eT .

Computing the inequality (3.21) from the (2k+2)-th step to the initial time step recur-
sively by every two neighboring steps, we obtain

ǫ‖E2k+2
x ‖2

Ex
+ǫ‖E2k+2

y ‖2
Ey

+µ‖H2k+2
z ‖2

H

≤ eT
(

ǫ‖E0
x‖2

Ex
+ǫ‖E0

y‖2
Ey

+µ‖H0
z‖2

H

)

+C7eT∆t(∆t2 +∆x2+∆y2)2. (3.22)

Note that from the inequality (3.17), the error at the odd step can be controlled by that at
the even step. Then the theorem is proved.

3.4 Convergence of the discrete divergence

From the Maxwell’s equations, the electromagnetic waves must be free divergence since
we assume that the electric charge density is zero: ρ=0, i.e.,

div(ǫ~E)=0. (3.23)
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The following result demonstrates that the divergence-free constraint is satisfied approx-
imately.

Theorem 3.3. Consider the symmetric EC-S-FDTD scheme and assume that the total number of
time steps N is even, N =2m. Then we have:

ǫ
(

δxEx
2k+1
i,j +δyEy

2k+1
i,j

+δxEx
2k+2
i,j +δyEy

2k+2
i,j

)

+
∆t2

2
δxδyδtHz

2k+1+ 1
2

i,j

=ǫ
(

δxEx
0
i,j+δyEy

0
i,j

+δxEx
1
i,j+δyEy

1
i,j

)

+
∆t2

2
δxδyδtHz

1
2
i,j. (3.24)

Proof. From (2.25)-(2.32), we can get:

Ex
2k+1
i+ 1

2 ,j
−Ex

2k
i+ 1

2 ,j

∆t
=

1

2ǫ
δy

{

Hz
2k+1
i+ 1

2 ,j
+Hz

2k
i+ 1

2 ,j

}

− ∆t

4µǫ
δxδy

{

Ey
2k+1
i+ 1

2 ,j
+Ey

2k
i+ 1

2 ,j

}

, (3.25a)

Ey
2k+1
i,j+ 1

2

−Ey
2k
i,j+ 1

2

∆t
=− 1

2ǫ
δx

{

Hz
2k+1
i,j+ 1

2

+Hz
2k
i,j+ 1

2

}

+
∆t

4µǫ
δxδy

{

Ex
2k+1
i,j+ 1

2

+Ex
2k
i,j+ 1

2

}

, (3.25b)

Hz
2k+1
i+ 1

2 ,j+ 1
2

−Hz
2k
i+ 1

2 ,j+ 1
2

∆t
=

1

2µ

{

δy(Ex
2k+1
i+ 1

2 ,j+ 1
2

+Ex
2k
i+ 1

2 ,j+ 1
2
)−δx(Ey

2k+1
i+ 1

2 ,j+ 1
2

+Ey
2k
i+ 1

2 ,j+ 1
2
)
}

,

(3.25c)

Ex
2k+2
i+ 1

2 ,j
−Ex

2k+1
i+ 1

2 ,j

∆t
=

1

2ǫ
δy

{

Hz
2k+2
i+ 1

2 ,j
+Hz

2k+1
i+ 1

2 ,j

}

+
∆t

4µǫ
δxδy

{

Ey
2k+2
i+ 1

2 ,j
+Ey

2k+1
i+ 1

2 ,j

}

, (3.25d)

Ey
2k+2
i,j+ 1

2

−Ey
2k+1
i,j+ 1

2

∆t
=− 1

2ǫ
δx

{

Hz
2k+2
i,j+ 1

2

+Hz
2k+1
i,j+ 1

2

}

− ∆t

4µǫ
δxδy

{

Ex
2k+2
i,j+ 1

2

+Ex
2k+1
i,j+ 1

2

}

, (3.25e)

Hz
2k+2
i+ 1

2 ,j+ 1
2

−Hz
2k+1
i+ 1

2 ,j+ 1
2

∆t
=

1

2µ

{

δy(Ex
2k+2
i+ 1

2 ,j+ 1
2

+Ex
2k+1
i+ 1

2 ,j+ 1
2

)−δx(Ey
2k+2
i+ 1

2 ,j+ 1
2

+Ey
2k+1
i+ 1

2 ,j+ 1
2

)
}

.

(3.25f)

From Eqs. (3.25a)-(3.25f) and noting that δx( or δy) and δt are changeable, we get

δtδxEx
2k+ 1

2
i,j =

1

2ǫ
δxδy

(

Hz
2k+1
i,j +Hz

2k
i,j

)

+
−∆t

4µǫ
δxδxδy

(

Ey
2k+1
i,j

+Ey
2k
i,j

)

, (3.26a)

δtδyEy
2k+ 1

2
i,j =

−1

2ǫ
δxδy

(

Hz
2k+1
i,j +Hz

2k
i,j

)

+
∆t

4µǫ
δyδxδy

(

Ex
2k+1
i,j +Ex

2k
i,j

)

, (3.26b)

δtδxEx
2k+1+ 1

2
i,j =

1

2ǫ
δxδy

(

Hz
2k+2
i,j +Hz

2k+1
i,j

)

+
∆t

4µǫ
δxδxδy

(

Ey
2k+2
i,j

+Ey
2k+1
i,j

)

, (3.26c)

δtδyEy
2k+1+ 1

2
i,j =

−1

2ǫ
δxδy

(

Hz
2k+2
i,j +Hz

2k+1
i,j

)

+
−∆t

4µǫ
δyδxδy

(

Ex
2k+2
i,j +Ex

2k+1
i,j

)

. (3.26d)
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Summing up (3.26a)-(3.26d) yields

δtδxEx
2k+ 1

2
i,j +δtδyEy

2k+ 1
2

i,j +δtδxEx
2k+1+ 1

2
i,j +δtδyEy

2k+1+ 1
2

i,j

=
∆t

2ǫ
δxδy

{

1

2µ
δy

(

Ex
2k+1
i,j +Ex

2k
i,j

)

− 1

2µ
δx

(

Ey
2k+1
i,j

+Ey
2k
i,j

)

− 1

2µ
δy

(

Ex
2k+2
i,j +Ex

2k+1
i,j

)

+
1

2µ
δx

(

Ey
2k+2
i,j

+Ey
2k+1
i,j

)

}

=
∆t

2ǫ
δxδy

(

δtHz
2k+ 1

2
i,j −δtHz

2k+1+ 1
2

i,j

)

=−∆t2

2ǫ
δxδyδtδtHz

2k+1
i,j . (3.27)

Consequently, we have

δxEx
2k+1
i,j +δyEy

2k+1
i,j

+δxEx
2k+2
i,j +δyEy

2k+2
i,j

+
∆t2

2ǫ
δxδyδtHz

2k+1+ 1
2

i,j

=δxEx
0
i,j+δyEy

0
i,j

+δxEx
1
i,j+δyEy

1
i,j

+
∆t2

2ǫ
δxδyδtHz

1
2

i,j.

This completes the proof of the theorem.

4 Numerical experiments

In this section, we will show numerically the following properties: 1) Energy I conserva-
tion at every time step, energy II conservation at every two time steps and second-order
approximation with respect to Energy II ; 2) Accuracy analysis; 3) Unconditionally stable
for long time computation; 4) The convergence of the divergence-free constraint. Nu-
merical experiments will consider both the constant electric permittivity case and the
discontinuous coefficient case.

4.1 Constant electric permittivity case

Consider the magnetic field Hz in the form of ei(ωt−kxx−kyy). Then the electric field ~E
should be

1

ǫ

(

− ky

ω
,
kx

ω

)

ei(ωt−kxx−kyy),

and kx and ky satisfy the dispersion relation: µǫω2 = k2
x+k2

y.
Assume the domain Ω=[0,π]×[0,π] surrounded by a perfect conductor, which means

that Ey(0,y)= Ey(π,y)=0 and Ex(x,0)= Ex(x,π)=0. So we have the following analytic
solution:

Ex =
ky

ǫ
√

µω
cos(ωt)cos(kxx)sin(kyy), Ey =− kx

ǫ
√

µω
cos(ωt)sin(kxx)cos(kyy), (4.1)

Hz =
1√
µ

sin(ωt)cos(kxx)cos(kyy). (4.2)
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4.1.1 Energy conservation

The energies of the solution are easily to be computed; Energy I is

Energy I=

(

∫

Ω
ǫ
∣

∣

∣

~E(x,t)
∣

∣

∣

2
dxdy+

∫

Ω
µ|Hz(x,t)|2 dxdy

) 1
2

=
π

2
, (4.3)

and Energy II is:

Energy II=





∫

Ω
ǫ

∣

∣

∣

∣

∣

∂~E

∂t
(x,t)

∣

∣

∣

∣

∣

2

dxdy+
∫

Ω
µ

∣

∣

∣

∣

∂Hz

∂t
(x,t)

∣

∣

∣

∣

2

dxdy





1
2

=
πω

2
. (4.4)

Let us fix T =π, µ=ǫ=1, ∆t=∆x=∆y= π
100 and change kx = ky as 1,5 and 10. Define the

relative errors as

Error of Energy I= max
0≤n≤N

∣

∣

∣

∣

(

‖ǫ
1
2 ~En‖2+‖µ

1
2 Hn

z ‖2
) 1

2 −Energy I

∣

∣

∣

∣

Energy I
, (4.5)

Error of Energy II= max
0≤n≤N−1

∣

∣

∣

∣

∣

(

‖ǫ
1
2 δt~E

n+ 1
2 ‖2+‖µ

1
2 δtH

n+ 1
2

z ‖2

) 1
2

−Energy II

∣

∣

∣

∣

∣

Energy II
. (4.6)

On the other hand, to check the conservation property of Energy II, the following value
is computed according to Eq. (3.2):

DiffII=

{

max
0≤k≤m−1

(

‖ǫ
1
2

(

~E2k+2−~E2k
)

/(2∆t)‖2
E +‖µ

1
2

(

H2k+2
z −H2k

z

)

/(2∆t)‖2
H

)

−

min
0≤k≤m−1

(

‖ǫ
1
2

(

~E2k+1−~E2k−1
)

/(2∆t)‖2
E +‖µ

1
2

(

H2k+1
z −H2k−1

z

)

/(2∆t)‖2
H

)

}

.

By Theorem 3.1, the value “DiffII” should be very small.
Table 1 shows that Energy I of the discrete solutions perfectly equal to the exact value

π
2 since the errors are near machine precision. Similarly, the value ”DiffII” is also on the
same scale as the machine precision.

Table 1: Relative errors of Energy I and Energy II and DiffEII of symmetric EC-S-FDTD. Parameters: T = π,
∆t=∆x=∆y= T/100 and kx = ky.

kx =ky EC-S-FDTD I Symmetric EC-S-FDTD EC-S-FDTD II
Error I Error II Error I Error II DiffEII Error I Error II

1 9.04e-15 2.26e-4 9.05e-15 2.90e-4 7.99e-14 1.27e-15 1.95e-4
5 7.63e-15 5.61e-3 7.63e-15 7.52e-3 1.79e-12 8.48e-16 4.85e-3

10 7.07e-15 2.20e-2 7.07e-15 3.12e-2 6.42e-12 5.65e-16 1.91e-2
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Figure 2: Relative errors of Energy II for
the EC-S-FDTD schemes. Parameters:
T =π and ∆x=∆y=∆t=π/100.
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Figure 3: (a) Error I of different schemes, (b) Error II of different schemes. Parameters: ∆x=∆y=∆t=π/N,
kx = ky =1.
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Figure 4: (a) The EnergyI error in the long time computation, (b) ErrorI in the long time computation.
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Table 2: Relative errors of different schemes. Parameters: T =π and kx = ky =1,µ=ǫ=1.

N EC-S-FDTD I Symmetric EC-S-FDTD EC-S-FDTD II
Error I Error II Error I Error II DiffErrII Error I Error II

25 4.45e-2 4.49e-2 1.51e-2 4.54e-2 1.47e-2 8.04e-3 8.07e-3
50 2.22e-2 2.23e-2 3.86e-3 2.23e-2 3.78e-3 2.014e-3 2.04e-3

100 1.11e-2 1.11e-2 9.65e-4 1.11e-2 9.56e-4 5.04e-4 5.13e-4
200 5.60e-3 5.63e-3 2.41e-4 5.55e-3 2.40e-4 1.25e-4 1.29e-4
400 2.80e-3 2.81e-3 6.03e-5 2.81e-3 6.02e-5 3.15e-5 3.22e-5

4.1.2 Accuracy analysis

Here we set ∆x = ∆y = ∆t = π/N. Table 2 compares the accuracies of the EC-S-FDTDI
scheme, the symmetric EC-S-FDTD scheme and the EC-S-FDTDII scheme. First, we use
the definitions of relative errors below:

ErrorI= max
0≤n≤N

(

‖ǫ
1
2 [~E(tn)−~En]‖2

E+‖µ
1
2 [Hz(tn)−Hn

z ]‖2
H

) 1
2
/Energy I,

ErrorII= max
0≤n≤N−1

(

‖ǫ
1
2 [δt~E(tn)−δt~E

n]‖2
E +‖µ

1
2 [δtHz(tn)−δtH

n
z ]‖2

H

) 1
2
/Energy II,

where ~En,Hn
z and ~E(tn),Hz(tn) denote the numerical and analytic solutions at time level

n respectively. Table 2 (see the column of ”ErrorI”) and Fig. 3(a) show that the rela-
tive errors are of order O(N−2), which implies that the symmetric EC-S-FDTD scheme
is second-order accurate in time and space. For the approximation of the terms ∂~E/∂t
and ∂H/∂t, the rate of ErrorII seems to indicate that the symmetric EC-S-FDTD scheme
only has first-order accuracy. Here we point out that the second-order accuracy can be
recovered. Let us define a new error measurement “DiffErrII” as

DiffErrII

=max
k

{(

‖ǫ
1
2 [

~E(t2k+2)−~E(t2k)

2∆t
−

~E2k+2−~E2k

2∆t
]‖2

E

+‖µ
1
2 [

Hz(t2k+2)−Hz(t2k)

2∆t
− H2k+2

z −H2k
z

2∆t
]‖2

H

)
1
2

,

(

‖ǫ
1
2 [

~E(t2k+1)−~E(t2k−1)

2∆t
−

~E2k+1−~E2k−1

2∆t
]‖2

E

+‖µ
1
2 [

Hz(t2k+1)−Hz(t2k−1)

2∆t
− H2k+1

z −H2k−1
z

2∆t
]‖2

H

)
1
2
}

/Energy II.

Then from Table 2 and Fig. 3(b), we observe that the error ”DiffErrII” also behaves
like O(N−2), which means that the symmetric EC-S-FDTD scheme is also second-order
accurate for the terms ∂~E/∂t and ∂H/∂t, as also observed for the EC-S-FDTDII scheme.
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4.1.3 Unconditionally stable for long-time computation

Here we set T =100π, and ∆x=∆y=∆t=π/100, i.e., the code runs 10000 steps. Fig. 4(a)
indicates that for the symmetric EC-S-FDTD, EC-S-FDTDI and EC-S-FDTDII schemes,
the relative errors of energyI are controlled under 10−12 after 10000 time steps, and the
errors grow linearly. Fig. 4(b) also suggests that when the time level increases, the errors
of the solutions also grow linearly.

4.1.4 Convergence analysis of the divergence-free term

Since we wish to verify that all schemes satisfy the divergence-free property approxi-
mately, we need to compute the following values:

Div1= max
1≤i,j≤N−1

0≤n≤N

ǫ(δxEn
xi,j

+δyEn
yi,j

),

Div2= max
0≤n≤N

∑
1≤i,j≤N−1

(

ǫ
(

δxEx
n
i,j+δyEy

n
i,j

)2
∆x∆y

) 1
2

.

From Table 3, we can see that the numerical divergence term of the symmetric EC-S-
FDTD scheme is still second-order accurate in time direction.

Table 3: Numerical divergence of different schemes. Parameters: T =π and kx = ky =1, µ=ǫ=1.

N EC-S-FDTD I Symmetric EC-S-FDTD EC-S-FDTD II
Div1 Div2 Div1 Div2 Div1 Div2

25 6.24e-2 9.84e-2 1.11e-2 1.75e-2 1.39e-3 2.19e-3
50 3.14e-2 4.93e-2 2.79e-3 4.38e-3 3.47e-4 5.48e-4

100 1.57e-2 2.47e-2 6.98e-4 1.10e-3 8.72e-5 1.37e-4
200 7.90e-2 1.23e-2 1.74e-4 2.74e-4 2.18e-5 3.42e-5
400 3.90e-3 6.20e-3 4.36e-5 6.85e-5 5.45e-6 8.56e-6

4.2 Discontinuous electric permittivity case

Now we consider that the electric permittivity ǫ is piece-wise constant on the domain
Ω̄= Ω̄1∪Ω̄2:

ǫ=

{

1, in Ω1,
4, in Ω2,

where Ω1 ∈ [0, 1
2 ]×[0,1] and Ω2 ∈ [ 1

2 ,1]×[0,1] and the magnetic permeability µ = 1 in Ω.
We can still construct one exact solution to check the numerical results. Take ky = 8 and
let kx be piece-wise constant on the domain Ω:

kx =

{

4, in Ω1,
16, in Ω2.
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Table 4: The relative errors of Energy I and Energy II when T =1 and ǫ is a piecewise constant.

N EC-S-FDTD I Symmetric EC-S-FDTD EC-S-FDTD II
Error of I Error of II Error of I Error of II DiffII Error of I Error of II

50 6.77e-15 5.11e-2 5.11e-15 6.10e-2 5.06e-16 6.21e-15 4.56e-2
100 2.13e-14 1.33e-2 2.73e-14 1.57e-2 7.59e-16 1.71e-14 1.20e-2
200 8.94e-14 3.30e-3 1.17e-13 3.90e-3 1.26e-15 8.88e-14 3.04e-3
400 2.78e-13 7.90e-4 2.52e-13 9.60e-4 2.91e-15 2.08e-13 7.62e-4

Table 5: The relative errors of Error I and Error II when ǫ is a piecewise constant.

N EC-S-FDTD I Symmetric EC-S-FDTD EC-S-FDTD II
Error I Error II Error I Error II DiffErrII Error I Error II

50 1.11 1.06 1.23 1.18 1.05 1.01 9.65e-1
100 3.10e-1 3.10e-1 3.46e-1 3.44e-1 3.37e-1 2.74e-1 2.71e-1
200 8.34e-2 8.76e-2 8.78e-2 9.30e-2 8.72e-2 6.90e-2 6.89e-2
400 2.68e-2 3.01e-2 2.20e-2 2.93e-2 2.24e-2 1.72e-2 1.73e-2

We take ω =
√

k2
x +k2

y/
√

µǫ, which is also piece-wise constant on the domain Ω. It is

easy to check that ~E defined by (4.1) and Hz by (4.2) are also the exact solutions of the
Maxwell equations. Note that the exact solution may be discontinuous where the electric
permittivity ǫ jumps.

The numerical results are similar to those of the constant coefficient case. The results
of energy conservations are given in Table 4 and the error behaviors are given in Table 5. It
is clear that for the piece-wise constant electric permittivity, the Energy I conservation still
holds in all three schemes. But the convergence of the symmetric EC-S-FDTD changes
slightly in the piecewise constant case. The convergence rate of Error I is still of second-
order. However, for Error II, since the wave number is big, the relative errors are large
(around 100%) when N = 50. On the other hand, the convergence is observed when the
mesh size is further decreased. This is common for high frequency waves (see, e.g., [17]).

5 Conclusions

In this paper, we developed a new symmetric energy-conserved splitting finite-difference
time-domain scheme (symmetric EC-S-FDTD) for the Maxwell’s equations. The new
scheme has the following advantages: energy conservations, second-order accuracy in
time and space, and unconditional stability in the long-time computation. These proper-
ties are theoretically proved and confirmed by numerical experiments.
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