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Abstract. An efficient implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solu-
tion approach has been applied to a high order spectral volume (SV) method for un-
structured tetrahedral grids. The LU-SGS solver is preconditioned by the block ele-
ment matrix, and the system of equations is then solved with a LU decomposition.
The compact feature of SV reconstruction facilitates the efficient solution algorithm
even for high order discretizations. The developed implicit solver has shown more
than an order of magnitude of speed-up relative to the Runge-Kutta explicit scheme
for typical inviscid and viscous problems. A convergence to a high order solution for
high Reynolds number transonic flow over a 3D wing with a one equation turbulence
model is also indicated.
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1 Introduction

Unstructured grid methods have been widely used in aerodynamic design processes be-
cause they can offer flexible grid generation for 3D complex configurations. Aerody-
namic coefficients at cruising condition can be predicted reasonably well with steady
Reynolds Averaged Navier-Stokes Simulation (RANS) using conventional finite volume
solvers of second order accuracy in space. However, some problems become prohibitively
expensive to reach sufficient prediction accuracy with increasing grid points. Examples
include vortex dominated flows such as flow over high-lift configurations, aero-acoustic
noise predictions and LES/DNS for high Reynolds number flowfields. In these flows,
in order to resolve important flow features of unsteady vortices, high-order methods are
required.
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In a conventional finite volume framework, arbitrarily high-order schemes can be ob-
tained theoretically by extending stencils for high-order polynomial data reconstructions,
but a crucial difficulty exists in finding valid (non-singular) stencils for unstructured
grids. Recently, new high-order unstructured grid methods such as the discontinuous
Galerkin (DG) method [5,6], the spectral volume (SV) method [9,15,23,27–29,31] and the
spectral difference (SD) method [14] have attracted attention. These methods introduce
degrees of freedom within each element for a high-order approximation to the solution
and are expected to achieve the formal order of accuracy even on an unstructured grid.

The SV method belongs in a class of Godunov-type finite volume methods, and yet
the degrees-of-freedom are introduced by partitioning a grid cell. If a proper partition is
found, a valid reconstruction stencil comprised of partitioned sub-cells can be predeter-
mined. In our previous study [8], the SV method was developed for the Euler and the
Navier-Stokes equations in 3D and we demonstrated its applicability to large-scale par-
allel computations. However, the developed solution technique was CPU demanding
and inefficient for steady state problems. The excessively high CPU cost was attributed
mainly to the use of an explicit Runge-Kutta time integration scheme. The Runge-Kutta
scheme is easy to implement and requires only a small amount of memory, but suffers
from slow convergence, especially for viscous problems in which grid points are clus-
tered in the boundary layer.

Several efficient time integration/iterative solution approaches for the DG method
have been developed, for example, preconditioned GMRES approaches [2,17], a p multi-
grid approach using a line implicit smoother [7] and a low storage p multigrid approach
[16]. Recently, an efficient LU-SGS scheme [4] has been developed for the SD method [24].
Implicit schemes for the SV method on tetrahedral grids, however, are yet to be devel-
oped.

In this study, the LU-SGS approach is applied to the SV method on unstructured tetra-
hedral grids. The LU-SGS solver is preconditioned by the block SV-element matrix, and
the system of equations is then solved with an exact LU decomposition linear solver.
The developed method is tested first for a linear advection problem, and then for typ-
ical steady problems by solving the Euler and Navier-Stokes equations. A significant
reduction in computational time comparing with the multi-stage Runge-Kutta scheme is
demonstrated. Finally, we show the converged solution of viscous transonic flow over a
3D wing, where the effect of turbulence is accounted for by solving a one-equation tur-
bulence model using a SV scheme, to indicate the applicability of the present implicit SV
scheme for practical engineering problems.

2 Numerical methods

2.1 Spectral volume discretization

The unsteady, 3D, compressible Navier-Stokes equations in conservative form can be
expressed as
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∂Q

∂t
+∇·F(Q)−∇·Fv(Q,∇Q)=0, (2.1)

where Q=(ρ,ρu,ρv,ρw,e)T is the conservative state vector, F(Q)=(Fx,Fy,Fz) is the invis-
cid flux, and Fv(Q,∇Q)=(Fx

v ,F
y
v ,Fz

v ) the viscous flux.
As with other generalized Godunov methods, the spectral volume (SV) method mainly

consists of two steps: local data reconstruction, and evaluation of inviscid and viscous
fluxes. In the SV method, the computational domain is divided into non-overlapping
tetrahedral cells in 3D called spectral volumes (SVs), and each SV is further sub-divided
into “structured” sub-cells, called control volumes (CVs). The number of CVs in one
particular SV depends on the degree of the polynomial of the reconstructed dependent
variables. For a complete polynomial basis in 3D, a reconstruction for degree of precision
p requires at least N CVs in a SV, which is N(p) = (p+1)(p+2)(p+3)/6. The recon-
structed piecewise polynomial q̃i in the i-th SV can be expressed using cell averaged data
q̄i,j, (j=1,··· ,N(p)) on these CVs as,

q̃i (~r,t)=
N(p)

∑
j=1

Lj(~r) q̄i,j (t), (2.2)

where L is a set of polynomials that satisfies the following algebraic equations,

1

Vj

∫

CVj

Ll(~r)dV =δj,l (l =1,··· ,N(p)). (2.3)

The set of polynomials L is referred to as shape functions, and can be determined for
non-singular partitions of SV. Although every SV shape could be different in the physical
space, an identical set of shape functions is available in a standard space using linear
transformations. Therefore, the subscript i for L in Eq. (2.3) is suppressed. It is known
that the stability and convergence properties of the SV method heavily depend on the
partition. The Lebesgue constant of the reconstruction matrix is one of the measures
to assess the quality of the partition. Recently, some improved partitions were found
using linear analysis by Van den Abeele and Lacor [25], but an optimum partition for
3D tetrahedral SV elements is still unknown. In this study, we use the linear (p1) and
quadratic (p2) partitions given by Chen [3], that was chosen to have a small Lebesgue
constant.

The NS equations are discretized by integrating them over the j-th CV in the i-th SV
named CVi,j as

dQ̄i,j

dt
+

1

Vi,j

∫

∂CVi,j

F(Q)·~ndS− 1

Vi,j

∫

∂CVi,j

Fv(Q,∇Q)·~ndS=0. (2.4)

where Q̄i,j represents the cell averaged state vectors over CVi,j, Vi,j is the volume of CVi,j,
and ~n is the outward unit normal vector of the boundary ∂CVi,j. The cell averages of
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conservative variables on CVs are evolved in time as solution unknowns. Because Q
is assumed to be a piecewise polynomial in each SV, the value is discontinuous at SV
boundaries. For the inviscid flux, the approximate Riemann solver is applied. On the
other hand, the flux at the CV boundaries inside a SV can be obtained analytically because
the reconstructed distributions are continuous there.

Like the DG method, the discretization of the viscous term is not straightforward with
the SV method because dependent variables are discontinuous at SV boundaries. The so-
called naı̈ve formulation, in which the gradient value at the interface is determined as an
average of gradient values in adjacent SV cells sharing the interface, is known to converge
to a wrong solution [22]. Recently, the second approach of Bassi and Rebay (BR2) [2] for
DG method was adopted in the SV method [11] and was shown to have a wider stability
limit for the time step than the local DG approach and the penalty approach for the 2D
Laplace equation. In this study, we employ the BR2 formulation to discretize the viscous
term.

The local lifting operator for a SV face S is defined in weak form as

∫

SV−
~r−dV =

∫

S
~n− Q̃+−Q̃−

2
dS, (2.5)

∫

SV+
~r+dV =

∫

S
~n+ Q̃−−Q̃+

2
dS, (2.6)

where the subscripts − and + denote the “interior” and the “exterior” of the face, re-
spectively, and ~n− is the unit normal vector directing from “interior” to “exterior”. Let
us assume that ~r can be written as a p-th order polynomial in the SV cell. Using the
property of the shape functions in the LHS of Eq. (2.5), we obtain

~̄r−,j V−
,j =

∫

S∩∂CVj

~n− Q̃+−Q̃−

2
dS, (2.7)

where ~̄r,j is the CV averaged value. Note that the surface integral in the RHS of Eq. (2.7)
is computed only on the CV boundary on the SV interface in order to assure the local
property. Finally, the locally “averaged” gradients at the SV face are computed as

G̃=
∇Q−+∇Q+

2
+η

~r−+~r+

2
, (2.8)

where η is a positive constant required to ensure the numerical stability for elliptic prob-
lems. η must be chosen to be at least as large as the total number of faces of an element,
i.e., in the case of tetrahedral meshes, η≥4. In this study, η is set to be 4.

The flux integration on each face is evaluated using the Gauss quadrature formula
[13] in order to achieve the designed order of accuracy. For the second order SV scheme
using p1 polynomials, fluxes only at the centroid of each CV face are required as in the
case for second order finite volume schemes. For the third order SV scheme using p2
polynomials, polygonal faces are subdivided into a union of triangles and fluxes at the
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Gauss quadrature points which are the midpoints of triangle edge are calculated. The
formal spatial accuracy of the resulting SV scheme is p+1 using p-th order polynomial
reconstruction. An apparent drawback of the Gauss quadrature approach is the high
computational cost because the number of quadrature points increase rapidly when p is
greater than 1. In fact, the number of quadrature points for a SV is 16 for a p1 polynomial
and 160 for a p2 polynomial. Note that a substantial improvement in computational
efficiency can be obtained by following the quadrature free approach [9]. Further details
of the SV method can be found in the references [15, 23, 28, 31].

2.2 Implicit non-linear LU-SGS method

We define the spatial residual operator for a control volume CVi,j as

Ri,j(Q̄)=− 1

Vi,j

∫

∂CVi,j

(F−Fv)·~ndS. (2.9)

Applying the backward Euler differencing for the time derivative in Eq. (2.4) gives a
nonlinear system of

Q̄n+1
c −Q̄n

c

∆t
= Rc(Q̄n+1), (2.10)

where c represents a current SV cell. Note that the size of vectors Q̄c and Rc is (the number
of dependent variables) × (the number of CVs in a SV). Because Rc depends not only on
Q̄c but also on Q̄nb in neighboring grid cells through the numerical flux, a linearization
of the residual becomes

Rc(Q̄n+1)≈Rc(Q̄n)+
∂Rc

∂Q̄c
∆Q̄c+ ∑

nb 6=c

∂Rc

∂Q̄nb
∆Q̄nb. (2.11)

Substituting Eq. (2.11) into Eq. (2.10) , we obtain
(

I

∆t
− ∂Rc

∂Q̄c

)

∆Q̄c− ∑
nb 6=c

∂Rc

∂Q̄nb
∆Q̄nb = Rc(Q̄n). (2.12)

Since storing all the implicit Jacobian matrices in the algebraic system requires too much
memory, we employ a LU-SGS scheme originally developed by Jameson and Yoon [10].
In order to avoid storing the Jacobian matrices for the “nb” cells, we further introduce
inner iteration. The Eq. (2.10) can be rewritten as

Q̄k+1
c −Q̄n

c

∆t
= Rc(Q̄k+1), (2.13)

where k indicates the inner sweep number of the symmetric forward and backward
sweeps. The Taylor expansion in terms of the current cell yields

Rc(Q̄k+1)= Rc(Q̄k+1
c ,Q̄k+1

nb )≈Rc(Q̄k
c ,Q̄k+1

nb )+
∂Rc

∂Q̄c
(∆Q̄k+1

c −∆Q̄k
c). (2.14)
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Substitution of Eq. (2.14) into Eq. (2.13) yields,
(

I

∆t
− ∂Rc

∂Q̄c

)

(

∆Q̄
(k+1)
c −∆Q̄

(k)
c

)

= Rc(Q̄k
c ,Q̄k+1

nb )−∆Q̄k
c

∆t
≈Rc(Q̄k

c ,Q̄∗
nb)−

∆Q̄k
c

∆t
, (2.15)

in which we replace Q̄k+1
nb by the most recent solution Q̄∗

nb in neighboring cells. Note

that the Jacobian matrix ∂Rc

∂Q̄c
is approximately frozen to the value at n-th time step in

the above derivation. The solution is updated with multiple symmetric forward and
backward sweeps in the domain. For better convergence rate, we employ a reordering
technique [20] to determine hyperplanes. For steady state problems it is not necessary
to solve Eq. (2.15) to machine zero. If the RHS of Eq. (2.15) in a sweep decreases one
order of magnitude with respect to the initial one at each time step, or the number of
sweeps reaches to a prescribed maximum number of sweeps kmax, we terminate the inner
iteration and move to the next time step.

In this study, the Jacobian matrices are numerically obtained using the following nu-
merical differencing

∂Rc

∂Q̄c
≈ Rc(Q̄c+δQ,Q̄nb)−Rc(Q̄c,Q̄nb)

δQ
, (2.16)

where δQ is a small value scaled by a norm of the difference between the computed
conservative variables and the free-stream values as,

δQ=‖Q−Q∞‖×δ, (2.17)

where δ is set to be 10−4 unless specified explicitly in this study. At the beginning of
computations with the impulsive start using the freestream condition, each component
of δQ is replaced by 10−12 to avoid dividing by zero. In several numerical tests, the
convergence property is not sensitive to the constant factor δ in the range of 10−2−10−8.
If the difference between the local state and the freestream state is not small, Eq. (2.16)
can lead to yield poorly approximated derivatives. It is found that this is really the case
for the working variable of the one-equation turbulence model. For this case, we simply
limit the magnitude of δQ (not δ) no greater than 10−4. Finding an optimum choice of δQ
needs to be thoroughly examined, but it is beyond the scope of this study.

The resulting element matrices are no longer diagonal, and need to be preconditioned
by a direct LU decomposition solver for each element. This numerical approach is very
easy to implement, but the computational cost is expensive because we need to consider
all the changes of the degrees of freedom in Rc. In order to improve the computational
efficiency, we also freeze the element matrices for intervals of time steps. The freezing
interval is 5 at the beginning of the computation from the freestream condition, and then
linearly increased to a prescribed maximum value fmax.

2.3 SV limiter

In order to maintain the numerical stability of the present SV scheme at discontinuities, a
data limiting process needs to be implemented. A common approach is to employ a slope
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limiter [1, 26] used in the finite volume method. In the development of the SV method
for solving the 2D Euler equations [31], a TVB condition was considered to detect a com-
putational cell that is close to a discontinuity. In the detected cell, high-order polynomial
reconstructions are replaced by slope limited first-order polynomials that satisfy the TVB
constraints.

However, one should note that a slope limiter can yield a distribution of state vari-
ables that is considerably different from the original one especially for high-order (p>1)
polynomial reconstructions and could degenerate solution accuracy and convergence. In
this study, we modify the distribution of state variables near discontinuities according to
the weighted sum of the SV averaged value P̄i and the unlimited reconstruction P̃i given
by,

P̂i(~r,t)=(1−Φi) P̄i(t)+Φi P̃i(~r,t), (2.18)

where P̃i is obtained by Eq. (2.2). The limiting coefficient Φi ∈ [0,1] is determined for
both density and pressure profiles so as to satisfy the following relaxed monotonicity
constraint,

0< (1−ε) P̄min
i ≤ P̂i≤ (1+ε) P̄max

i , (2.19)

where P̄min
i and P̄max

i are the minimum and the maximum SV cell averaged values among
all the neighboring SVs sharing a node with the SV. A small value ε is introduced to retain
accuracy near smooth extrema. This condition is virtually the same as that of TVB limiter.
The detected discontinuity is, like in the case of TVB scheme, not necessarily be a physical
discontinuity, but can be a state jump due to large gradient. In this study, ε is set to be 0.1
for all computations.

The limiting coefficient in Eq. (2.18) can satisfy the constraints (Eq. (2.19)) conve-
niently if these coefficients are determined by,

Φ+
i =

(1+ε) P̄max
i − P̄i

P̃max
i − P̄i

,

Φ−
i =

(1−ε) P̄min
i − P̄i

P̃min
i − P̄i

,

Φi =min
(

Φ+
i ,Φ−

i ,1
)

.

(2.20)

In the above expression, the local maximum P̃max
i and the minimum P̃min

i of the unlimited
reconstruction are needed. To search them among all quadrature points is not efficient.
We evaluate them from the reconstructed values at 4 vertices of the tetrahedron for the
p1 approximation and in addition at 6 mid-points of edges for the p2 approximation. If
Φi is smaller than unity, the distribution of state variables in the SV are replaced with the
limited one. The CV averaged values are thus altered, although the SV averaged value is
unchanged. It is worth noting that a limited reconstruction resulted from Eq. (2.18) still
contains a contribution from high order terms in p2 approximation unless Φi =0.
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2.4 MPI parallelization

The developed SV code has been parallelized with the domain decomposition approach
using the Message Passing Interface (MPI) library. At the inter domain boundary, we
not only exchange cell averages of conservative variables in adjacent cells but also the
max/min data among neighboring cells for density and pressure for the SV limiter. In this
study, we restrict the iterative sweeps for the implicit scheme only in each sub-domain.
The convergence rate seems not seriously affected by this treatment.

3 Numerical results

In order to demonstrate the fast convergence property of the developed method, several
representative test cases are computed. The local Lax-Friedrich flux is applied to obtain
the numerical flux for the scalar case, while Roe’s approximate Riemann solver [18] is
employed for both the Euler and Navier-Stokes cases. The third-order TVD Runge-Kutta
scheme [21] with local time stepping is used for explicit time integration to compare the
convergence rate with the developed implicit method. All the computations except for
the DPW-3 isolated wing case are performed on a Mac Book Pro laptop computer with
Intel Core Duo processor (2.0 GHz) and 2 GByte memory.

3.1 Linear wave equation

First, the 3D steady linear advection problem in a cubic domain is considered to examine
the spatial accuracy and the convergence property of the present method. The governing
equation is given by,

∂Q

∂t
+

∂Q

∂x
+

∂Q

∂y
+

∂Q

∂z
=0, −1≤ x,y,z≤1. (3.1)

A sinusoidal wave pattern given by

Q(x,y,z)=sinπ(x+y−2z) , (3.2)

is imposed at the inflow boundaries x =−1, y=−1 and z =−1. The computed solution
is extrapolated at the outflow boundaries x=1, y=1 and z=1. For the initial condition,
the variable in the domain is set to be 0. The steady exact solution of this problem is
given by Eq. (3.2). In generating computational grids, first an equidistant Cartesian grid
of N×N×N cells is assumed for the cubic domain and then each cell is further divided
into six tetrahedra. In order to assess the spatial accuracy of the present method, three
different regular unstructured grids are generated with N = 10, 20 and 40.

The L2 and L∞ errors are presented in Table 1. It is shown that nearly the formal order
of accuracy is achieved for this problem. The convergence rates of the implicit scheme
and the explicit one on the medium grid are compared in Fig. 1. Note that we define a



986 T. Haga, K. Sawada and Z. J. Wang / Commun. Comput. Phys., 6 (2009), pp. 978-996

Table 1: Accuracy study of SV schemes for the linear advection problem.

Order of interpolation Grid L2 error L2 order L∞ error L∞ order
p=1 10×10×10×6 1.19e-1 – 5.12e-1 –

20×20×20×6 2.72e-2 2.12 1.47e-1 1.80
40×40×40×6 6.23e-3 2.13 3.42e-2 2.10

p=2 10×10×10×6 1.56e-2 – 1.41e-1 –
20×20×20×6 2.10e-3 2.90 2.16e-2 2.71
40×40×40×6 3.10e-4 2.76 4.02e-3 2.43

CFL number using the radius of the inscribed sphere of a SV cell as a cell size. In this
problem, the CFL number of the implicit scheme was able to be arbitrarily large. The
parameters for the implicit scheme are set as kmax = 4 for the number of sweeps, and
fmax =10 for the freezing interval. The speedup factors of the implicit scheme are about
7 in the p1 case and 15 in the p2 case.
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Figure 1: Comparison of the convergence histories between the explicit and the implicit SV schemes for the
linear advection problem.

3.2 Inviscid flow over a 3D bump

Inviscid flow over a 3D bump is selected to present the accuracy and the convergence
property of the developed code for the Euler equations. The computational domain is
defined as,

−10σ≤ x≤10σ, f (x)≤y≤10σ, −σ≤ z≤σ, (3.3)

where f (x) is given by the Gaussian distribution function as

f (x)=
1

σ
√

(2π)
exp

(

− x2

2σ2

)

. (3.4)
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Figure 2: Surface grid of the duct with Gaussian distribution (coarse grid, 630 tetrahedra).

We assume the height of the bump as f (0)=σ, where σ2 =1/
√

(2π). The computations
are carried out on a sequence of grids with 630, 5040 and 40320 cells, by dividing the
coarse grid recursively. The bump surface is ensured at refined grid points. The compu-
tational domain with a coarse surface grid is shown in Fig. 2. The inflow Mach number
of 0.3 is assumed. At the inflow boundary, the total temperature, total pressure, and
flow angles (α = β = 0◦) are specified and the outgoing Riemann invariant is evaluated
from the flow domain. At the outflow boundary, the static pressure is imposed and the
outgoing Riemann invariant, two tangential velocity components, and the entropy are ex-
trapolated. In this problem, Krivodonova’s approach [12] is employed for an improved
representation of the curved surface. This simplified approach does not consider nonlin-
ear mapping in the reconstruction process and needs only normal vectors of the curved
surface to obtain the flux integration. In this study, the bump geometry is represented
using piecewise quadratic polynomials for both the p1 and p2 approximation.

The obtained Mach number contours are shown in Fig. 3. While so-called the entropy
layer appears in the p1 fine grid solution, almost the symmetric solution is recovered
even in the p2 coarse grid solution. As reported by Wang et al. [30], if the curved wall
is treated as linear facets, residuals do not converge with the coarse grid and a non-
symmetric wake structure appears even with the fine grid. This is indeed the case in the
present calculation as shown in Figs. 3 (e) and 3 (f).

In order to examine the convergence property of the developed method, several dif-
ferent CFL numbers are chosen with the p1 or p2 approximation on the medium grid.
It is found that an impulsive start is not successful for this problem. Therefore, the CFL
number is set to 1 at the initial step and increased to the maximum value gradually by
the following power law,

CFLn+1 =CFL1×an, (3.5)

where a is set to be 1.2 in this problem. The parameters for the implicit scheme are set as
kmax = 3 and fmax = 20, respectively. The convergence histories are shown in Fig. 4. For
the p1 case, a stability limit appears at CFL of about 200. Numerical stability is improved
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(a) p1, coarse grid (630 tetrahedra) (b) p1, fine grid (40320 tetrahedra)

(c) p2, coarse grid (630 tetrahedra) (d) p2, fine grid (40320 tetrahedra)

(e) p1, fine grid (40320 tetrahedra), linear bound-
ary representation

(f) p2, fine grid (40320 tetrahedra), linear bound-
ary representation

Figure 3: Mach contours of inviscid flow over a bump.

when the Rusanov’s numerical flux [19] is employed for the implicit Jacobian matrices
computation. This numerical flux is easily evaluated by replacing the dissipation matrix
of the Roe’s scheme by the spectral radius of the Jacobian matrix. The convergence his-
tory for this case is also plotted in the figure. It is found that an arbitrarily large CFL can
be taken when the Rusanov’s flux is employed in the evaluation of the Jacobian matri-
ces, though a larger iteration number is required to obtain a converged solution due to
the rough assumption of the convective term. The performance is also deteriorated in
terms of CPU time. Note that a faster convergence is obtained for smaller CFL when the
Jacobian matrices are better approximated using the Roe flux.

For the p2 case, a stability limit appears at CFL of about 50 with the Roe’s flux. Again,
employing Rusanov’s flux allows taking arbitrarily large CFL number but a convergence
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Figure 4: Effect of CFL number on the convergence rate for the inviscid flow over a bump (medium grid).
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Figure 5: Convergence histories for the inviscid
flow over a bump with different grids. The Roe
flux is employed to evaluate the implicit Jacobian.

needs more iterations than the case using the Roe’s flux with a moderate CFL. The con-
vergence histories for different grids are also compared for the implicit SV schemes in
Fig. 5. One can find that a convergence occurs almost independent of the order of solu-
tion approximation with the same grid and CFL if the Roe’s flux is used in the implicit
schemes.

The convergence rate of the present scheme is compared with that of the explicit
scheme in Fig. 6. The plotted lines for the implicit scheme are obtained with the max-
imum CFL of 105 using the Rusanov’s flux. Assumed CFL numbers for the explicit
scheme are 0.5 in the p1 and 0.2 in the p2 approximation, respectively. The speed up
factor is more than an order of magnitude for the p1 case. For the p2 case, the implicit
scheme also shows much faster convergence rate compared to the explicit scheme which
needs about two orders of magnitude more CPU time to decrease the residual by two
orders of magnitude.
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Figure 6: Comparisons of convergence histories between the explicit and implicit schemes for the inviscid flow
over a bump (medium grid). The Rusanov flux is employed in the evaluation of the implicit Jacobian with

CFLmax =105.

3.3 Laminar boundary layer flow

The problem of laminar boundary layer flow over a 3D flat plate is selected to verify the
present method for solving the Navier-Stokes equations. The convergence rate to steady
state is explored. We assume the freestream Mach number of M = 0.3 and the Reynolds
number based on the plate length of Rex = 10,000. The plate length L is set to be 1.0.
At the trailing edge, the thickness of the boundary layer δ estimated by the approximate
relation δ = 5L/

√
Rex gives the value of 0.05. The computational domain is then set as

follows,

−2.5≤ x≤1, 0≤y≤50δ, 0≤ z≤0.05. (3.6)

The freestream condition is imposed at the inlet boundary (x=−2.5) and the static pres-
sure is fixed at the outlet boundary (x = 1.0) and also at the top boundary (y = 50δ). A
non-slip boundary condition is applied to the wall surface 0≤x≤1. A slippery boundary
condition is applied to the upstream wall on the bottom boundary and the symmetric
boundary condition is enforced at the side wall. A computational grid is generated from
a Cartesian grid which has 22 grid points on the viscous wall in the streamwise direction,
8 points in the boundary layer at the trailing edge, and 5 points in the spanwise direction.
The surface grid of the generated grid is shown in Fig. 7. Total number of the tetrahedra
is 29568.

Computed velocity profiles in the boundary layer with the p1 and p2 approximation
are compared with the Blasius solution in Fig. 8. The obtained profiles agree well with
the analytical solution even in the upstream region with less grid resolution, especially
for the p2 computation.

In implicit computations, the initial CFL number is set to 1 and increased with the
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Figure 7: Computational grid for the boundary layer flow.
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Figure 8: Computed u velocity profiles compared with the Blasius solution.

power law (a =1.05), with other parameters being kmax =3, fmax =40, and δ =10−6. The
convergence rate of the present method using the p1 approximation is compared with the
explicit method in Fig. 9. If the Roe flux is used in the implicit Jacobian, the maximum
CFL is about 200 for this case. As with the inviscid case in the previous section, employ-
ing the Rusanov flux in the Jacobian allows to increase the CFL number to 106 or more.
The speedup factor of the implicit scheme compared with the explicit scheme (CFL=0.5)
is more than an order of magnitude. The convergence history of the p2 approximation
in terms of CPU time is compared with that of the p1 approximation in Fig. 10. Al-
most monotonic convergence to machine zero is also obtained for the p2 approximation
though with the much longer CPU time. If the Roe flux is used in the implicit Jacobian,
the maximum CFL becomes about 100 for this case. Unlike the other cases, however, em-
ploying the Rusanov flux in the Jacobian does not allow to increase the CFL number over
a thousand.
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Figure 9: Comparisons of convergence histories for
the boundary layer flow using p1 approximation.
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Figure 10: Comparison of residual histories be-
tween the p1 and p2 approximation for the bound-
ary layer flow.

3.4 High Reynolds number transonic flow over a wing

The present method is applied to obtain high Reynolds number transonic flowfield over
an isolated wing by solving the RANS equations with the Spalart-Allmaras turbulence
model. The geometry of the wing is taken from the baseline model (wing-1) of the 3rd
AIAA Drag Prediction Workshop (DPW-3) [32]. The freestream conditions are M =0.76,
α = 0.5 [deg], and Re = 5×106 based on the reference chord length, c = 197.556 [mm]. A
fully tetrahedral grid is generated with the initial grid spacing from the wall of 0.0052
[mm] (y+≈5), the growth rate of 1.30 and the number of anisotropic cell layer of 25. The
outer boundary is located at 100 times the reference chord length away from the origin
and the freestream condition is given there. Fig. 11 shows the surface grid on the wing
as well as on the root plane. The symmetric flow condition is assumed at the root plane.
The generated grid has 2.6 million tetrahedra in the entire domain.

For this case, a preliminary computation is performed with the p1 solution approxi-
mation. The high order boundary representation is not implemented. In order to capture
shock waves without oscillation the SV limiter is employed. Fig. 12 shows the pressure
contours plotted on the root plane as well as on the wing surface. One can find that
a lambda shaped shock wave pattern develops on the upper surface of the wing. The
obtained aerodynamic coefficients are CL = 0.479 and CD = 0.0225. Although the lift co-
efficient is reasonably well predicted, the drag coefficient is obviously over estimated by
more than 10 counts compared with the results in the DPW-3 [32]. This larger drag value
can be attributed to the larger off wall grid spacing at the wing surface.

The convergence history for this case is plotted in Fig. 13. In this implicit computa-
tion, the CFL number is increased from 1 to 10000 with the power law (a = 1.01), with
kmax =4 and fmax =20. In order to enhance numerical stability, we employ the Rusanov
flux in the implicit Jacobian matrices. The residual reduction of about three and half
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Figure 11: Surface grid on the wing-1 of the DPW-
3.

Figure 12: Pressure coefficient contours on the
wing obtained by p1 approximation (M=0.76 and
α=0.5).
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Figure 13: Convergence history of density residual
using p1 approximation with CFLmax=10000. The
Rusanov flux is employed in the evaluation of the
implicit Jacobian.

orders of magnitude is attained after 20000 time steps. The total computational time is
about 50 hours using the SGI Altix 32 cores and the required memory was 22 GB, which
corresponded to about 1000 words per SV in double precision.

4 Conclusions

A spectral volume method using an implicit LU-SGS solution approach has been devel-
oped successfully. First, accuracy study is conducted with linear advection problem and
nearly optimal order of accuracy is achieved using p1 and p2 polynomial reconstructions.
The developed method is then applied to the inviscid and the viscous flow problems. For
the subsonic inviscid flow over a Gaussian bump, symmetric flow patterns are obtained
with the p2 solution approximation and the high-order representation of the curved wall
surface. For the laminar boundary layer flow over a flat plate, computed velocity profiles
using both the p1 and p2 approximation agree well with the analytical solution. Unlike
the linear advection problem, taking a large CFL number (more than one hundred) is not
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allowed when the Roe’s flux is used in the evaluation of the implicit Jacobian. In order to
alleviate this stability limit, we employ more dissipative the Rusanov flux to calculate the
implicit Jacobian, and the stability limit of CFL is substantially alleviated. For these test
problems, roughly one to two orders of magnitude speedup is observed if compared with
the multi-stage Runge-Kutta time integration scheme. Finally, the high Reynolds num-
ber transonic flowfield over a wing is computed by solving the RANS equations with the
Spalart-Allmaras one-equation turbulence model. The shock wave on the upper wing
surface is clearly captured with the developed SV limiter. A fairly good convergence be-
havior is also indicated. Further improvement in convergence rate on highly clustered
viscous meshes probably requires a line implicit solver, which will be examined in our
future study.
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