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Abstract. A fourth-order finite difference method is proposed and studied for the
primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean
vorticity formulation. Since the vertical average of the horizontal velocity field is
divergence-free, we can introduce mean vorticity and mean stream function which are
connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that
the prognostic equation for the horizontal velocity is replaced by evolutionary equa-
tions for the mean vorticity field and the vertical derivative of the horizontal velocity.
The mean vorticity equation is approximated by a compact difference scheme due to
the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil
approximations are utilized to deal with transport type equations for computational
convenience. The numerical values for the total velocity field (both horizontal and
vertical) are statically determined by a discrete realization of a differential equation at
each fixed horizontal point. The method is highly efficient and is capable of produc-
ing highly resolved solutions at a reasonable computational cost. The full fourth-order
accuracy is checked by an example of the reformulated PEs with force terms. Addi-
tionally, numerical results of a large-scale oceanic circulation are presented.

AMS subject classifications: 35Q35, 65M06, 86A10
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1 Introduction

The primitive equations (PEs) stand for fundamental governing equations for large-scale
atmospheric and oceanic flow. This system is derived from the 3-D incompressible Navier-
Stokes equations (NSEs) under Boussinesq assumption that density variation is neglected
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except in the buoyancy term, combined with hydrostatic approximation for the vertical
momentum equation. See a detailed derivation in J. Pedlosky [24], R. Cushman [10],
J. L. Lions, R. Temam and S. Wang [18–22], etc.

In the PE system, the pressure gradient, the hydrostatic balance, are coupled together
with the incompressibility of the three-dimensional velocity field. In addition, there is
no momentum equation for the vertical velocity since it is replaced by the hydrostatic
balance. Consequently, the vertical velocity is determined by the horizontal velocity field
via an integration formula of its divergence. As a result, the degree of nonlinearity of
the primitive equations is even higher than that of the usual 3-D NSEs, due to lack of
regularity for the vertical velocity. This nonlinearity is one of the main difficulties of the
3-D PEs, in both the PDE level and numerical analysis.

There have been numerous papers on the PDE analysis for the PEs (for example, see
[2, 3, 6, 14, 16–19]). In those papers the system is proven to be well-posed. Regarding the
numerical issues, some schemes based on velocity-pressure formulation were introduced
and analyzed in recent articles. In [27], J. Shen and S. Wang discuss a numerical method
based on a spectral Stokes solver. In [26] by R. Samelson, R. Temam, C. Wang and S.
Wang, a numerical scheme in terms of the surface pressure Poisson equation formulation
is proposed, and the convergence analysis of the scheme using a 3-D MAC (marker and
cell) grid is established. Some relevant numerical work can also be found in [11, 30, 31],
etc.

It is well-known that for 2-D NSEs, the introduction of the vorticity-stream function
formulation is highly beneficial numerically and leads to the following four distinct fea-
tures: (1) the vorticity and stream function are related by a kinematic Poisson equation,
(2) the pressure variable is eliminated, (3) the dynamical equation is replaced by the vor-
ticity transport equation, and (4) the velocity field is recovered by the kinematic relation-
ship and the incompressibility is automatically enforced. We refer to [12, 13, 34] for an
extensive discussion of computational methods based on local vorticity boundary con-
ditions. In these approaches, the Neumann boundary condition for the stream function
(which comes from the no-slip boundary condition for the velocity) is converted into a
local vorticity boundary formula, using the kinematic relationship between the stream
function and vorticity. Such an approach can be very efficiently implemented by explicit
temporal discretization.

On the other hand, the development of a corresponding vorticity formulation for 3-
D geophysical flow has not been as well studied. In the context of the 3-D PEs, since
the leading behavior is two-dimensional by an asymptotic description of atmosphere
and ocean, the above methodology can be applied in a similar, yet more tricky way. In
particular, the above-mentioned four distinct features are still reflected in our vorticity
formulation and numerical method as follows.

First, the averaged horizontal velocity field in vertical direction is divergence-free,
namely (2.6) and (2.7) below, due to the incompressibility of the flow and the vanishing
vertical velocity at the top and bottom. This allows the concept of a mean vorticity and
mean stream function to be introduced so that the kinematic relationship between the
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two takes the form of a 2-D Poisson equation.

Second, by taking the vertical derivative to the original momentum equation and ap-
plying the hydrostatic balance, the pressure gradient is converted into a density gradient,
resulting in an evolution equation for vz =(ξ,ζ).

Third, the entire PE system can be reformulated in terms of evolution equations for
the mean vorticity, density and vz =(ξ,ζ).

Finally, the total velocity in horizontal direction is then determined in a kinematic way
by its vertical derivative and its average from the top and bottom. The vertical velocity
is also recovered in a kinematic way from solving a two-point boundary value problem
at each fixed horizontal point.

The above equations form an equivalent formulation of the PEs, namely the mean
vorticity formulation. This formulation was reported in [33] and the derivation of the
reformulation is reviewed in Section 2.

A fourth-order scheme is a widely accepted way to improve the accuracy within the
limited resolution, due to the enormous scale of the three-dimensional setting. In Section
3, we introduce a numerical method with fourth-order accuracy, based on the PEs for-
mulated in mean vorticity. The prognostic variables, including the mean vorticity field,
the profile vz and the density field, are dynamically updated. A mixed approach of com-
pact and long stencil fourth-order difference method are utilized to deal with different
variables. Regarding the scalar mean vorticity, some ideas of 2-D incompressible flow
calculation can be adapted. An essentially compact scheme for 2-D NSEs was proposed
in [12] and its stability and convergence were analyzed in detail in [34]. This compact ap-
proach is applied in this paper to the evolution equation for mean vorticity, with a slight
modification in the nonlinear convection term. The mean vorticity field on the lateral
boundary is determined by the mean stream function field through a high-order local
formula, such as Briley’s formula. The reason for taking compact difference is to avoid
“ghost” computational grid points for mean vorticity, since the boundary layer becomes
highly singular at a large Reynolds number. Yet, such a compact approach becomes com-
putationally very expensive and highly infeasible for 3-D transport-type equations for
density and vz. These variables are much smoother than the mean vorticity field near
the boundary. That provides the possibility of a fourth-order solver with long-stencil
approximations to spatial derivatives, avoiding the computational cost of solving a 3-
D Poisson-like equation involving auxiliary transport variable. Moreover, the “ghost”
point values for the variables are required to implement long stencil schemes. These val-
ues are recovered by one-sided extrapolation near the boundary, using information from
the original PDE to reduce the number of interior points needed in the one-sided formula
for better stability property.

In turn, the total velocity field, both horizontal and vertical, are recovered by the
combination of the mean velocity field and vz, using FFT-based solvers. The first- and
second-order vertical derivatives are approximated by long-stencil and compact differ-
ences, respectively. A detailed description of the recovery solver is provided in Section
4.
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The Reynolds number for atmosphere and ocean is usually very large, hence explicit
treatment for the diffusion term should be used. To avoid the cell Reynolds number con-
straint caused by the convection term, some multi-stage explicit temporal discretization,
such as the classical fourth-order Runge-Kutta method, is suggested. In conjunction with
the fourth-order spatial discretization, the resulting procedure is simple to implement
and highly efficient. The main computation effort at each time step (stage) is reduced to:
two 2-D Poisson-type solvers in the mean vorticity equation, explicit long stencil finite
difference updating in the evolution equations for vz and density, along with fourth-order
recovery for the velocity field with a careful usage of FFT solvers. The time stepping pro-
cedure is given in Section 5.

In Section 6, an accuracy check is carried out for the numerical method applied to the
reformulated PEs with force terms, demonstrating fourth-order accuracy of the method.

As further evidence of the accuracy and efficiency of the method we present in Section
7 a numerical simulation of a thermocline model in oceanography, using a 2562×128
resolution. The initial density profile is composed of two constant densities (with a scaled
ratio 0.97 : 1.03), separated by a two-dimensional interface function. As time goes on,
the thermocline profile keeps moving westward, due to the effect of Coriolis force. In
addition, a wind stress is imposed at the ocean surface. Some interesting phenomenon of
its interaction with the interior structure of thermocline can also be observed.

2 Review of the mean vorticity formulation of the primitive

equations

The dimensionless form of the PEs is given by the following system under proper scaling:































vt+(v·∇)v+w∂zv+
1

Ro

(

f k×v+∇p
)

=
( 1

Re1
△+

1

Re2
∂2

z

)

v,

∂z p=−ρ,

∇·v+∂zw=0,

ρt+(v·∇)ρ+w∂zρ=
( 1

Rt1
△+

1

Rt2
∂2

z

)

ρ,

(2.1)

with the initial data

v(x,y,0)=v0(x,y), ρ(x,y,0)=ρ0(x,y). (2.2)

See, e.g., Pedlosky [24], Cushman [10], Lions et al. [18,19] for a detailed derivation. Some
relevant issues related to geophysical flow are also extensively discussed in [7–10, 23, 30,
31], etc.

In (2.1), u=(v,w)=(u,v,w) is the 3-D velocity field, v=(u,v) the horizontal velocity,
ρ the density field, p the pressure. The Rossby number Ro measures the ratio of the
velocity of the sea-water to the surface velocity of the earth in its rotation. The term f k×v

corresponds to the Coriolis force, with a β−plane approximation f = f0+βy. To avoid
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confusion, we note that the operators ∇, ∇⊥, ∇·, △ stand for the gradient, perpendicular
gradient, divergence and Laplacian in horizontal (x,y) plane, respectively.

For simplicity of presentation below we denote ν1=1/Re1, ν2=1/Re2, κ1=1/Rt1, and
κ2 =1/Rt2.

The PEs are derived from the Boussinesq approximation (i.e., the assumption that
density variation is neglected except in the buoyancy term) with asymptotic scaling. One
of its distinguishing features is the replacement of the momentum equation for the ver-
tical velocity w by the hydrostatic balance ∂p/∂z =−ρ. More precisely, the momentum
equation for w can be written as the following with proper scaling:

wt+(v·∇)w+w∂zw+
1

δ2

(

∂z p+ρ
)

=
(

ν1△+ν2∂2
z

)

w , (2.3)

where the term δ−2(∂z p+ρ) corresponds to gravity stratification of geophysical flow, with
the aspect ratio δ =O(H/L) (H and L represent the vertical and horizontal scalings, re-
spectively). Under the assumption that δ being small, i.e., H≪L, the first-order expansion
of (2.3) gives the hydrostatic balance as in the PE system (2.1).

The computational domain is taken as M=M0×[−H0,0], where M0 is the horizontal
surface occupied by the ocean. On the lateral boundary section ∂M0×[−H0,0], the no-
penetration, no-slip boundary condition is imposed for the horizontal velocity v and the
no-flux boundary condition is imposed for the density field

v=0, and
∂ρ

∂n

=0, on ∂M0×[−H0,0]. (2.4)

The boundary condition at top surface z = 0 and bottom surface z =−H0 is taken as the
following

ν2∂zv=τ0 , w=0 and κ2∂zρ=ρ f at z=0,

ν2∂zv=0, w=0 and κ2∂zρ=0 at z=−H0 ,
(2.5)

which was widely used in earlier literatures. The detailed description, derivation and
analysis of the PEs in the above formulation were established by Lions et al. in [18, 19],
Cao and Titi [6], etc. In this paper, the numerical method is based on the above boundary
conditions. Other boundary conditions can be similarly adapted and will be discussed in
the future. The term τ0 represents the wind stress force, ρ f the heat flux, at the surface of
the ocean. The no-flux boundary condition for horizontal velocity field vz=0 at z=−H0 is
a boundary layer approximation, which states that the potential vorticity ω3=−∂yu+∂xv
has vanishing flux (normal derivative) at the bottom of the ocean. That is a reasonable
assumption since there is usually no dramatic boundary layer behavior at the bottom
area due to the slow motion of ocean in that region.

Some relevant works regarding the numerical simulation of the geophysical flow can
be found in [11, 25–27, 30, 31], etc. This article focuses on the issue of the numerical ap-
proximation to the solution of the primitive equations (2.1), (2.2), (2.4) and (2.5) in fourth-
order accuracy, using fourth-order finite differences on a regular numerical grid.
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2.1 Introduction of mean vorticity, mean stream function and mean velocity

It should be noted that the pressure p in the PEs is a Lagrange multiplier in the horizontal
plane and determined by the density field in vertical direction. We aim to develop a new
formulation to cancel the pressure variable. The starting point is that

∫ 0

−H0

(∇·v)(x,y,·)dz=0, ∀(x,y)∈M0 , (2.6)

or, equivalently,
(∇·v)(x,y)=0, ∀(x,y)∈M0 . (2.7)

which comes from the incompressibility of u =(v,w) and the boundary condition for w
at z = 0,−H0. The divergence-free property of the mean velocity field v =(u,v) in (x,y)
plane indicates an introduction of the mean stream function ψ, a 2-D field, such that

v=∇⊥ψ=(−∂yψ,∂xψ). (2.8)

Subsequently, we defined the mean vorticity as

ω =∇×v=−∂yu+∂xv. (2.9)

It should be noted that ω defined above is the same as the average of the potential vor-
ticity in vertical direction ω3 =∇×v=−uy+vx. Furthermore, the kinematic relationship
between the mean stream function and the mean vorticity can be written in terms of the
following 2-D Poisson equation

△ψ=ω . (2.10)

2.2 The reformulation of the PEs

The PE system can be reformulated as follows.
Mean vorticity equation































ωt+(∇⊥ ·∇·)
(

v⊗v

)

+
β

Ro
v=ν1△ω+

1

H0
∇⊥·τ0 ,

△ψ=ω ,

ψ=0,
∂ψ

∂n

=0, on ∂M0 ,

v=∇⊥ψ=(−∂yψ,∂xψ),

(2.11)

Evolutionary equation for vz =(ξ,ζ)






















vzt+
( uξx+vξy +wξz−vyξ+uyζ

uζx+vζy +wζz−uxζ+vxξ

)

+
f

Ro
k×vz−

1

Ro
∇ρ=

(

ν1△+ν2∂2
z

)

vz ,

vz |z=0=
1

ν2
τ0 , vz |z=−H0

=0,

vz =0, on ∂M0×[−H0,0],

(2.12)
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Recovery of the horizontal velocity







∂zu= ξ , ∂zv= ζ ,

1

H0

∫ 0

−H0

vdz=v .
(2.13)

Recovery of the vertical velocity

{

∂2
zw=−∇·vz =−ξx−ζy ,

w=0, at z=0,−H0 .
(2.14)

Density transport equation











ρt+(v·∇)ρ+w∂zρ=
(

κ1△+κ2∂2
z

)

ρ,

∂zρ |z=0=
ρ f

κ2
, ∂zρ |z=−H0

=0,
∂ρ

∂n

|∂M0×[−H0,0]=0.
(2.15)

The detailed derivation can be found in [33]. Note that the momentum equations in
(2.1) can be rewritten as











ut+(uu)x+(uv)y+(uw)z−
f

Ro
v+

1

Ro
∂x p=

(

ν1△+ν2∂2
z

)

u,

vt+(uv)x+(vv)y+(vw)z+
f

Ro
u+

1

Ro
∂y p=

(

ν1△+ν2∂2
z

)

v,
(2.16)

which comes from the incompressibility of u=(u,v,w). Taking the average of (2.16) over
[−H0,0] gives

∂tv+∇·
(

v⊗v

)

+
f

Ro
k×v+

1

Ro
∇p=ν1△v+

1

H0
τ0 , (2.17)

where the average of the velocity tensor product turns out to be

v⊗v=

(

uu uv
uv vv

)

. (2.18)

The terms (uw)z, (vw)z disappear because of the boundary condition for w at z=0,−H0.
The force term in (2.17) comes from the integration of ∂2

zv and the boundary condition
for v at the top and bottom sections. Consequently, taking the curl operator ∇⊥· to (2.17)
gives the dynamic equation for the mean vorticity in (2.11), which is a scalar equation.
For simplicity of presentation, the nonlinear convection term can be written in the form
of matrix product,

(∇⊥ ·∇·)
(

v⊗v

)

=

( −∂xy −∂2
y

∂2
x ∂xy

)

:

(

uu uv
uv vv

)

=∂xy

(

−uu+vv
)

+
(

∂2
x−∂2

y

)

uv. (2.19)
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The kinematic relation in (2.11) comes from (2.8), (2.10). The boundary condition for ψ
in (2.11) is a direct result of the homogeneous boundary condition v |∂M0

=0 (because of
the boundary condition for v on ∂M0×[−H0,0] in (2.4)). Note that there are two bound-
ary conditions for ψ, including both Dirichlet and Neumann. The numerical difficulty
associated with this issue will be discussed later.

It should be noted that (2.11) is not a closed system for the mean profiles ω, ψ, v, since
in the nonlinear convection term v⊗v is not equal to v⊗v. To update the total velocity
field v, we need additional information of vz.

Taking the vertical derivative of the momentum equation (2.16) leads to the following
system for vz =(ξ,ζ), with Dirichlet boundary condition on all boundary sections























∂tvz+N LF+
f

Ro
k×vz−

1

Ro
∇ρ=

(

ν1△+ν2∂2
z

)

vz ,

vz |z=0=
1

ν1
τ0 , vz |z=−H0

=0,

vz =0, on ∂M0×[−H0,0].

(2.20)

The nonlinear term N LF=( f1, f2) is evaluated as the following by using the incompress-
ibility condition ux+vy+wz =0:

f1 =∂z

(

uux+vuy+wuz

)

=uξx+vξy +wξz−vyξ+uyζ ,

f2 =∂z

(

uvx +vvy+wvz

)

=uζx+vζy +wζz−uxζ+vxξ .
(2.21)

With the combination of v and vz at hand, which can be obtained by solving (2.11),
(2.12), respectively, the horizontal velocity field is determined by (2.13), a system of ordi-
nary differential equations.

In addition, by taking the vertical derivative of the continuity equation ∇·v+∂zw=0,
we get (2.14), a system of second-order ODEs for the vertical velocity with the vanishing
Dirichlet boundary condition. Both (2.13) and (2.14) can be solved at any fixed horizontal
point (x,y).

The density transport equation (2.15) is the same as that in (2.1)-(2.5). This finishes
the derivation of the reformulation (2.11)-(2.15).

Remark 2.1. In [6], Cao and Titi analyzed the system of the PEs with a boundary con-
dition for the velocity u on the lateral boundary section imposed as: normal component
of velocity being 0, and the normal derivative of the horizontal derivative v being 0. In
this case, the mean vorticity field vanishes identically on the lateral boundary, which can
be easily implemented in our numerical scheme. This is also one of the main reasons
why there is a global strong solution for the corresponding system. This boundary con-
dition is also a realistic one as the viscosity boundary layer has little effect to large-scale
oceanic flow model. In this paper, we consider the 3-D PEs with a no-penetration, no-slip
boundary condition on the later boundary.
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3 Fourth-order spatial discretization for the PEs

For simplicity, we consider the computational domain as M0=[0,1]2, H0=1. The regular
uniform grid with mesh size △x =△y =△z = h = 1

N is used in the calculation. Let D̃x,
D̃y, D̃z represent the standard second-order centered-difference approximations to ∂x, ∂y,
∂z, D2

x, D2
y, D2

z the second-order centered-difference approximations to ∂2
x, ∂2

y, ∂2
z , and

△h = D2
x+D2

y the standard five-point Laplacian.

3.1 Compact scheme for the mean vorticity equation

In this section we describe the compact difference scheme for the mean vorticity evolu-
tion equation. The starting point is the fourth-order approximation to the 2-D Laplacian
operator △,

△=
△h+ h2

6 D2
xD2

y

1+ h2

12△h

+O(h4); (3.1)

see [32] for a relevant derivation. The following equation can be obtained by multiplying
the denominator difference operator 1+h2△h/12 to (2.11):

(1+
h2

12
△h)∂tω+(1+

h2

12
△h)

(

∂x∂y(vv−uu)+(∂2
x−∂2

y)uv+
β

Ro
v
)

=ν1

(

△h+
h2

6
D2

xD2
y

)

ω+ fω , (3.2)

where the force

fω =
1

H0

(

1+
h2

12
△h

)

(∇⊥·τ0)

is a known term.

The nonlinear convection terms in (3.2) can be evaluated by the following Taylor ex-
pansion:

(1+
h2

12
△h)∂x∂y =

(

1−△x2

12
D2

x−
△y2

12
D2

y

)

D̃x D̃y+O(h4), (3.3)

(1+
h2

12
△h)(∂2

x−∂2
y)= D2

x−D2
y+

1

12
(△y2−△x2)D2

xD2
y+O(h4). (3.4)

Therefore, by the introduction of an intermediate variable ω∗,

ω∗=(1+
h2

12
△h)ω , (3.5)
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which is defined at interior grid points (xi,yj), 1≤i, j≤N−1, the mean vorticity evolution
equation can be approximated by

∂tω
∗+

(

1−△x2

12
D2

x−
△y2

12
D2

y

)

D̃x D̃y(vv
S−uu

S
)

+
(

D2
x−D2

y+
1

12
(△y2−△x2)D2

xD2
y

)

uv
S
+

β

Ro
(1+

h2

12
△h)v

=ν1

(

△h+
h2

6
D2

xD2
y

)

ω+ fω , (3.6)

where the Simpson rule is used to define the fourth-order vertical average of any variable
f in vertical direction

f
S

i,j =
1

H0

△z

3

(

fi,j,0+ fi,j,N +4

Nz
2

∑
k=1

fi,j,2k−1 +2

Nz
2 −1

∑
k=1

fi,j,2k

)

. (3.7)

Note that all terms in (3.6) are compact except for the first convection terms, which re-
quires the ”ghost” computational point values for vv, uu. This can be accomplished by a
high-order extrapolation.

The substitution of (3.1) into the kinematic relation between the mean stream function
and mean vorticity results in

(

△h+
h2

6
D2

xD2
y

)

ψ=ω∗ , (3.8)

which is a fourth-order approximation. Thus the mean stream function can be solved by
the above compact difference system, with the Dirichlet boundary condition ψ |∂M0

= 0.
The mean velocity field v =∇⊤ψ =(−∂yψ,∂xψ) can be obtained by a fourth-order long-
stencil approximation to ∂x, ∂y,

u=−D̃y(1− h2

6
D2

y)ψ, v= D̃x(1− h2

6
D2

x)ψ. (3.9)

After the intermediate mean vorticity field ω∗ is updated by the scheme (3.6), the
original mean vorticity can be determined by the Poisson-like equation (3.5). The solver
for the system (3.5) requires the boundary value for ω, which is discussed below.

Boundary condition for mean vorticity. Physically speaking, the vorticity boundary
condition enforces the no-slip boundary condition. The vorticity at the boundary is com-
puted by some local formula, which is derived from the combination of the kinematic
relation ω =△ψ with the no-slip boundary condition ∂ψ/∂n =0. One-sided approxima-
tion and high-order Taylor expansion for stream function around the boundary was used
in the derivation of these local formulas.

A similar idea can be applied to the primitive equations formulated in mean vortic-
ity. A local boundary formula for mean vorticity is obtained in the same way. Briley’s



36 J.-G. Liu and C. Wang / Commun. Comput. Phys., 4 (2008), pp. 26-55

formula was initially proposed in [4] and its application into EC4 scheme was analyzed
in [12, 34]. On the boundary section Γx, where j=0, Briley’s formula reads

ωi,0 =
1

18h2
(108ψi,1−27ψi,2+4ψi,3). (3.10)

The corresponding “ghost” point values for stream function are given by

ψi,−1 =6ψi,1−2ψi,2+
1

3
ψi,3−4h

(

∂ψ

∂y

)

i,0

+O(h5), (3.11)

ψi,−2 =40ψi,1−15ψi,2+
8

3
ψi,3−12h

(

∂ψ

∂y

)

i,0

+O(h5). (3.12)

It was shown in [34] that the Briley’s formula, a one-sided vorticity boundary condi-
tion, preserves stability and is consistent with the compact difference method applied at
interior points.

3.2 Long stencil scheme for evolution equation of vz

The compact scheme used for the mean vorticity equation turns out to be computation-
ally very expensive for the evolutionary equations for vz = (ξ,ζ) and density transport
equation, since a linear system solver is needed to recover the auxiliary variable. The
well-defined Dirichlet boundary condition for (ξ,ζ) and the Neumann boundary con-
dition for the density, provide the possibility of fourth-order solvers without using an
auxiliary variable. The spatial derivatives in the equation are treated by long-stencil
fourth-order approximations, requiring the numerical values at “ghost” points. These
values are recovered by one-sided extrapolation near the boundary using information
from the original PDE.

The standard fourth-order centered long-stencil approximation to the derivatives ∂x,
∂y, ∂z is given by

∂x = D̃x(1− h2

6
D2

x)+O(h4),

∂y = D̃y(1− h2

6
D2

y)+O(h4),

∂z = D̃z(1− h2

6
D2

z)+O(h4).

(3.13)

Similarly, ∂2
x, ∂2

y, ∂2
z can be approximated in a similar fashion,

∂2
x = D2

x(1− h2

12
D2

x)+O(h4),

∂2
y = D2

y(1− h2

12
D2

y)+O(h4),

∂2
z = D2

z(1− h2

12
D2

z)+O(h4).

(3.14)
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The substitution of the long-stencil formulas into (2.12) gives the spatial discretization of
the evolution equations for (ξ,ζ):

∂tξ+uD̃x(1− h2

6
D2

x)ξ+vD̃y(1− h2

6
D2

y)ξ+wD̃z(1− h2

6
D2

z)ξ

−ξD̃y(1− h2

6
D2

y)v+ζD̃y(1− h2

6
D2

y)u− f

Ro
ζ− 1

Ro
D̃x(1− h2

6
D2

x)ρ

=
(

ν1(D2
x−

h2

12
D4

x+D2
y−

h2

12
D4

y)+ν2(D2
z−

h2

12
D4

z)
)

ξ , (3.15)

∂tζ+uD̃x(1− h2

6
D2

x)ζ+vD̃y(1− h2

6
D2

y)ζ+wD̃z(1− h2

6
D2

z)ζ

−ζD̃x(1− h2

6
D2

x)u+ξD̃x(1− h2

6
D2

x)v+
f

Ro
ξ− 1

Ro
D̃y(1− h2

6
D2

y)ρ

=
(

ν1(D2
x−

h2

12
D4

x+D2
y−

h2

12
D4

y)+ν2(D2
z−

h2

12
D4

z)
)

ζ . (3.16)

Ghost point values for (ξ,ζ). Determination of vz =(ξ,ζ) at “ghost” points is needed
at the six boundary sections to implement the finite difference scheme (3.15), (3.16).

On the bottom surface z =−H0, ξi,j,0 and ζi,j,0 are exactly given to be 0, due to the
Dirichlet boundary condition. The difference equations (3.15), (3.16) are then updated at
interior points (xi,yj,zk), 1≤k≤N−1, requiring the prescription of the “ghost” point val-
ues of ξi,j,−1, ζi,j,−1 due to the stencil used in the discretization. A local Taylor expansion
for vz =(ξ,ζ) in fifth-order near the boundary section z=−H0 reads

ξi,j,−1 =
20

11
ξi,j,0−

6

11
ξi,j,1−

4

11
ξi,j,2+

1

11
ξi,j,3+

12

11
△z2∂2

zξi,j,0+O(h5),

ζi,j,−1 =
20

11
ζi,j,0−

6

11
ζi,j,1−

4

11
ζi,j,2+

1

11
ζi,j,3+

12

11
△z2∂2

zζi,j,0+O(h5).

(3.17)

The implementation of (3.17) requires an accurate evaluation of ∂2
zξ and ∂2

zζ for k = 0.
Such terms are prescribed by considering the evolution equations for vz = (ξ,ζ) at the
boundary Γz, z=−H0:

∂tξ |Γz −
1

Ro
(∂xρ) |Γz=ν1(∂2

x +∂2
y)ξ |Γz +ν2∂2

zξ |Γz ,

∂tζ |Γz −
1

Ro
(∂yρ) |Γz=ν1(∂2

x+∂2
y)ζ |Γz +ν2∂2

zζ |Γz .

(3.18)

The nonlinear convection terms vanish because of the boundary condition (ξ,ζ) |Γz= 0
and the vertical velocity w being identically 0 on the bottom. Furthermore, we have

∂2
zξ |z=−H0

=− 1

ν2 ·Ro
∂xρ |z=−H0

,

∂2
zζ |z=−H0

=− 1

ν2 ·Ro
∂yρ |z=−H0

.

(3.19)
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The terms ρx, ρy on z =−H0 can be calculated by the standard fourth-order long-stencil
formula, i.e.,

∂2
zξ |z=−H0

=− 1

ν2 ·Ro
D̃x(1− h2

6
D2

x)ρi,j,0+O(h4),

∂2
zζ |z=−H0

=− 1

ν2 ·Ro
D̃y(1− h2

6
D2

y)ρi,j,0+O(h4).

(3.20)

The substitution of (3.20) into (3.17) leads to

ξi,j,−1 =
20

11
ξi,j,0−

6

11
ξi,j,1−

4

11
ξi,j,2+

1

11
ξi,j,3

− 12

11ν2 Ro
△z2D̃x(1− h2

6
D2

x)ρi,j,0+O(h5),

ζi,j,−1 =
20

11
ζi,j,0−

6

11
ζi,j,1−

4

11
ζi,j,2+

1

11
ζi,j,3

− 12

11ν2 Ro
△z2D̃y(1− h2

6
D2

y)ρi,j,0+O(h5).

(3.21)

An analogous derivation can be carried out on the top boundary section z = 0 and
lateral boundary sections x = 0,1, y = 0,1. Note that there are some force terms appear-
ing in the extrapolation formula for (ξ,ζ) at the top if a non-vanishing wind stress τ0 is
prescribed. The detail is left for interested readers. It can be demonstrated that the above
formulas lead to full fourth-order accuracy. The proof will appear in a forthcoming arti-
cle.

Remark 3.1. Instead of the fifth-order one-sided approximation near the boundary z =
−H0 in (3.17), a fourth-order Taylor expansion near the boundary can also be used, which
results in only one interior point in the formula

ξi,j,−1 =2ξi,j,0−ξi,j,1+△z2∂2
zξi,j,0+O(h4),

ζi,j,−1 =2ζi,j,0−ζi,j,1+△z2∂2
zζi,j,0+O(h4).

(3.22)

The derivation of ∂2
zξi,j,0, ∂2

zζi,j,0 on z =−H0 as shown in (4.18)-(4.20) is also valid. The

combination of (3.22) and (3.20) leads to

ξi,j,−1 =2ξi,j,0−ξi,j,1−
1

ν2 Ro
△z2D̃x(1− h2

6
D2

x)ρi,j,0+O(h4),

ζi,j,−1 =2ζi,j,0−ζi,j,1−
1

ν2 Ro
△z2D̃y(1− h2

6
D2

y)ρi,j,0+O(h4).

(3.23)

which is an O(h4) formula analogous to (3.21). The numerical evidence shows that both
(3.21) and (3.23) provide stability and full accuracy. The fourth-order formula (3.23)
brings computational convenience since it requires only one interior point. However, for
technical considerations in the stability and convergence analysis of the overall scheme,
which will appear in a forthcoming article, the fifth-order approximation (3.21) is pre-
ferred.
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3.3 Long-stencil scheme for the density transport equation

Similarly, the transport equation for the density as given in (2.15) can be solved in fourth-
order accuracy without introducing an auxiliary variable due to the well-defined Neu-
mann boundary condition. Long-stencil fourth-order difference operators are used to
approximate the spatial derivatives corresponding to convection and diffusion terms, in
which the numerical values at “ghost” points are required near the boundary. One-sided
extrapolation near the boundary using information from the original transport equation
in the PDE level is applied to recover these values.

The standard fourth-order centered long-stencil differences (3.13), (3.14) are chosen to
approximate the derivatives ∂x, ∂y, ∂z, ∂2

x, ∂2
y and ∂2

z . Consequently, the spatial discretiza-
tion of the density transport equation can be written as

∂tρ+uD̃x(1− h2

6
D2

x)ρ+vD̃y(1− h2

6
D2

y)ρ+wD̃z(1− h2

6
D2

z)ρ

=
(

κ1(D2
x−

h2

12
D4

x+D2
y−

h2

12
D4

y)+κ2(D2
z−

h2

12
D4

z)
)

ρ. (3.24)

Ghost point values for ρ. Since the Neumann boundary condition is imposed in
(2.15), the density profile on the boundary is not known explicitly, only its normal deriva-
tive. As a result, (3.24) is applied at every computational point (xi,yj,zk), 0≤ i, j,k≤ N,
while the determination of two “ghost” point values, e.g., ρi,j,−1 and ρi,j,−2 around the
bottom boundary section z=−H0, is required.

We begin by deriving one-sided approximations. Local Taylor expansion near the
bottom boundary z=−H0 gives

ρi,j,−1 =ρi,j,1−2△z∂zρi,j,0−
△z3

3
∂3

zρi,j,0+O(h5),

ρi,j,−2 =ρi,j,2−4△z∂zρi,j,0−
8△z3

3
∂3

zρi,j,0+O(h5),

(3.25)

in which the term ∂zρi,j,0 is known to vanish because of the no-flux boundary condition
for the density. The remaining work is focused on the determination of ∂3

zρ at k = 0, for
which we use information from the PDE and its derivatives. In more detail, applying the
normal derivative ∂z to the density transport equation along z=−H0 leads to

ρzt+uzρx+uρzx +vzρy+vρzy+wzρz+wρzz =κ1(ρzxx +ρzyy)+κ2∂3
zρ, at z=−H0 . (3.26)

Using the no-flux boundary condition for ρ and the vanishing boundary condition for w
at z=−H0, we have

∂3
zρ=

1

κ2

(

uzρx +vzρy

)

, at z=−H0 , (3.27)
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whose combination with the vanishing boundary condition for (uz,vz)=(ξ,ζ) at z=−H0

results in
∂3

zρ=0, at z=−H0 . (3.28)

Inserting (3.28) into (3.25) gives

ρi,j,−1 =ρi,j,1+O(h5), ρi,j,−2 =ρi,j,2+O(h5), (3.29)

in which the no-flux boundary condition for ρ is recalled.
Analogous formulas for one-sided extrapolation of ρi,j,N+1, ρi,j,N+2 around the top

boundary z=0 can be derived in a similar way. The evaluation for the normal derivative
of the original PDE as shown in (3.26), (3.27) is still valid. Furthermore, the wind stress
boundary condition for vz =(ξ,ζ) at the top z=0, combined with the fourth-order long-
stencil approximation to ρx, ρy gives

∂3
zρ=

1

κ2 ·ν2

(

τ0,1D̃x(1− h2

6
D2

x)ρ+τ0,2D̃y(1− h2

6
D2

y)ρ
)

+O(h4), at z=0. (3.30)

Therefore, we arrive at an extrapolation formula for the density field around the top
boundary,

ρi,j,N+1 =ρi,j,N−1+
△z3

3κ2 ·ν2

(

τ0,1D̃x(1− h2

6
D2

x)ρi,j,N +τ0,2D̃y(1− h2

6
D2

y)ρi,j,N

)

+O(h5),

ρi,j,N+2 =ρi,j,N−2+
8△z3

3κ2 ·ν2

(

τ0,1D̃x(1− h2

6
D2

x)ρi,j,N +τ0,2D̃y(1− h2

6
D2

y)ρi,j,N

)

+O(h5).

(3.31)

The corresponding derivation for the one-sided extrapolation for ρ around the four lat-
eral boundary sections can be performed in a similar fashion. We skip it for the sake of
conciseness. The detail is left for interested readers.

4 Fourth-order recovery of the velocity field

The remaining work is focused on the determination of the horizontal and vertical ve-
locity field. It is based on differential equations (1.9c,d), which plays the role of a bridge
between the total velocity field and the mean profile and vz =(ξ,ζ).

4.1 Recovery for the horizontal velocity field

The total horizontal velocity field is determined by the combination of vz = (ξ,ζ) and
the mean velocity field v. At the interior grid points (i, j,k) with 1 ≤ k ≤ N−1, where
the numerical values of ξ, ζ are given, we apply the fourth-order long-stencil difference
operator in vertical direction to approximate (2.13)

D̃z(1− h2

6
D2

z)u= ξ , D̃z(1− h2

6
D2

z)v= ζ , at (i, j,k), 1≤ k≤N−1, (4.1)
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in which four numerical points of (u,v) are involved for each k. Meanwhile, the mean
velocity field v =(u,v), which is determined by the fourth-order difference of the mean
stream function field as shown in (3.9), is assigned to be the vertically discrete average of
the horizontal velocity field v=(u,v) using Simpson’s rule, i.e.,

u
S
i,j =

1

H0

△z

3

(

ui,j,0+ui,j,N +4

Nz
2

∑
k=1

ui,j,2k−1 +2

Nz
2 −1

∑
k=1

ui,j,2k

)

=ui,j ,

v
S
i,j =

1

H0

△z

3

(

vi,j,0+vi,j,N +4

Nz
2

∑
k=1

vi,j,2k−1 +2

Nz
2 −1

∑
k=1

vi,j,2k

)

=vi,j .

(4.2)

Note that (ξ,ζ) vanishes at the bottom k = 0 and its top boundary profile at k = N
is given by 1

ν2
τ0. For simplicity we set τ0 = 0, and the extension to the case of non-

homogeneous wind stress profile is straightforward. In addition, the “ghost” numerical
value for (u,v) at k =−1,N+1 are required to solve (4.1). To achieve fourth-order accu-
racy, we perform local Taylor expansion for v = (u,v) in fifth-order near the boundary
section z=−H0:

ui,j,−1 =ui,j,1−2△z∂zui,j,0−
△z3

3
∂3

zui,j,0+O(h5),

vi,j,−1 =vi,j,1−2△z∂zvi,j,0−
△z3

3
∂3

zvi,j,0+O(h5).

(4.3)

The term ∂zu, ∂zv disappears at z=−H0 because of the boundary condition imposed for
(ξ,ζ). The accurate evaluation of ∂3

zξ, ∂3
zζ follows that in (3.18)-(3.20) in Section 3, by

using the original PDE along the bottom boundary. An alternate form of (3.20) reads

(∂3
zu) |z=−H0

=− 1

ν2
D̃x(1− h2

6
D2

x)ρi,j,0+O(h4),

(∂3
zv) |z=−H0

=− 1

ν2
D̃y(1− h2

6
D2

y)ρi,j,0+O(h4),

(4.4)

because of the definition for (ξ,ζ). The combination of (4.4) and (4.3) gives

ui,j,−1 =ui,j,1+
△z3

3ν2
D̃x(1− h2

6
D2

x)ρi,j,0+O(h5),

vi,j,−1 =vi,j,1+
△z3

3ν2
D̃y(1− h2

6
D2

y)ρi,j,0+O(h5).

(4.5)

Similar derivation for the “ghost” point value extrapolation around the top boundary
z=0 for (u,v) can be performed:

ui,j,N+1 =ui,j,N−1+
△z3

3ν2
D̃x(1− h2

6
D2

x)ρi,j,N +O(h5),

vi,j,N+1 =vi,j,N−1+
△z3

3ν2
D̃y(1− h2

6
D2

y)ρi,j,N +O(h5).

(4.6)
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Note that the correction term in (4.5), (4.6) can be moved to the right side of (4.1). In other
words, we could denote ξ f , ζ f as the profile of (ξ,ζ) with the high-order correction terms
added, thus the system (4.1), (4.5), (4.6) can be rewritten as

D̃z(1− h2

6
D2

z)u= ξ f , D̃z(1− h2

6
D2

z)v= ζ f , at (i, j,k), 1≤ k≤N−1, (4.7)

ui,j,−1 =ui,j,1 , vi,j,−1 =vi,j,1 , ui,j,N+1 =ui,j,N−1 , vi,j,N+1 =vi,j,N−1 . (4.8)

The coupled system of (4.2), (4.7), (4.8) forms the linear system we are going to deal with.

Since the basis function cos(πzk) is a complete set of eigenfunction for the fourth-

order centered difference D̃z(1− h2

6 D2
z), the system (4.2), (4.7), (4.8) can be solved by using

FFT. The “ghost” point boundary condition for v = (u,v) in (4.8) makes it feasible to
perform Cosine transformation in vertical direction for each fixed (i, j), i.e.,

ui,j,k =
1√
2Nz

[

ûi,j,0+
Nz−1

∑
l=1

(2ûi,j,l)cos
( lkπ

Nz

)

+(−1)kûi,j,N

]

,

vi,j,k =
1√
2Nz

[

v̂i,j,0+
Nz−1

∑
l=1

(2v̂i,j,l)cos
( lkπ

Nz

)

+(−1)kv̂i,j,N

]

.

(4.9)

The determination of the Fourier modes v̂i,j,l, l = 0,1,··· ,Nz, is based on the difference
equation (4.7) and the constraint (4.2) for the mean velocity field. First we observe that

D̃z(1− h2

6
D2

z)v̂i,j,0 =0,

D̃z(1− h2

6
D2

z)cos
(

lkπh
)

= f
′
l ·sin

(

lkπh
)

,

D̃z(1− h2

6
D2

z)
(

(−1)k
)

=0,

(4.10)

with the coefficients f
′
l

f
′
l =−

sin
(

lπh
)

△z

[

1− 2

3
sin2

( lπh

2

)

]

. (4.11)

Going back to (4.9), we arrive at

(

D̃z(1− h2

6
D2

z)u
)

i,j,k
=

2√
2Nz

Nz−1

∑
l=1

f
′
l ûi,j,l sin

( lkπ

Nz

)

,

(

D̃z(1− h2

6
D2

z)u
)

i,j,k
=

2√
2Nz

Nz−1

∑
l=1

f
′
l v̂i,j,l sin

( lkπ

Nz

)

.

(4.12)
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Meanwhile, the sine transformation in Fourier space for ξ f , ζ f can be made due to the
homogeneous Dirichlet boundary condition at k=0,N, i.e.,

(ξ f )i,j,k =
Nz−1

∑
l=1

2ξ̂ f i,j,l√
2Nz

sin
( lkπ

Nz

)

, ζi,j,k =
Nz−1

∑
l=1

2ζ̂ f i,j,l√
2Nz

sin
( lkπ

Nz

)

. (4.13)

Comparing (4.13) with (4.12), we see that the equation (4.7) is exactly satisfied if

ûi,j,l =
ξ̂ f i,j,l

f
′
l

, v̂i,j,l =
ζ̂ f i,j,l

f
′
l

, for 1≤ l≤Nz−1, (4.14)

with f
′
l given by (4.11).

To obtain the 0-th Fourier mode coefficient for v at each fixed grid point (i, j), we see
that the application of Simpson’s rule to the horizontal velocity profile v = (u,v) repre-
sented in the Fourier expansion (4.9) gives

1

H0
Nz△z

1√
2Nz

ûi,j,0 =ui,j+O(h4),
1

H0
Nz△z

1√
2Nz

v̂i,j,0 =vi,j+O(h4), (4.15)

since the basis functions cos(klπh) have vanishing discrete average in the vertical direc-
tion using Simpson’s rule, for l = 1,2,··· ,Nz, provided that Nz is even. As a result, we
choose

ûi,j,0 =
√

2Nzui,j , v̂i,j,0 =
√

2Nzvi,j . (4.16)

In addition, since the Fourier mode coefficients v̂i,j,l decay exponentially as l approaches
Nz under suitable regularity assumption for the velocity field, we can set the coefficient
v̂i,j,N to be 0. In other words,

ûi,j,N = v̂i,j,N =0. (4.17)

Then the procedure to solve the system (4.2), (4.7), (4.8) can be outlined as follows:
(1) move the correction terms in (4.5), (4.6) to the right side of (4.1) to obtain the profile
(ξ f ,ζ f ); (2) sine transform the profile (ξ f ,ζ f ) as in (4.13); (3) obtain the Fourier coefficients
(in the cosine transformation) for v by (4.14), (4.16) and (4.17); (4) cosine transform v at
each fixed grid point (i, j) as in (4.9).

4.2 Recovery for the vertical velocity field

The vertical velocity w can be solved by a compact fourth-order scheme of the second-
order O.D.E (2.14). The second-order derivative ∂2

z can be approximated by

∂2
z =

D2
z

1+ △z2

12 D2
z

+O(h4). (4.18)
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Then we have the following fourth-order scheme






D2
zw=−

(

1+
△z2

12
D2

z

)(

D̃x(1− h2

6
D2

x)ξ−D̃y(1− h2

6
D2

y)ζ
)

, for 1≤ k≤Nz−1,

wi,j,0 =wi,j,N =0.
(4.19)

At each fixed horizontal grid point (i, j), there are N−1 equations and N−1 unknowns:
wi,j,k at interior grid points 1≤ k≤Nz−1. Moreover, the complete set of the eigenvalues

corresponding to the operator D2
z (under the homogeneous Dirichlet boundary condition

for w) is given by

λl =− 4

△z2
sin2

( lπ

2Nz

)

, for 1≤ l≤Nz−1, (4.20)

which are non-zero. As a result, (4.19) is a non-singular linear system at each fixed hori-
zontal grid point.

5 Temporal discretization

The classical fourth-order Runge-Kutta method, a multi-stage explicit time stepping pro-
cedure, is used as the time discretization in the mean vorticity equation, evolution equa-
tion for vz and density equation. The explicit treatment of convection and diffusion terms
appearing in the dynamic equations makes the whole scheme very easy to implement.
Such an explicit treatment can avoid any stability concern caused by the cell-Reynolds
number constraint if the high-order Runge-Kutta method, such as the classical RK4, is
applied.

At each stage in Runge-Kutta time stepping, two standard 2-D Poisson-like equations,
in Steps 4 and 6 below, are required to be solved. In addition, a recovery procedure for
both the horizontal and vertical velocities, in Steps 8 and 9 below, needs to be performed.
These can be done by FFT-based methods. The rest is the standard finite-difference up-
dating of the computed profiles. This shows the efficiency of the method.

For simplicity, we only present the forward Euler time-discretization. The extension
to the Runge-Kutta method is straightforward.

Time-stepping: Given (ω∗)n, v
n
z and ρn at time tn, we compute all the profiles at the

time step tn+1 via the following steps.

Step 1. Update
{

(ω∗)n+1
i,j

}

, at interior points (xi,yj) in horizontal plane, for 1≤ i, j≤
N−1, by

(ω∗)n+1−(ω∗)n

△t
+

(

1−△x2

12
D2

x−
△y2

12
D2

y

)

D̃x D̃y

(

(vv
S
)n−(uu

S
)n

)

+
(

D2
x−D2

y+
1

12
(△y2−△x2)D2

xD2
y

)

(uv
S
)n+

β

Ro
(1+

h2

12
△h)vn

=ν1

(

△h+
h2

6
D2

xD2
y

)

ωn+ f n
ω , (5.1)
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Step 2. Update
{

ξn+1
i,j

}

,
{

ζn+1
i,j

}

at 3-D interior points (xi,yj,zk), for 1≤ i, j,k≤N−1, by

ξn+1−ξn

△t
+unD̃x(1− h2

6
D2

x)ξn +vnD̃y(1− h2

6
D2

y)ξn +wnD̃z(1− h2

6
D2

z)ξn

−ξnD̃y(1− h2

6
D2

y)vn +ζnD̃y(1− h2

6
D2

y)un− f

Ro
ζn− 1

Ro
D̃x(1− h2

6
D2

x)ρn

=
(

ν1(D2
x−

h2

12
D4

x+D2
y−

h2

12
D4

y)+ν2(D2
z−

h2

12
D4

z)
)

ξn , (5.2)

ζn+1−ζn

△t
+unD̃x(1− h2

6
D2

x)ζn +vnD̃y(1− h2

6
D2

y)ζn +wnD̃z(1− h2

6
D2

z)ζn

−ζnD̃x(1− h2

6
D2

x)un+ξnD̃x(1− h2

6
D2

x)vn +
f

Ro
ξn− 1

Ro
D̃y(1− h2

6
D2

y)ρn

=
(

ν1(D2
x−

h2

12
D4

x+D2
y−

h2

12
D4

y)+ν2(D2
z−

h2

12
D4

z)
)

ζn . (5.3)

The one-sided extrapolation (3.21) is applied.

Step 3. Update
{

ρn+1
i,j,k

}

, at all numerical grid points (xi,yj,zk), for 0≤ i, j,k≤N, by

ρn+1−ρn

△t
+unD̃x(1− h2

6
D2

x)ρn +vnD̃y(1− h2

6
D2

y)ρn+wnD̃z(1− h2

6
D2

z)ρn

=
(

κ1(D2
x−

h2

12
D4

x+D2
y−

h2

12
D4

y)+κ2(D2
z−

h2

12
D4

z)
)

ρn . (5.4)

The one-sided extrapolation (3.31) is applied.

Step 4. Solve for
{

ψ
n+1
i,j

}

1≤i,j≤N−1
using







(

△h+
h2

6
D2

xD2
y

)

ψ
n+1

=(ω∗)n+1 ,

ψ
n+1 |∂M0

=0,

(5.5)

where only sine transformations are needed. Compute ψn+1 at the “ghost” points using
(3.11), (3.12) (together with Briley’s vorticity boundary condition (3.10)). We note that
solving (5.5) only requires (ω∗)n+1 at interior points (xi,yj), 1 ≤ i, j ≤ N−1, which has
been updated in Step 1.

Step 5. Obtain the boundary value for ωn+1 by Briley’s formula (3.10).

Step 6. Now we use the boundary values for ωn+1 updated in Step 5 to solve for
{

ωn+1
i,j

}

i≥1,j≥1
using

(

1+
h2

12
△h

)

ωn+1 =(ω∗)n+1 . (5.6)
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Step 7. Update the mean velocity field v
n+1
i,j using the centered difference of mean

stream function

un+1 =−D̃y(1− h2

6
D2

y)ψ
n+1

, vn+1 = D̃x(1− h2

6
D2

x)ψ
n+1

, (5.7)

for i, j≥1, and v
n+1 =0 on ∂M0.

Step 8. With both v
n+1 and v

n+1
z at hand, which are determined and updated in Steps

6 and 2, respectively, we are able to get the total horizontal velocity field at tn+1 with the
help of the procedure given in Section 4.1, namely, the solution of the following system



















D̃z(1− h2

6
D2

z)un+1 = ξn+1
f , D̃z(1− h2

6
D2

z)vn+1 = ζn+1
f , for 1≤ k≤N−1,

(u
S
)n+1

i,j =un+1
i,j , (v

S
)n+1

i,j =vn+1
i,j ,

un+1
i,j,−1 =un+1

i,j,1 , vn+1
i,j,−1 =vn+1

i,j,1 , un+1
i,j,N+1 =un+1

i,j,N−1 , vn+1
i,j,N+1 =vn+1

i,j,N−1 ,

(5.8)

in which the numerical average v is given by the definition in (4.2).

Step 9. Recover the vertical velocity field wn+1 by











D2
zwn+1 =−

(

1+
△z2

12
D2

z

)(

D̃x(1− h2

6
D2

x)ξn+1−D̃y(1− h2

6
D2

x)ζn+1
)

,

wn+1
i,j,0 =wn+1

i,j,N =0.
(5.9)

6 Numerical accuracy check

In this section we perform an accuracy check for the proposed fourth-order method. The
domain is M=M0×[−H0,0], with M0=[0,1]2 and H0=1. The exact profile for the mean
stream function is chosen as

ψe(x,y,t)=
1

2π3
sin2(πx)sin2(πy)cost, (6.1)

which satisfies no penetration, no slip boundary condition on the lateral boundary ∂M0.
The corresponding exact mean velocity and mean vorticity are given by

ue(x,y,t)=− 1

2π2
sin2(πx)sin(2πy)cost,

ve(x,y,t)=
1

2π2
sin(2πx)sin2(πy)cost,

ωe(x,y,t)=
1

π

(

sin2(πx)cos(2πy)+sin2(πy)cos(2πx)
)

cost.

(6.2)
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The exact profile of vz =(ξ,ζ) is given by

ξe(x,y,z,t)=
1

2π
sin2(πx)sin(2πy)sin(πz)cost,

ζe(x,y,z,t)=− 1

π
sin(2πx)sin2(πy)sin(2πz)cost.

(6.3)

Then the total horizontal velocity field ve is determined by the combination of (6.2) and
(6.3):

ue(x,y,z,t)=− 1

2π2
sin2(πx)sin(2πy)

(

1+cos(πz)
)

cost,

ve(x,y,z,t)=
1

2π2
sin(2πx)sin2(πy)

(

1+cos(2πz)
)

cost.

(6.4)

Moreover, the vertical velocity we is determined by (ξe,ζe) via (2.14):

we(x,y,z,t)=
1

2π
sin(2πx)sin(2πy)

( 1

π
sin(πz)− 1

2π
sin(2πz)

)

cost. (6.5)

The density field is chosen as

ρe(x,y,z,t)=
1

π2
cos(πx)cos(πy)cos(πz)cost, (6.6)

which satisfies the no-flux boundary condition on all six boundary sections.

We can substitute the exact profiles (6.1)-(6.6) into the reformulated PE system (2.11)-
(2.15). Note that there are force terms in the mean vorticity equation, evolutionary equa-
tion for vz and density equations. The fourth-order method as described in Section 3,
along with the fourth-order recovery for the velocity field in Section 4 and the explicit
time stepping utilizing the classical RK4, is used to solve the system of the PEs with the
force terms. The viscosity parameters are given by ν1 =ν2 =0.005, κ1 =κ2 =0.005 and the
Rossby number is chosen as Ro=1.

Table 1 lists the absolute errors between the numerical and exact solutions for velocity
and density. As shown in the table, perfect fourth-order accuracy in L1, L2 norms is
obtained for the horizontal velocity field (u,v). The corresponding order of accuracy in
the L∞ norm converges to 4 as the grid is refined. Slightly less than fourth-order accuracy
in both L1, L2 norms and the L∞ norm for the vertical velocity field w are preserved.
Again, the order of accuracy becomes closer and closer to 4 as the grid is refined. The lack
of perfect accuracy for the vertical velocity field is due to the fact that w is determined by
the (discrete) long-stencil gradient of the profile (ξ,ζ). The accuracy for the density field
is slightly less than fourth-order with coarse grid and converges to almost perfect fourth-
order with the refined grid. It can be observed that the proposed fourth-order scheme
indeed preserves almost perfect fourth-order accuracy for all the variables.
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Table 1: Error and order of accuracy for velocity and density of the PEs formulated in mean vorticity at t = 1
when the fourth-order spatial discretization combined with classical RK4 time stepping are used. We take

△t= 1
4△x.

N L1 error L1 order L2 error L2 order L∞ error L∞ order

16 8.74e-06 1.20e-05 4.46e-05
32 5.54e-07 3.98 7.51e-07 3.99 2.83e-06 3.98

u 64 3.45e-08 4.00 4.67e-08 4.00 1.78e-07 3.99
128 2.15e-09 4.00 2.91e-09 4.00 1.11e-08 4.00

16 9.60e-06 1.35e-05 4.30e-05
32 6.09e-07 3.98 8.50e-07 3.99 2.77e-06 3.96

v 64 3.80e-08 4.00 5.30e-08 4.00 1.74e-07 3.99
128 2.37e-09 4.00 3.31e-09 4.00 1.09e-08 4.00

16 8.98e-06 1.51e-05 8.05e-05
32 5.89e-07 3.93 9.56e-07 3.98 5.15e-06 3.97

w 64 3.73e-08 3.98 5.99e-08 3.99 3.23e-07 3.99
128 2.34e-09 3.99 3.75e-09 4.00 2.02e-08 4.00

16 1.54e-06 2.06e-06 6.13e-06
32 1.04e-07 3.89 1.35e-07 3.93 3.91e-07 3.97

ρ 64 6.70e-09 3.96 8.53e-09 3.98 2.47e-08 3.98
128 4.22e-10 3.99 5.34e-10 4.01 1.54e-09 4.00

7 Numerical results of oceanic circulation

Much effort has been devoted to the study of large-scale oceanic circulation during the
past decades; see the relevant references [1, 5, 7, 9, 15, 24, 28, 29], etc. For mid-latitude
oceanic regions, large scale motion is dominated by wind-driven (horizontal) and ther-
mohaline (vertical) circulations, the two most important sources of climate low frequency
variability.

In this section we give a numerical simulation of a simplified model which contains
the basic features of the thermocline circulation in mid-latitude ocean, to illustrate its
detailed structures in both the horizontal and vertical directions. Such a motion can be
modeled as the evolution between two densities which are separated by an interface,
along with an interaction with the wind stress at the ocean surface. In this simplified
mode, the scaled computational domain is taken as M=[0,1]2×[−1,0]. The initial density
(temperature) (at t=0) is given by

ρ0(x,y,z)=











ρ2 =0.97, if z≥ z0(x,y)+ 1
64 ,

1−0.004sin
(

32π(z−z0(x,y)
)

, if |z−z0(x,y)|≤ 1
64 ,

ρ2 =1.03, if z≤ z0(x,y)− 1
64 .

(7.1)
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The initial interface function is chosen as

z0(x,y)=−h(x,y,0)=−h1(x,y)[1−h1(x,y)]−0.125, (7.2)

where h(x,y,0) represents the initial height function and h1(x,y) is given by

h1(x,y)=







exp
(

1− 1

1−16r2

)

, if r2 =(x− 1

2
)2+(y− 1

2
)2≤ 1

16
,

0, otherwise.
(7.3)

The initial horizontal velocity is set to be

u(x,y,z,t=0)=−0.4πcos(πy)sin(πy)
(

x−p1(x)
)2

(

1+sin(
1

2
πz)

)

,

v(x,y,z,t=0)=0.4sin2(πy)
(

x−p1(x)
)(

1−p2(x)
)

(

1+sin(
1

2
πz)

)

,

(7.4)

where r=0.05, and

p1(x)=
1−exp(−x/r)

1−exp(−1/r)
, p2(x)=

1/r·exp(−x/r)

1−exp(−1/r)
.

Note that the vertical average of v |t=0 is divergence-free:

u(x,y,t=0)=−0.4π(1− 2

π
)cos(πy)sin(πy)

(

x−p1(x)
)2

,

v(x,y,t=0)=0.4(1− 2

π
)sin2(πy)

(

x−p1(x)
)(

1−p2(x)
)

.

(7.5)

Accordingly, the initial mean stream function turns out to be

ψ(x,y,t=0)=0.2(1− 2

π
)sin2(πy)

(

x−p1(x)
)2

, (7.6)

so that the kinematic relationship between ψ and v is satisfied. Applying the vertical
derivative of (7.4) gives the initial data for ∂zv=(ξ,ζ):

ξ(x,y,z,t=0)=−0.2π2 cos(πy)sin(πy)
(

x−p1(x)
)2

cos(
1

2
πz),

ζ(x,y,z,t=0)=0.2πsin2(πy)
(

x−p1(x)
)(

1−p2(x)
)

cos(
1

2
πz).

(7.7)

In particular, there is no velocity flux at the bottom z =−1 and the wind stress at the
ocean surface z=0 is given by

∂zu=−0.2π2cos(πy)sin(πy)
(

x−p1(x)
)2

, at z=0,

∂zv=0.2πsin2(πy)
(

x−p1(x)
)(

1−p2(x)
)

, at z=0,

∂zv=0, at z=−1.

(7.8)
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Figure 1: Contour plot of the mean stream function at t=0.

Note that the profile in (7.8) corresponds to the wind stress that drives the ocean.

The contour plot of the initial mean stream function is presented in Fig. 1. It shows
that the circulation profile is more concentrated around the western boundary area, be-
cause of the choice r=0.05.

There is no heat flux at the ocean surface, i.e., ρ f is set to be 0 in (2.5). Moreover, the
boundary condition on lateral boundary sections is given by (2.4).

The Rossby number is taken to be 0.005, the Reynolds numbers are chosen to be Re1=
750, Re2 =375, Rt1 =5,000, Rt2 =2,500.

It is given in Figs. 2 and 3 the contour plots of the density field computed by the
fourth-order method on the resolution of 256×256×128 at t=3,4, respectively. Note that
only the horizontal plots at z=−0.125,−0.0625 are present.

The circulation structure of the thermocline profile is clearly seen. Moreover, its inter-
action with the wind stress given by (7.8) is shown in the horizontal cut plots. Due to the
choice of the initial mean stream function and the wind stress, a connection between the
main thermocline structure and the western boundary layer is more and more obvious
as the ocean depth is closer to the ocean surface.

It can be also observed that the vertical structure of two-layer stratification with an
interface transition area keeps stable for a long time. The composition of the density
profile always keeps the pattern of two layers with ρ1 : ρ2, connected by an interface.

The plots for the mean stream function at the same time sequence is given in Fig. 4
below. It shows that a single circulation structure is bifurcated into several centers as time
goes on, because of the nonlinear effects, along with the wind stress force.

At the final time t=4, the plots for the horizontal velocity (u,v) at z=−0.125,−0.0625
are given in Figs. 5 and 6, respectively.
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Figure 2: Density plots on z = −0.125,−0.0625, at the time t = 3 with Re1 = 750, Re2 = 375, Rt1 = 5000,
Rt2 =2500. The computation is based on the fourth-order method with 256×256×128 resolution.
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Figure 3: Density plots on z =−0.125,−0.0625, at t = 4 with the same physical parameters in Fig. 2 and the
same resolution.

From the numerical results in Figs. 5 and 6, we see that the horizontal velocity in-
cludes two primary parts. In the interior region, the structure is basically determined by
an approximation to the geostrophic balance, i.e.,

f k×v+∇p=0, (7.9)

which in turn indicates

f k×vz−∇ρ=0, i.e. (uz,vz)=
(∂yρ

f
,−∂yρ

f

)

. (7.10)
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Figure 4: Plots for mean stream function at the sequence of time t=3,4.
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Figure 5: Contour plots for velocity u on z=−0.125,−0.0625, at t=4.

Note that (7.9) and (7.10) are not exactly satisfied in the context of the PEs. Yet our numer-
ical results show that the geostrophic balance is “approximately” satisfied if the depth is
away from a thin boundary layer near the ocean surface, due to the choice of a small
Rossby number Ro = 0.005. Another important part in the composition of the horizon-
tal velocity is influenced by the wind stress force, especially in the area near the ocean
surface.
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Figure 6: Contour plots for velocity v on z=−0.125,−0.0625, at t=4.

8 Conclusion remarks

In this paper, a fourth-order finite difference method is developed for the three-
dimensional primitive equations based on an equivalent formulation. An evolutionary
equation for the mean vorticity field and the transport equations for the vertical deriva-
tive of the horizontal velocity are utilized to recover the total velocity vector. A fourth-
order compact difference scheme is applied to approximate the mean vorticity equation
to assure a numerical stability, along with a local vorticity boundary condition. Fourth-
order long-stencil approximations are utilized to deal with transport type equations for
(ξ,ζ) and the density, with a one-sided fourth-order boundary extrapolation for each
variable. The robustness of the proposed fourth-order method is shown by a few nu-
merical experiments, including an accuracy check and a large-scale oceanic circulation
simulation.

A full fourth-order convergence analysis in the L∞([0,t1];L
2) norm for the velocity

and density is expected in a future paper, which will be the first such result for three-
dimensional primitive equations. In addition, to apply the current method to the simu-
lation of large-scale oceanic flow with complicated coastlines and topographies, a finite
element scheme based on the equivalent formulation has to be investigated in detail, us-
ing similar ideas as in [13]. This will lead to a better understanding of the circulation
dynamics.
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