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Abstract. In [3], Chan and Wong proposed to use total variational regularization for
both images and point spread functions in blind deconvolution. Their experimental re-
sults show that the detail of the restored images cannot be recovered. In this paper, we
consider images in Lipschitz spaces, and propose to use Lipschitz regularization for
images and total variational regularization for point spread functions in blind decon-
volution. Our experimental results show that such combination of Lipschitz and total
variational regularization methods can recover both images and point spread func-
tions quite well.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07

Key words: Lipschitz regularization, total variational regularization, blind deconvolution, tex-
ture, Poisson singular integral, alternating iterative algorithm.

1 Introduction

It is well-known that recovering both an image u and a point spread function (PSF) k is
a mathematically ill-posed problem. This is called a blind deconvolution problem. In
the literature, there are many methods for simultaneously recovering both u and k, see
for instance [3, 6, 8, 9, 12, 13]. In [3], Chan and Wong proposed to use total variational
(TV) regularization for both images and PSFs in blind deconvolution. The motivation
for using TV regularization for the PSF is due to the fact that some PSFs can have edges,
see [3]. They find u and k by minimizing the cost function defined as follows:

min
(u,k)

E(u,k)=min
(u,k)

{||k∗u− f ||22 +α1

∫

|▽u| +α2

∫

|▽k|}. (1.1)
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Here ∗ denotes convolution operator, u and k are the original image and the exact
blur respectively, f is the observed image, α1 and α2 are positive parameters which mea-
sure the trade off between a good fit and the regularity of the solutions u and k. Chan
and Wong devised fast numerical algorithms for solving the minimization problem (1.1).
Their algorithm can recover both the image and PSF without any a priori information on
the PSF. However, their experimental results show that the detail of the restored images
cannot be recovered. The main reason is the TV regularization is used for the image.

In this paper, we consider images in Lipschitz spaces where a wide class of nons-
mooth images can be modeled, see for instance [1,4,5], and propose to use Lipschitz reg-
ularization for u and total variational regularization for k in blind deconvolution. Similar
to (1.1), we formulate the blind deconvolution problem as follows:

min
(u,k)

E(u,k)=min
(u,k)

{||k∗u− f ||22 +α1(||u||
2
2 +γ||zt∗u||22)+α2

∫

|▽k|}, (1.2)

where α1 and α2 are the regularization parameters, and the image regularization term
based on the Wiener filtering is given by (||u||22+γ||zt∗u||22), see [1] for detail. Here zt

(t>0) is a function related to the Poisson kernel used to calibrate the lack of smoothness
of u at the scale t with the weighting γ>0. The construction of image regularization term
is based on the assumption that the images belong to proper Lipschitz spaces.

The outline of this paper is as follows. In Section 2, we will introduce Lipschitz reg-
ularization method and consider alternating minimization algorithm for solving (1.2). In
Section 3, numerical results will be presented. Our experimental results show that such
combination of Lipschitz and total variational regularization methods can recover both
images and point spread functions quite well. The detail of the restored images can be
recovered. Finally, the concluding remarks are given in Section 4.

2 Blind deconvolution by Lipschitz regularization

Total variational regularization method can efficiently recover edges of images, it loses
much fine scales of the images due to the assumption that images are represented by
bounded variation functions [7]. In this paper, we consider images in Lipschitz spaces.
In order to represent images in Lipschitz spaces, the Poisson singular integral is used to
measure the smoothness of an image. The details can be found in [1].

The Poisson singular integral operator is defined as a linear operator on L2(R2) as
follows:

Ψtu(x,y)=
∫

R2
ψt(w,v)u(x−w,y−v)dwdv. (2.1)

For fixed t>0, the Poisson kernel ψt(x,y) is given by

ψt(x,y)=
t

2π(x2+y2+t2)3/2
, ∀(x,y)∈R2. (2.2)
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We note that a function u is in Lipschitz space if and only if

sup
t>0

t−β||Ψtu−u||2 <∞, (2.3)

where ‖·‖2 is the L2-norm and β is the parameter of Lipschitz space which image u be-
longs to. The value of β reflects the degree of smoothness of image u, smoother the image
u is , larger the parameter β will be. In practice, we can compute the following integral

∫ t

0
||Ψsu−u||22ds

to calibrate the lack of smoothness of u. Because the Fourier transform of ψt(x,y,t) is e−tρ

(ρ=
√

ξ2+η2), by using the Parseval theorem, we obtain

∫ t

0
||Ψsu−u||22ds=

∫

R2

∫ t

0
(1−e−sρ)2ds |û(ξ,η)|2dξdη,

where û denotes the Fourier transform of u. Using convolution theorem and Parseval
theorem again, it implies that

∫ t

0
||Ψsu−u||22ds=

∫

R2
|ẑt(ξ,η)û(ξ,η)|2dξdη

= ||F−1(ẑt(ξ,η)û(ξ,η))||22 = ||zt∗u||22,

where F−1 is the inverse Fourier transform operator , ∗ is the convolution operator, zt is
the inverse Fourier transform of ẑt, and

ẑt(ξ,η)=

{

∫ t

0
(1−e−sρ)2ds

}1/2

=

{

t+
4e−tρ−e−2tρ−3

2ρ

}1/2

, with ρ=
√

ξ2+η2,

i.e.,
∫ t

0 ||Ψsu−u||22ds is just the measurement of convolution of zt and u. Therefore when
u is in a Lipschitz space with a certain degree of smoothness, it can be controlled by
the magnitude of (||u||22 +γ||zt∗u||22). In practice, the image can be viewed as originally
defined on a region from which it is extended by periodicity to all of R2. The above
results remain valid in the periodic case [1]. Therefore Fast Fourier Transforms (FFTs)
can be used to evaluate the above calculation in the Fourier domain efficiently. Other
boundary conditions can be used to handle corresponding background situations [10].
For instance, when reflective boundary conditions are used, Discrete Cosine Transforms
(DCTs) can be applied to calculate the Lipschitz regularization term.

In (1.2), we can minimize the objective function involving the regularization term
(||u||22+γ||zt∗u||22) because of the image being in a Lipschitz space. In the next section,
numerical examples are given to demonstrate that this image regularization term is quite
effective in recovery of the detail of an image in blind deconvolution.
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To devise numerical algorithm for (1.2), let us write down the first order optimality
conditions, that is,

∂E

∂k
=2u(−x,−y)∗(u∗k− f )−α2▽·

▽k

|▽k|
=0, (2.4)

and
∂E

∂u
=2k(−x,−y)∗(k∗u− f )+2α1(u+γzt(−x,−y)∗(zt∗u)=0. (2.5)

For (2.4), it can be solved by the lagged diffusivity fixed point iteration, see [11]. We apply
preconditioned conjugate gradient method with cosine transform based preconditioners
to solve the linear system at each fixed point iteration [2]. For (2.5), it can be solved in
Fourier domain by

û(ξ,η)=
¯̂k(ξ,η) f̂ (ξ,η)

|k̂(ξ,η)|2 +α1(1+γ|ẑt|2)
, (2.6)

where û, k̂, f̂ and ẑt are the Fourier transforms of u, k, f and zt respectively. In particular,
the m-by-m image solution u can be determined in O(m2 logm) operations by using fast
Fourier transforms. Since both PSF and image are unknown, we adopt an alternating
iterative algorithm in which the function value E(u,k) always decreases as the iterations
increase. More precisely, the algorithm is stated as follows: With an initial guess (u0,k0),
we first solve E(u0,k1)≡mink E(u0,·) from (2.4), then solve E(u1,k1)≡minu E(·,k1) using
(2.6), and so on, here we let the initial value of u0 as the observed image. When we set the
initial k0 as delta function, we can calculate u first instead in the iterative procedure, that
is, solve E(u1,k0)≡ minu E(·,k0) using (2.6) first and then solve E(u1,k1)≡ mink E(u1,·)
from (2.4), and so on. By assuming after getting un and kn, we solve for kn+1 from equa-
tion

2un(−x,−y)∗(un∗kn+1− f )−α2▽·
▽kn+1

|▽kn+1|
=0, (2.7)

and solve un+1 from (2.5) in the Fourier space by:

ûn+1(ξ,η)=
¯̂kn+1(ξ,η) f̂ (ξ,η)

|k̂n+1(ξ,η)|2+α1(1+γ|ẑt|2)
. (2.8)

In addition, as noted in [3], the solution of (1.2) is usually not unique. If (u,k) is a
solution, then (−u,−k) and (u(x±c,y±d), k(x∓c,y∓d)) are the solutions too, here c and
d are any real constants. So we add nonnegative constraint to both image u and PSF k,
and besides we normalize k and constrain it to be centrosymmetric in each iteration to
get a unique solution. That is, solve kn+1 by (2.7), and impose following conditions:

kn+1 =

{

kn+1, if kn+1
>0,

0, otherwise,

kn+1(x,y)=(kn+1(x,y)+kn+1(−x,−y))/2,

kn+1 =
kn+1

∫

Ω
kn+1(x,y)dxdy

. (2.9)
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Solve un+1 by (2.8), and impose conditions:

un+1 =

{

un+1, if un+1
>0,

0, otherwise.
(2.10)

3 Numerical results

In this section, we illustrate some numerical examples to show the effectiveness of such
combination of Lipschitz and total variational regularization methods in blind deconvo-
lution. The results show that the proposed method can recover both images and point
spread functions quite well. Improved Signal to Noise ratio (ISNR) and relative error are
applied to measure the quality of the restored images. They are defined as follows:

ISNR=20∗log10

(

|| f −u||2
||ũ−u||2

)

, relative error=
||ũ−u||2
||u||2

,

where u, f and ũ are the original image, the observed image and the recovered image
respectively. Relative error of point spread function can be obtained when we set u and
ũ as the original and recovered PSF respectively in the expression of relative error.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: The original satellite image.

The test image is the satellite image shown in Fig. 1 from Philips Laboratory at Kirk-
land Air Force Base, New Mexico and was provided to us by Professor Robert Plemmons
of Wake Forest University. The image consists of 256-by-256 pixels. Currently our codes
are written in MATLAB with machine precision roughly equal to 10−16.

In the experiment, we set t = 0.1, the initial guess for u is the observed image as it is
an only available approximation of u. We find that the image restoration results can be
obtained even other values of t are used. At each step of alternating iterative algorithm,
we iterate the fixed point iteration 50 times. Within each fixed point iteration, we use the
preconditioned conjugate gradient method with cosine transform based preconditioners
to solve a linear system.
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Figure 2: Blurred and noisy image with the relative error = 0.6622 (left), out of focus blur (middle) and the
3D plot of the out of focus blur (right).
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Figure 3: Recovered image with the known PSF, the relative error = 0.2064 and ISNR = 10.1248.

The original image is blurred by a severe defocus blur k tested in [3] in Fig. 2 (middle),
and a blurred image f ′ = k∗u is generated. In the test, the multiplicative noise given by
n = 0.005σ f ′ (see for instance [1]) are added to the blurred image. Here σ refers to a
256-by-256 uniform random numbers in [-1,1]. The blurred and noisy image f = f ′+n is
shown in Fig. 2 (left). The relative error ‖u− f‖2/‖u‖2 of f is equal to 0.6622. Fig. 3 is the
recovered image when the PSF is known. In this test, we set α2 = 0 (the deconvolution
problem) and choose α1 = 1.2×10−6 by minimizing the relative error ‖u−ur‖2/‖u‖2 of
the recovered image ur. For the value of γ we used the computed parameters (the value
of β and the supremum value of (2.3) in [1]) to set γ being equal to 126.4.

In Fig. 4, we illustrate the ideas on choosing the regularization parameter α2. Fig. 4
shows the recovered images and the identified PSFs with their corresponding three-
dimensional plots for varies α2. The parameters α1 and γ are fixed at 1.2×10−6 and
126.4 as it produces the best recovered image in case the PSF is known. We see that the
identified PSF has increasing support as α2 increases. This result is the same as that in [3].
In Fig. 4, when α2 is too large, says to 5×10−2, there is nothing recovered, when α2 is
decreasing small to 10−2 and 5×10−3, the structure of image can be gotten and the sup-
port of the recovered PSF is more bright and the shape of it is close to the exact one. We
further decrease α2 to 10−3, we see the support of recovered PSF is too small and nearly
nothing is recovered in the image. We conclude that the optimal α2 will be in the interval
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Figure 4: Recovered images (left), recovered PSFs (middle) and their corresponding 3D plots of the recovered
PSFs (right) for α2 =5×10−2,1×10−2,5×10−3,1×10−3 (from top to bottom).
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Figure 5: Recovered image (left), recovered PSF (middle) and the corresponding 3D plot of the recovered

PSF (right) for α1 = 1.2×10−6 and α2 = 6.40×10−3 with the relative error of the recovered image = 0.3545,
ISNR=5.4265, and the relative error of the recovered PSF = 0.2055.
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Figure 6: Recovered images (left), recovered PSFs (middle) and their corresponding 3D plots of the recovered

PSFs (right) for α1 =1.2×10−4,1.2×10−5,1.2×10−6,1.2×10−7,1.2×10−8 (from top to bottom).

between 10−3 and 10−2. By minimizing the relative error of the recovered image, we find
that α2 = 6.4×10−3 gives the best recovered image shown as in Fig. 5. We see that the
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Figure 7: Recovered images (left), recovered PSFs (middle) and their corresponding 3D plots of the recovered
PSFs (right) after one iteration (the upper one) and two iterations (the lower one).

recovered PSF is quite close to the original one. To further check these recovered results,
we fix α2 = 6.4×10−3 and vary α1. Fig. 6 shows the recovered images and the identified
PSFs with their corresponding three-dimensional plots for varies α1. We see that the best
recovered results are still obtained in Fig. 5. We also report that the number of iterations
required for the alternating iterative algorithm is only two for this setting. In Fig. 7, we
show the restored results and find that the recovered image and PSF are quite good after
the first iteration.

As for a comparison, we test the following four settings:

(i) When the total variational regularization is used for both image and PSF, i.e.,

min
(u,k)

E(u,k)=min
u,k

{||k∗u− f ||22 +α1

∫

|▽u| +α2

∫

|▽k|},

the best recovered results are shown in Fig. 8. Although the quality of the recovered PSF
is quite well, we obtain a recovered image with clear structure but little detail.

(ii) When the Lipschitz regularization is used for image and the H1-norm regularization
is used for PSF, i.e.,

min
(u,k)

E(u,k)=min
u,k

{||k∗u− f ||22 +α1(‖u‖2+γ‖zt∗u‖2
2)+α2

∫

|▽k|2},

the best recovered results are shown in Fig. 9. The quality of the recovered image is
acceptable, but the quality of the recovered PSF is poor. We also remark that the number
of iterations required for the alternating iterative algorithm is 100 in order to obtain such
results.



204 Y. M. Huang and M. K. Ng / Commun. Comput. Phys., 4 (2008), pp. 195-206

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: Recovered image (left), recovered PSF (middle) and the corresponding 3D plot of the recovered PSF
(right) for α1 = 1.0×10−5 and α2 = 5.10×10−3 with the relative error of the recovered image = 0.3601 and
ISNR=5.2903, and the relative error of the recovered PSF = 0.2841, where TV norm is used for both image
and PSF.
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Figure 9: Recovered image (left), recovered PSF (middle) and the corresponding 3D plot of the recovered PSF

(right) for α1 = 2.01×10−6 and α2 = 1.62×10−4 with the relative error of the recovered image = 0.3618 and
ISNR=5.2511, and the relative error of the recovered PSF = 0.2616, where Lipschitz regularization is used for
image and H1-norm regularization is used for PSF.
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Figure 10: Recovered image (left), recovered PSF (middle) and the corresponding 3D plot of the recovered

PSF for iterations=100, α1 =1.20×10−3 and α2 =2.00×10−3 with the relative error of the recovered image =
0.4376 and ISNR = 3.5987, the relative error of the recovered PSF = 0.3446, where H1-norm regularization is
used for both image and PSF.

(iii) When the H1-norm regularization is used for both image and PSF, i.e.,

min
(u,k)

E(u,k)=min
u,k

{||k∗u− f ||22 +α1

∫

|▽u|2+α2

∫

|▽k|2},

the best recovered results are shown in Fig. 10. It is clear from this figures that both the
quality of the recovered image and PSF are poor.

(iv) When the H1-norm regularization is used for image and the total variational regular-
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Figure 11: Recovered image (left), recovered PSF (middle) and the corresponding 3D plot of the recovered
PSF for α1 =10−3 and α2 =8×10−3 with the relative error of the recovered image = 0.3808 and ISNR=4.8059,
and the relative error of the recovered PSF = 0.2469, where H1-norm regularization is used for image and TV
norm is used for PSF.

ization is used for PSF, i.e.,

min
(u,k)

E(u,k)=min
u,k

{||k∗u− f ||22 +α1

∫

|▽u|2+α2

∫

|▽k|},

the best recovered results are shown in Fig. 11. In this setting, though some texture ap-
pears, and the quality of the recovered PSF is quite good, it is much poorer than that in
Fig. 5. We summarize that the relative errors of the recovered image and PSF (and the
ISNR of the recovered image) by our proposed method are less (higher) than those of the
above four settings.

4 Concluding remarks

Based on the assumption that images belong to proper Lipschitz spaces, the Lipschitz
regularization method can recover images efficiently. In this paper, we introduce Lips-
chitz regularization method to image in blind deconvolution procedure, while the total
variational regularization method is used for PSF. Because the excellent recovering effect
of fine scales of image with Lipschitz regularization, the blind recovering image has more
clear fine detail. The effects can be seen from the experiments we have done in Section 3.
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