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Abstract. We deal with the numerical solution of the Navier-Stokes equations describ-
ing a motion of viscous compressible fluids. In order to obtain a sufficiently stable
higher order scheme with respect to the time and space coordinates, we develop a
combination of the discontinuous Galerkin finite element (DGFE) method for the space
discretization and the backward difference formulae (BDF) for the time discretization.
Since the resulting discrete problem leads to a system of nonlinear algebraic equa-
tions at each time step, we employ suitable linearizations of inviscid as well as viscous
fluxes which give a linear algebraic problem at each time step. Finally, the resulting
BDF-DGEFE scheme is applied to steady as well as unsteady flows and achieved results
are compared with reference data.
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1 Introduction

Our aim is to develop a sufficiently robust, efficient and accurate numerical scheme for
the simulation of unsteady compressible flows. In last years the discontinuous Galerkin
method (DGM) was employed in many papers for the discretization of compressible fluid
flow problems, see, e.g., [5, 6, 8, 10, 20, 32, 37-40, 4345, 56, 57] and the references cited
therein. DGM is based on a piecewise polynomial but discontinuous approximation
which provides robust and high-order accurate approximations, particularly in trans-
port dominated regimes. Moreover, there is considerable flexibility in the choice of the
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mesh design; indeed, DGM can easily handle non-matching and non-uniform grids, even
anisotropic, polynomial approximation degrees. This allows a simple treatment with hp-
adaptation techniques. Additionally, orthogonal bases can easily be constructed which
lead to diagonal mass matrices; this is particularly advantageous for unsteady problems.
Finally, in combination with block-type preconditioners, DGMs can easily be parallelized.
For a survey about DGM, see [13] or [15].

There are several variants of the DGM for the solution of problems containing diffu-
sion terms, see, e.g., [3]. Itis possible to use a primal formulation or a mixed method. The
method can be stabilized with the aid of a symmetric or non-symmetric treatment of dif-
fusion terms, often combined with interior and boundary penalties. The mixed methods
consider the gradient of the solution as an independent variable hence the second order
derivative in the Navier-Stokes equations are eliminated and consequently, we obtain a
problem with a higher number of unknowns, see, e.g., [6]. Nevertheless, an efficient im-
plementation of mixed methods locally eliminates the auxiliary variables. A comparison
of accuracy and robustness of the DGM based on the primal formulation from [10] and
the mixed DGM from [6] was presented in [9].

Among methods using primal formulation, two approaches, symmetric interior penalty
Galerkin (SIPG) and non-symmetric interior penalty Galerkin (NIPG) introduced in [2] and
[50] are very popular, respectively. Moreover, we consider the so-called incomplete interior
penalty Galerkin (IIPG) method which was studied in [17,53,54]. Although IIPG has not
the favourable properties as NIPG and SIPG techniques (see Remark 4.3 of this paper), its
application to the Navier-Stokes equations is more simple since some stabilization terms
are missing. We analyzed these techniques in [25, 27] (NIPG), [24, 26] (SIPG) and [22]
(IIPG) for a scalar non-stationary convection-diffusion equation.

For unsteady problems, it is possible to use a discontinuous approximation also for
the time discretization (e.g., [46, 56, 57]), but the most usual approach is an application
of the method of lines. In this case, the Runge-Kutta methods are very popular for their
simplicity and a high order of accuracy, see [6,7,10,14,20,38]. Their drawback is a strong
restriction to the size of the time step. To avoid this disadvantage it is suitable to use
an implicit time discretization, e.g., [8,39,40]. However, a full implicit scheme leads to
a necessity to solve a nonlinear system of algebraic equations at each time step which is
rather expensive. Therefore, we proposed in [31] a semi-implicit method for the simu-
lation of inviscid compressible flow. This technique is based on a suitable linearization
of the Euler fluxes. The linear terms are treated implicitly whereas the nonlinear ones
explicitly which leads to a linear algebraic problem at each time step.

In this paper, we extend the approach of semi-implicit scheme to the viscous case.
Hence, this article is a natural combination of the explicit scheme for viscous flow from
[20] with the semi-implicit scheme for inviscid flow from [31]. Moreover, we apply the
backward difference formula (BDF) to the time discretization which gives a higher order
approximation with respect to the time. This method was analyzed in [29] for the case of
a scalar non-stationary convection-diffusion equation.

The content of the rest of the paper is the following. In Section 2 we introduce the
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system of the compressible Navier-Stokes equations with appropriate initial and bound-
ary conditions and mention some properties of inviscid and viscous fluxes. In Section 3
we discretize the computational domain and define spaces of discontinuous functions. In
Section 4 we recall the space discretization of a model scalar equation by the discontin-
uous Galerkin finite element method which was presented in former papers [22,24-27].
The novelty of this paper is contained in Section 5. We extend the discretization of the
model problem to the system of Navier-Stokes equations, carry out the time discretization
by a higher order semi-implicit scheme and mention several implementation remarks. Fi-
nally, three numerical examples, demonstrating the stability and accuracy of the method,
are presented in Section 6. The concluding remarks are given in Section 7.

2 Problem formulation

2.1 Compressible flow problem

Let Q C IRY, d =2,3 be a bounded domain and T > 0. We set Qr = QX (0,T) and by
0Q) denote the boundary of () which consists of several disjoint parts. We distinguish
inlet 9Q);, outlet 0Q), and impermeable walls 0(),, i.e., 92 =09Q); U2, Ud(),. The system
of Navier-Stokes equations describing a motion of viscous compressible fluids can be
written in the dimensionless form

Jw

>tV f(w)=V-R(w,Vw) inQr, 2.1)
where
w= (w1, ,wi2)" = (0,001,++,004,€)" (2.2)
is the so-called state vector,
f(w) = (fl(w)/"'/fd<w)) (2.3)

) d
with fs(w):(fs(l)(w),“'/fs( +2)(w))T
= (va/vavl+551P/ e '/PUsvd+5dsPr (€+p) US)T’ s=1-,d

are the so-called inviscid (Euler) fluxes and

R(w) = (Ri(w), -, Ry(w)) (2.4)
with Ry(w,Vw)= (R (w,Vw), -, R (w, Vw))T

T
— . ,)/ ag — cen
- (O/Tsll Tsd,ZTskvk+ Re Pr axs> P S—l, ,d

are the so-called viscous fluxes. Symbols V and V- mean the gradient and divergence
operators, i.e.,

_ (9w dw d+2 d+2
Vw_(axl axd> €IR - x IR (2.5)
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and

€ IR¥2, (2.6)

flo=5 25

respectively. We consider the Newtonian type of fluid, i.e., the viscous part of the stress
tensor has the form

1
Tsk = E

dvs  dv 0v;
<an axk) Z Sk] ;5 :1/"'/d- (27)

We use the following notation: p is the density, p the pressure, e the total energy,
v=(v1,--,v4) the velocity, 6 the temperature, v the Poisson adiabatic constant, Re the
Reynolds number, and Pr the Prandtl number.

In order to close the system, we consider the state equation for perfect gas and the
definition of the total energy

p=(v=1)(e—plv[*/2), e=cypb+p|v|*/2, (2.8)

where cy is the specific heat at constant volume which we assume to be equal to one in
the dimensionless case. The system (2.1)-(2.8) is of hyperbolic-parabolic type. It is equipped
with the initial condition

w(x,0)=w’(x), x€Q, (2.9)

and the following set of boundary conditions on appropriate parts of boundary:

d
_ _ v d0 '
a) p=pp, v="p, E (E’ka) Uk-i-R Pron =0 onodQ),

k=1 \I=1
d 20
b) kngSknk:O/Szll"',dl %IO Onan (210)
c) v:0,a—6:O on 00)y,,

on

where pp and vp are given function and n = (n9,---,n4) is a unit outer normal to 0Q).
Another possibility is to replace the adiabatic boundary condition (2.10), c) by

Yv=0, 0=60p ondQy. (2.11)

In the case of vanishing viscosity (i.e., Re — 0), we obtain the reduced problem of the
Euler equations. Thus the boundary conditions (2.10) should be replaced by the appro-
priate “inviscid conditions” which are chosen in such a way that the system of the Euler
equations is linearly well-posed. Namely, for subsonic inlet we prescribe the density and
components of velocity, for the subsonic outlet we prescribe the pressure and on solid
walls the impermeability condition is used. For more details see, e.g., [35, Section 3.3.6].
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The problem to solve the compressible Navier-Stokes equations (2.1)-(2.4) with consti-
tutive relations (2.7)-(2.8), equipped with the initial and boundary conditions (2.9)-(2.11)
will be denoted by (CFP) (compressible flow problem).

Finally, we present some properties of the inviscid and viscous fluxes f(-) and R(,-)
given by (2.3) and (2.4), respectively. These properties are fundamental for introducing
the linearization of the nonlinear fluxes, which is the base of semi-implicit time discretiza-
tion schemes.

The inviscid fluxes f,, s=1,---,d satisfy (see [35, Lemma 3.1])

fo(w)=As(w)w, s=1,---,d, (2.12)
where
As(w)ED{;EUw), s=1,d, (2.13)

are the Jacobi matrices of the mappings f.. Then, we define a matrix

d
)= Z w)ns, (2.14)

where n=(ny,---,ny) € IR?, n%-ﬁ- . +nfl =1, which plays a role in the definition of a nu-
merical flux and the choice of boundary conditions.
Furthermore, the viscous terms R;(w, Vw) can be expressed in the form

d

R.(w,Vw) = ZKS,k(w)a—w, s=1,--,d, (2.15)
=1 axk

where K;(-) are (d+2) x (d+2) matrices dependent on w, see Appendix, expressions
(A.1)-(A.6).

Moreover, in virtue of [20], we introduce another formal variant of the viscous terms.
Let w = (w1, ++,W442) € IR¥? and @ = (¢y,-++,9,.,) € IR then putting Vw := Vg in
(2.15) we have

Rs(w, V)= ZKsk o eR¥*2, s=1,---,d. (2.16)

The sum of the matrix-vector products (2.16) contains several terms

P w] a(Pl

o T Ld+2, k=1, 4, (2.17)

where P symbolically denotes the rest of terms (P depends on w). We replace these terms
by
QD] aw1

w1 o Ld+2, k=1,--,d (2.18)
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and then we obtain new functions
dy(w,Vw,p, V) : IRAT2 x RY@H2) 5 [RIF2 5 [RHAH2) _, [RA+2 5 =1,... d. (2.19)
From the above construction it follows that ds(-,-,-,-) are consistent with R,(-,-) by
ds(w,Vw,w,Vw)=R;(w,Vw) Yw,s=1,---,d, (2.20)

functions ds(w,Vw,p,Ve), s=1,---,d are linear with respect to @ and they are inde-
pendent of V¢;. The functions d;, s=1,---,d can be written as a sum of matrix-vector
products by

d

ds(w,Vw,p,Ve)=D;o(w,Vw)p+ Z D; i (w) aaT(P' s=1,---,d, (2.21)
k=1 k

where Dy, k=0,1,---,d, s=1,---,d are (d+2) x (d+2) matrices, see Appendix, (A.7)-(A.10).

3 Discretization

3.1 Triangulations

Let 7, (h>0) be a partition of the domain () into a finite number of closed d-dimensional
mutually disjoint (convex or non-convex) polyhedra K, i.e., Q =/ ke, K. We call 7 =
{K} ke, a triangulation of Q) and do not require the conforming properties from the finite
element method, see [12,55]. In 2D problems, we choose usually K € 7}, as triangles or
quadrilaterals. In 3D, K € 7), can be, e.g., tetrahedra, pyramids or hexahedra, but we can
construct even more general elements K, as dual finite volumes from [34]. By JK we
denote the boundary of element K € 7, and set

hx=diam(K), h=maxge7 hx.

By px we denote the radius of the largest d-dimensional ball inscribed into K and by |K|
we denote the d-dimensional Lebesgue measure of K.

By Fj, we denote the smallest possible set of all open (d—1)-dimensional faces (open
edges when d =2 or open faces when d = 3) of all elements K € 7}, see Fig. 1. Further,
we denote by .7-';{ the set of all T’ € F, that are contained in () (inner faces). Moreover, we
denote by F;’, 7, and F} the set of all I' € F}, such that I' C (), I' C9Q); and I' C 90},
respectively. Furthermore, we denote by 7 the set of all I € F;, where the Dirichlet type
of boundary conditions is prescribed at least for one component of w (i.e., FP = FUF})
and by F} the set of all I' € 7}, where the Neumann type of boundary conditions is
prescribed for all components of w (i.e., F} = F7). Obviously,

Fn=FUFPUFY.
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Ky

Figure 1: Example of elements K;, [=1,---,5 and faces I';, [ =1,---,6 with the corresponding nr,.

For a shorter notation we put
Y=FUFR, FRP=FRUFR, FN=F UFRY=FUFRUF.

Finally, for each I' € 7}, we define a unit normal vector nr. We assume that nr, I'€ .7:,’13 N
has the same orientation as the outer normal of 0Q). For nr, I' € 5’-}{ the orientation is
arbitrary but fixed for each edge.

Remark 3.1. DGM is capable to treat concave elements as it is shown in Fig. 1. There
is a question if the use of such elements does not decrease the order of accuracy of
the method. Numerical analysis carried out in [27] for a scalar nonlinear convection-
diffusion equation gives the same error estimate for convex as well as non-convex ele-
ments. Moreover, numerical experiments carried out in [25] for the same scalar equation
give the second order of convergence in the L>-norm for the piecewise linear approxi-
mation. However, the use of concave elements for the Navier-Stokes equations was not
tested yet.

3.2 Discontinuous finite element spaces

To each K€ 7), we assign a positive integer sk (local Sobolev index) and a positive integer
pk (local polynomial degree) . Then we define the vectors

s={sx,KeT7,}, p={px,KeT,}. (3.1)

Over the triangulation 7, we define the so-called broken Sobolev space corresponding to
the vector s
H*(O,7;)={v;v|x € H*(K) VK €Ty} (3.2)
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Figure 2: Inner edge T', elements K, and K, and the orientation of nr.

If sk =q YK €7,, g€ IN then we use the notation H1(Q,7;,) = H*(Q,7),). Obviously,
H*(Q,T;) CH*(Q,T;,) CH3(Q,Ty), (33)

where §=max{sk, sk €s} and s=min{sg, sk €s}.
Furthermore, we define the space of discontinuous piecewise polynomial functions
associated with the vector p by

Sip={v; vEL*(Q), vk € Py (K) VKET,}, (3.4)

where P, (K) denotes the space of all polynomials on K of degree < px, K € 7,. We seek
the approximate solution in the space of vector-valued functions

ShpESth"' XShp. (35)
N——
d+2 times
For each T € ]-“é there exist two elements K, K, € 7;, such that I' C K,NK;,. We use a

convention that K, lies in the direction of nr and K, in the opposite direction of nr, see
Fig. 2. Then for ve H'(Q,7},), we introduce the notation:

v|§p) =the trace of v[g, on T,

v|§”) =the trace of v|g, on T, (3.6)

1
W=7 (oh"+2l"),  lolr=ol —olf".

The value [v]r depends on the orientation of nr of course but the value [v]rnr does not.

Further, we put
d(T')=min(hg, hg,), TeF. (3.7)
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ForTe .7-"hDN there exists element K, € 7;, such that I' C K,N9Q). Then for ve HY(Q,T},), we
introduce the notation:

(r) —
v|,Y’ =the trace of v|x. on T,
I ’K” (3.8)

(@) =lolr=ol’.
By v[?n), I € FPUFN we formally denote the trace of v on I from the exterior of () given
either by a boundary condition or by an extrapolation from the interior of (). Addition-

ally, we associate with the face I' € f}lDN the unit normal vector n =nr which points from
K}, to the exterior of (). In virtue of (3.7), we put

d(T)=hg, TeFN. (3.9)
In case that [-]r and () are arguments of [.---dS, T € Fj, we omit the subscript I' and
write simply [-] and (-), respectively.
4 Model scalar equation

We start with the DGFE solution of the following model non-stationary scalar convection-
diffusion equation. We seek u: Q7 =Q x (0,T) — IR such that

a) g—?—l—v-f(u):eAu in Qr,
b) ”|aQDx(o,T):“D' 1)
ou

<) %‘aQNx(O,T):gN’
d) u(x,0)=u’(x), xe€Q,

where € > 0 plays a role of viscosity, up :90Qp x (0,T) — IR, ¢n : 9Qn % (0,T) — IR and
u%: Q) — IR are given functions, n = (ny,---,n;) is a unit outer normal to 9Q), and f =
(f1,-++,fa) : IR — IRY are prescribed continuous functions representing convection fluxes.

The interior penalty approach for the DGFE discretization of (4.1) can be found in
many papers, e.g., [3,4,20,27,42,49,51] and the references therein. Hence, we do not
derive it again and present only the final expressions.

We multiply (4.1) by a function v € H%(Q),7},), integrate over K € 7}, use the Green’s
theorem, sum over K € 7, and add the penalty terms vanishing for a continuous solution
u. Then the discontinuous Galerkin finite element (DGFE) formulation of (4.1) reads

(%,v) +ay (u,0)+by,(w,0) +J7 (u,0) = £,(v), (4.2)
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where
ap(u,0)=¢ ) _ /Vu-Vvdx—e ) /((Vu~n>[v]+17(Vv~n>[u])dS, (4.3)
KeT,’K resp’t
Iy (u,0)= olul[v]dS, (4.4)
Eh(v)(t):F;F}?]/rgl\](t)vdS—eiyr;ﬁ/er-nuD(t)dS+r§hD/rc7uD(t)vdS, (4.5)
bh(u,v):—K;;l/Kf(u)-Vvdx-l—K;;l/aKf(u)-nadeS, (4.6)

where nyg is the unit outer normal to K€ 7j, on 9K, 7 € IR is a parameter (see Remark 4.3)
and the penalty parameter ¢ in (4.4) and (4.5) is defined by

_ Cw 1D
U|r—ed(r), rer>=, 4.7)

where d(T') is given either by (3.7) or (3.9) and Cyy >0 is a suitable constant.
Remark 4.1. The first two terms in (4.3),

ey /KVu-Vvdx and —¢ ¥ /r<w-n>[v]ds, 4.8)

KeT, rej:éD

arise from the multiplication of the diffusive term —eAu by v € H?(0,T;), the use of
Green’s theorem and the sum over K € 7;,. Moreover, in the definition of the diffusion form
ay(+,-) given by (4.3), we add integrals

—en Yy /F<Vv-n)[u]d5, (4.9)

rerp

which follow from a formal exchange of # and v in the second term of (4.8). This term
ensures the stability properties of the DGFE method, see the cited references above.

Remark 4.2. The form J(-,-) given by (4.4) represents the interior and boundary penalty
terms. It guarantees (in some weaker sense) the interelement continuity of discontinuous
approximation. If u € H2(Q)) is the solution of (4.2) satisfying the Dirichlet boundary
condition (4.1), b) then [u]r =0, T € .7-'}{ since traces of u are continuous across interior
faces. Consequently, it is easy to observe that the integrals (4.9) are compensated by the
second term in the form /;,(-) (representing the treatment of boundary conditions) since

—en Yy /F<Vv-n>[u]d5 = —¢) /riy<Vv-n>[u]dS—e ) /rn(Vv-n>[u]dS

resip res) rerp

—0
= —en ) /eronuD(t)dS. (4.10)

rerp
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Moreover, the interior and boundary penalty terms are compensated by the third term of
45 (+) since

Y [ollds= ¥ [olklds+ ¥ [ollklas= ¥ [oup(to. @1

rerp rer! rerp rerp

=0

The identities (4.10) and (4.11) imply the consistency of the DGFE formulation (4.2) with
the weak formulation of (4.1).

Remark 4.3. The value of 77 appearing in (4.3) and (4.5) can be chosen arbitrarily but the
most usual are the values —1,0 and 1. Then we obtain three variants of the DGFE scheme:
o 1 =1 — symmetric interior penalty Galerkin (SIPG) [2] which leads to a symmetric
form a(-,-)+]; (+,-). Consequently, it is possible to derive optimal a priori error
estimates in the L?-norm using the Aubin-Nitsch theorem provided that Cyy in (4.7)

is sufficiently large.

o = —1 — non-symmetric interior penalty Galerkin (NIPG) [49], [50] which does not
give optimal order of convergence in the L>-norm but on the other hand, leads to a
coercive form ay,(+,-)+Ji (-,-) for any Cyy >0 in (4.7). This is a favourable property,
namely for an extension of the DGFE method to (CFP) where a numerical analysis
is almost impossible and it is not clear how large Cyy in (4.7) should be chosen.

o 1 =0 — incomplete interior penalty Galerkin (IIPG) [17,53, 54] which does not give
optimal order of convergence in the L2-norm and Cyy >0 in (4.7) should be cho-
sen sufficiently large in order to guarantee the coercivity of form ay(-,-)+J7(-,-).
However, IIPG formulation is more simple for implementation since integrals of
type (4.9) appearing in (4.3) and (4.5) are missing. Moreover, this technique is more
suitable for problems with nonlinear diffusion, see [22].

Remark 4.4. The integrand of the face integral (4.6) is approximated by the so-called
numerical flux well-known from the finite volume method (see, e.g., [35, Section 3.2] or

[60]) by

-

flu)mao| ~ H (ul™ ul*moi )|, (4.12)

where u ’(r ] (°ut) 4re the traces of u on 9K from the interior and the exterior of element

KeTy, respectlvely We assume standard properties of the numerical flux, namely con-
sistency, conservativity and the Lipschitz continuity, see, e.g., [35]. Then we define the
discrete convective form

by (u /f )-Vodr+ ¥ /H ul?)ul,nr) [o]rds, 4.13)

KeT, Ter,

where u ’(rp ) and u ]?n) are given by (3.6). The form by, (1,v) is consistent with by, (-,-) by

b (u,0) =by(u,0) VueH*(Q), Yo H(Q,T;). (4.14)
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Now we can introduce the semi-discrete problem of the model scalar equation (4.1):

Definition 4.1. Let u)) € Sy, be the L?(Q))-projection of the initial condition u° into Sy,
i.e., a function defined by

(ug—uo,vh)zo Yoy, € Spp. (4.15)
We say that u, is a DGFE solution of (4.1), if
a) u,e Cl(O,T;Shp),

b) (augt(t) /vh) + by (un (), 0n) +an (un (t),0n) + I (un (), 0n) = Ly (0n) () (4.16)
Yoy, € Sy, VEE(0,T),

o) up(0)=uj,

where C1(0,T;Sy,,) is the space of continuously differentiable mappings of the interval
(0,T) into Sy,

The numerical scheme (4.16) represents a system of ordinary differential equations
(ODEs) which should be solved by a suitable solver. We analyzed this scheme in several
papers ( [22,24-27]) where a priori error estimates and numerical verification of theoret-
ical results are presented. In the following section, we apply the DGFE scheme of type
(4.16) to (CFP) introduced in Section 2.

5 System of the Navier-Stokes equations

Within this section, we extend the discontinuous Galerkin finite element method to the
system of the compressible Navier-Stokes equations. First, we carried out the DGFE
formulation of system (2.1) similarly as in (4.2) and consequently, we define the space
discretization of (2.1). Furthermore, we deal with the time discretization of the resulting
system of ODEs. Finally, we mention some implementation aspects.

5.1 DGEFE formulation

The crucial item of the DGFE formulation of (CFP) is the treatment of the viscous terms.
Let w € H2(Q)4*2, then multiplying the viscous term V-R(w,Vw) from (2.1) by ¢ €
H?(Q,T,)%*?, integrating over K € 7;,, summing over all K € 7;, and using (2.10), b) and
(2.15), we obtain

/ZstVw q)dx—l- ) /E (Rs(w,Vw))ns-[p]dS

KeT, et
fp i /d dw
:—KE/ZR (w,Vw)- dx+ Z}D/Z ZKsk(w)B—Xk ns-[p]dS. (5.1)
reFp/Ts=1 \k=1
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In virtue of Remark 4.1 we add to this expression a stabilization term which we obtain by
the formal exchange of arguments w and ¢ in the last term of (5.1), i.e.,

Uy /Z< g—i>ns-[w]d5, (5.2)

rerP

where 7=—1,1 depending on the type of stabilization, i.e., NIPG or SIPG variants. How-
ever, numerical experiments indicate that this choice of stabilization is not suitable. It is
caused by that fact that for

§0:(§01,O,'-',0)T, ¢1EH2<Q/7;1)/ §017£007’lst,

we obtain a non-vanishing term (5.2) whereas both terms in (5.1) are equal to zero since
the first rows of R, K ,5,k=1,---,d vanish, see (2.4) and (A.1)-(A.6). Therefore, in [10,39,
40], the stabilization term

'y /Z< §z>ns.[w]ds (5.3)

rerip

was employed which avoids the drawback mentioned above. Here, K! denotes the ma-
trix transposed to K. Moreover, in [20], we developed a different approach when the
stabilization terms are treated as

1 ¥ . 2 (w0, V0,9, V) - [w]ds

rerip

=7 ), /Z<Dso (w,Vw) (P+ZDsk k> [w]dS, (5.4)

reFP

where ds(-,-,-,-), s=1,---,d is given by (2.21) and Dy, k=0,1,---,d, s=1,---,d by (A.7)-
(A.10). The forms ds(-,-,-,-), s=1,---,d are linear with respect to their third and fourth
arguments and integrals (5.4) vanish for

= (gl)],o,'-',O)T € IRd+2/ P1 EH%Q,']},)

since d;, s =1,---,d are independent of V¢, (see the construction of d;, s =1,---,d by
(2.16)-(2.19)).
In order to simplify the notation we put

0
T a9 e
Q.(w0,Viv,p, V) = ,(;stk(w)axk for stabilization (5.3) Cs=ld (55)

ds(w,Vw,p,Ve) for stabilization (5.4)
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Therefore, in virtue of the DGFE formulation carried out for the model problem in Section
4, we define for w,p € H?(Q),T,)%+? the forms

(we)= ¥ [ wgdx (5.6)
KeT, K
(L2-scalar product),

ay(w,p) = ) /R(w,Vw)-Vgodx
KeTy, K

d d ow
- Z /I_S_Z%<I;1Ks,k<w)a—xk>”5'[¢]ds

rerip
d
-1 ¥ [ ¥ (Qu(w,Vw,p Ve))n. [w]ds
rerip Ts=1
d
+7 ) / Y Q.(w,Vw,p,Ve)ns wpdS (5.7)
reFp’ls=1
(diffusion form),
B d d a(P
bi(we)= L1 [ Y fuw)negds— [ Y flw) L dx (5.8)
KeT, | /9Ks=1 Ko Xs
(convective form),
Ji(w,e)= ) /U[w]-[q)]dS— ) /awB-q)dS (5.9)
reFi0’t rerp?t

(interior and boundary penalty terms), where the penalty parameter ¢ is chosen by

_ Cw ID
U|F_d(F)Re' rer,-. (5.10)
Here d(T') is given either by (3.7) or (3.9) and Cy >0 is a suitable constant.The state
vector wp prescribed on 90);Ud(), is given by the boundary conditions, in particular, for

the case (2.10) a)—c) we have

wp = (p|aa,,0,--+,0,0]50,0]00,) 0N 0y,

1 5 (5.11)
wg = (pp,pp(vD)1,+,PD(0D)asPla0,0la0, + PD [vp|”) on aQY;,
and for the case (2.10) a)-b), (2.11) ¢’)
wp= (p’aQw,OI. . ',O/p’aQwGD) on aQw,
(5.12)

1
wp=(pp,p (D)1, ,eD(VD)a,Pla0,0]00, + 0D lvp|?) on aQY;,
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where pp,vp and 60p are given functions from the boundary conditions (2.10)-(2.11) and
plac,, Plaa, and 0]aq,, 0]an, are the values of density and temperature extrapolated from
interior of () on the appropriate boundary part, respectively. More detailed determina-
tion of (5.7)-(5.12) is given in [20].

Let w(t) denotes the function on Q) such that w(t) (x) =w(x,t), x € Q). Then with the
aid of (5.6)-(5.9) the DGFE formulation for the Navier-Stokes equations reads

%(W(t)lfp) +an(w(t),p) +bu(w(t) @)+ J; (w(t),9) =0, (5.13)

w(t),pc H*(O,T,)%2, t€(0,T).

5.2 Space discretization

Within this section we deal with the space discretization of (5.13). In order to evaluate
the boundary integrals in (5.8) we use the (“finite volume”) approximation

Zfs ) (19K )< 'wH(wl% Wl mar ) -9 (5.14)
0K

where w ’(r , w] (0ut) are the traces of w on 9K from the interior and the exterior of element

K €T, respectively and H(-,-,-) is a numerical flux, for details, see, e.g., [33] or [35]. Then
with the aid of (5.8) and (5.14) we define the form

w,p)= ) /H w| P, w|" ,nr) @|rdS— Z/Ef a"’clx (5.15)

TeF, KeT,

In order to employ the concept of semi-implicit schemes we need that the numerical
flux H has a form suitable for a linearization. Hence, in our applications we employ the
Vijayasundaram numerical flux, see [33,59], Section 7.3 or [35], Section 3.3.4. The matrix
P(w,n) defined by (2.14) is diagonalizable, i.e., there exist matrices A and T such that

P(w,n)=TAT !, A=diag (A1, -+, Ags2), (5.16)

where Aq,---,A 4,4, are the eigenvalues of P. We define the “positive” and “negative” part
of P by
P*(w,n) =TA*T™!, A*=diag (A{,---,A}). (5.17)

Then the Vijayasundaram numerical flux reads

H(wl,ZUz,n) =pt (w,n) w1+P <wl-£ZU2,n) ws. (518)

Similarly as the Vijayasundaram numerical flux (5.18) we can apply, e.g., the Roe’s type
schemes [52] having also a form suitable for a linearization.
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It is necessary to specify the meaning of w]?n) for I € FPN. We use the approach
known from the inviscid flow simulation, see, e.g., [35,60]. For I' € .7-';;0 we prescribe
my components of w on I' and extrapolate m, = d+2—m, components of w from K to
I' (T C 9K) where m,, is the number of negative eigenvalues of matrix P(w,n) given by
(2.14). Thus, we define

w|" = LRP(w|\",wp,nr), (5.19)

where LRP(,-,-) represents a solution of the local Riemann problem considered on edge
I'e F/° and wp is a given state vector (e.g., from far-field boundary conditions). For
details, see [30]. For I' € 7}”, the impermeability condition

v-n=0 (5.20)

is prescribed. Then in virtue of (5.14) we put

/H Ol ()l nr)-@ds: —/Pw (t),nr)-@dS, TeF',  (521)

where
Fyy(w,n)=(0,pny,-+-,png,0)". (5.22)
The pressure p is expressed in the form

Wi+ 4 wh
p=(r-1) (wcz+2——2 pT a1, (5.23)

following from (2.8) and (2.2) and extrapolated on I from K (I'C9K) and n=(ny,--- ,ng) =
nr.

The approximate solution of (CFP) is sought in the space of discontinuous piecewise
polynomial functions Sy, defined by (3.5). We introduce the semi-discrete problem.

Definition 5.1. Function wy, is a semi-discrete solution of (CFP), if
a) wy €C'(0,T;8),

5 _
b) ( w;t(t)fq’h) +an (wy(t),@y,) +bi(wi(t),@,) + T (wi(t),@,) =
V(Ph S Shp, Vte (O/T)/

o) wy(0)=w),

(5.24)

where w) € Sy, denotes an Sj,-approximation of the initial condition w® from (2.9).

Here C!(0,T;Sy,) is the space of continuously differentiable mappings of the interval
(0,T) into Sy,. The problem (5.24), a)-c) exhibits a system of ordinary differential equa-
tions (ODEs) for wy, (t) which has to be discretized by a suitable method.
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5.3 Full time-space discretization

The ODEs system (5.24) belongs to the class of stiff problems whose solution by an ex-
plicit scheme is rather inefficient. On the other hand, a full implicit scheme leads to a
necessity to solve a system of nonlinear algebraic equations at each time step which is
rather expensive. Therefore, we follow the approach presented in [31] for the inviscid
flow simulation where a semi-implicit time discretization was developed. Hence, we
introduce a linearization of the nonlinear forms bj, and @, in Sections 5.3.1 and 5.3.2, re-
spectively, and then we define the full time-space discretization of (CFP) by the so-called
BDF-DGFE method.

5.3.1 Linearization of inviscid terms

By (5.15), for wy, @), € Sy, we have

B (i) = Z/Zf wy)- "’hdx+ L [H(wl sl ) lplrds. 6529

KeT, TeFy,

=1 (Wi P),) =X(Wnp,)

The individual forms ¥ (-,-) and X2(-,-) will be linearized separately. For ¥, we employ
the property (2.12) of the Euler fluxes and for @y, wy, ¢, € Sy, define a form

a(ph(x)
wy,, W ,q) E E A w —1—dx. 5.26
( h h h = h/ h < ) a s ( )

The linearization of the term > can be carried out in a simple way, when H in (5.25) is
chosen, for example, as the Vijayasundaram numerical flux (5.18). Let @y, wy, @, € Spp,
we put

Xo(@p,wi) = ) / P+ ((@n),m)wy| (" +P~ (@), 1)y " } lpnldsS,  (5.27)
Tef,
where (wy,) is given by (3.6).
It is necessary to pay a special attention to wy|r for I'€ FPN. For I' € F¥ we employ
approximation (5.21). The vector Fyy defined by (5.22) is a nonlinear function of w and
its linearization is given with the aid of the Taylor expansion by

Pw(wh,n) A\:PW(wh,wh,n) = Pw(ﬁ)h,n)'i‘DPw(ﬁ)h,n) (wh—z'vh)

= DFy(@y,n)wy, (5.28)
where
0 0 0 0
(V344021 /2 —ving - =g M
DFw(w,n)=(v-1) : S : (5.29)
(v%—i—-n—l—vi)nd/Z —vng - —ogng Ny

0 0 0 0
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is obtained by the differentiation of function Fy given by (5.22) with respect to w =
(wy,---,wq). Here n=(ny,---,nq), vj=wji1/wy, j=1,---,d. The last equality in (5.28)
follows from (2.12) which implies

Pw(ﬁ)h,n) :DPw(Z_Uh,n)Z_Uh.

Then we put

XZ(wh/wh/(Ph)

= [ (P (@) mywyl?+P (i) mywylf)-fgyJas

rerf

+ ¥ [ (P (@il P (@) mya () g, )ds

refp

+ ) /Fw Wy, wy, ;)@ dS, (5.30)
rery

where, in virtue (5.19),
w|" =LRP(@|\" ,wp,nr), TeFP. (5.31)
Finally, we define the form

by, (@, wy,@;,) = —x1(@n,wn,@,) + X2 (Wh,wh,@,), (5.32)

where X1 and x; are given by (5.26) and (5.30), respectively. The form b, is linear with
respect to the second and third variable and consistent with b, by

Eh(wh,q)h):bh(wh,wh,q)h) th,goheshp. (5.33)
5.3.2 Linearization of viscous terms
In virtue of (5.7), for @y, wy,, @, € Sy, we define the form

8 o
ah(z‘vh,wh,q)h Z/Z(ZKsk 7 wh) a(zhd
s

KeT,

d d B awh
- Z /¥<ZKS,k(wh)a—xk>nS'[(Ph]dS

-y /Z Q, (@, Vwn, @y, Ve, )) 115+ [wy]dS

rerp

+1 Z /ZQS wh/vwh/(PhIV(Ph)ns wpdS, (5.34)
rerp

which is linear with respect to its second and third components. Moreover, it is consistent
with ay(-,-) by
Elh(wh,q)h):ah(wh,wh,q)h) th,q)heshp. (5.35)
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5.3.3 BDF-DGFE semi-implicit scheme

The main idea of the semi-implicit discretization is to treat the linear parts of forms ay,
and by, (represented by their second and their arguments) implicitly and their nonlinear
parts (represented by their first arguments) explicitly. In order to obtain a sufficiently
stable and accurate approximation with respect to the time coordinate, we use the back-
ward difference formula (BDF), see, e.g., [36], for the solution the ODE problem (5.24), a)-c).
Moreover, for the nonlinear parts of a;(-,-,-) and by, (-,-,-), we employ a suitable explicit
higher order extrapolation which preserves a given order of accuracy and does not de-
stroy the linearity of the problem at each time level. This approach is often called extrap-
olated BDF method and it was introduced and investigated in [16] and [58] for the second
order scheme. In [29], we analyzed the extrapolated BDF-DGFE method applied to the
space discretization (4.16), a)-c) of the model problem (4.1).

Let 0=ty <t; <---<t,=T be a partition of the interval (0,T) and 7 = fy41—fx, k=
0,1,---,r—1. In order to simplify the notation, we put

cy (W, wp,@y,) = ay (W, wp,@y,) +by (W, wp,@,) + T (Whe,), Wy, wy,@, €Spp. (5.36)

Definition 5.2. We define the approximate solution of (CFP) the set of functions wk, k=
1,---,r, satisfying the conditions

k+1
a) w," €Sy,

1 n B n B
b) ?k <sz;wz+l l,(Ph> +Ch (Z‘B]ZUZ-H l,wz—’_l,(ph) =0
1=0 1=1

(5.37)
Ve, €Spp, k=n—1,---,r—1,

) w) is Shp approximation of w®,

d) wﬁ, €8yp, [=1,---,n—1 are given by a suitable one-step method,

where n>1 is the degree of the BDF scheme, the coefficients a;, [=0,---,nand B;, [=1,---,n
depend on time steps 7;_;, [ =0,---,n. We call this approach the BDF-DGFE method.

The relations for the coefficients a;, [ =0,---,n and B;, [=1,---,n can be found in [36,
Section III.5] or [28] for n=1,2,3 and their values for constant time step 7o =71, k=1,---,r
are given in Table 1.

Table 1: Values of coefficients «; and B; for constant time step.

n ay, 1=0,---,n B, 1=1,-,n
1] 1, -1 1

213, -2 1 2, -1
3| ¥, -3 3 —3]3 -3 1

The problem (5.37), a)-d) represents a system of linear algebraic equations for each
k=n—1,---,r—1 which is solved by a suitable linear algebra solver.
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Remark 5.1. There is a natural question how accurate and stable is the proposed BDF-
DGEFE method (5.37). This method was analyzed for the case of a scalar convection-
diffusion equation with a nonlinear convective term and a linear diffusive term in [29].
Assuming that the exact solution is sufficiently regular, we derived a priori error esti-
mates (for the SIPG version)

[ —up| L= (0,7:22(2)) Sc(hp+l+7n)z

[u—un| 201,11 (00,75)) S C (WP +T"),

(5.38)

where u is the exact solution, uj, the approximate solution obtained by the n-step BDF-
DGEFE method (n=1,2,3), p>1 is the degree of polynomial approximation, / is the mesh
size, T is the size of time step and C is a constant independent of & and 7. The estimates
(5.38) were obtained without any restriction on the size of the time step, for more details
see [29].

On the other hand, numerical analysis of the BDF-DGFE method (5.37) applied to the
system of the Navier-Stokes equations is rather complicated. However, numerical experi-
ments presented in this paper indicate that this scheme is sufficiently stable and accurate,
see Section 6.1 (Fig. 5), where the stability of the BDF-DGFE method is demonstrated and
Sections 6.2 and 6.3 where comparisons of an accuracy of the BDF-DGFE method with
respect to the space and time are presented.

Remark 5.2. It is possible to consider a generalization of the BDF-DGFE method (5.37),
a) - d), which is based on the replacing the condition (5.37), b) by

b1) k+10_2‘8 wk+l L' or ]}(l-ﬁ-lozwlfﬂ
k+1 _
b2) meshp/ mzl/"'/mk+1/

! _ 5.39
b3) <a0w12+1 ,(Ph>+TkCh (wZJrl,m 1,wh+1m,¢h> (melfzﬂ l’¢h> (5.39)
I=1

Ve, €Spp, m=1,-- 1ty q, k=n—1,---,r—1,
b4) w’ffl Ew];lﬂ’m"“

where 111 > 2 denotes the number of inner loops. The value 17 is chosen usually in
such a way that

||wZ+1,mk+1 _w];l+1,"_1k+1_1 I<w, (5.40)

where w >0 is a given tolerance and ||-|| is a suitable norm. The resulting “fully-implicit”
numerical scheme (5.39), b1)-b4), (5.37), a), c), d) belongs to the Newton-like methods,
which are based on a suitable approximation of the Jacobi matrix.

The fully-implicit scheme should be more accurate and stable than the semi-implicit
one. On the other hand, fully-implicit scheme is more expensive since it requires solution
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of 11141 linear algebraic problems at the time level k+1. However, for increasing m (1 <
m <1i1i41) the solution of the corresponding linear algebraic problem is faster and faster
since we have better and better initial approximation of the solution.

Nevertheless, we carried out several numerical experiments (not presented in this pa-
per) which indicate that fully-implicit scheme does not exhibits any gain in the accuracy
and the stability in comparison with the semi-implicit one.

Remark 5.3. Another similar approach of the solving of the semi-discrete problem (5.24)
is the solution of the linearized problem by an implicit Runge-Kutta method. Although
the implicit Runge-Kutta methods are sufficiently stable they are not so efficient as the
BDF schemes. It follows from the fact that the m-stage (m > 1) implicit Runge-Kutta
scheme needs to solve m linear algebraic problems at each time step whereas the m-step
BDF requires the solution only of one linear algebraic problem for any m > 1.

5.4 Implementation aspects of BDF-DGFE method

Linear algebraic system solver

As we mentioned in the previous section, problems (5.37), a)-d) represents a system of
linear algebraic equations. Let {1, }°l represent a basis of the space of vector-valued
discontinuous piecewise polynomial functions S, defined by (3.5), where dof denotes

the dimension of Sj,;,. Then a function w’,‘Z € Syp can be written in the form

dof
wh(x)=Y &, (x), x€Q k=01, r, (5.41)
I=1

where C,’( €IR,1=1,---,dof, k=0,---,r. Moreover, for w’,‘Z € Sy, we define the vector of its
basis coefficients by

wk= (gkfl, k2 . ,g"fdof) € R, k=0,1,--,r. (5.42)
Then the linear algebraic problem (5.37) can be written in the matrix form
(zxoM-l-Tka) WE=g* k=n,-r, (5.43)
where matrix M is the mass matrix given by
M= {MUDydf M) = /Q gy, ij=1,,dof, (5.44)

Cy is a the matrix corresponding to form ¢y (-,-,-) defined by

Ck — Ck(wk—l’wk—Z,. .. ,Wk_n),

y y n 3 o (5.45)
CkE{Cl({l,]) gjpill Cl({l/]) =Cy <Z,Blwl;<l l/ lljl‘/ l/]]> 7 Z/]:]~/"'/dOf/
=1
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and g* € IRYf represents the right-hand-side of (5.37)given by

. . n
qk:qk(wkfllwkle...,Wk*n) :{qk,l :i;)gl qk,lE_ (Ealel, tIJl) , (546)
1=1

The linear algebraic problem (5.43) should be numerically solved at each time level
te, k=mn,---,r. It is possible to use a direct solver which is more efficient for not too
large dof (usually dof ~10*—10°). For larger systems, it is suitable to use some iterative
solvers. We employ the restarted GMRES solver with the block diagonal preconditioning.
The restart was carried out after 45 iterations. The iterative process was stopped if the
discrete £2-norm of the residuum was smaller than 10~°. Numerical simulations of steady
as well as unsteady flow problems indicate that this choice is sufficient, i.e., smaller value
of the tolerance does not cause any increase of accuracy and stability of the method.

Choice of shape functions

We dealt with this aspect in [21]. We construct orthogonal basis of S;, by the Grant-
Schmidt orthogonalization process on each element K € 7, separately. Although it is a
known fact, that this algorithm is ill-conditioned, we do not observed any problem with
the stability of the Grant-Schmidt orthogonalization. It is caused by the fact that the
dimension of the finite element space on each element is small and moreover if the basis
is not (exactly) orthogonal it does not mind.

The orthogonality of the basis of Sj,, implies that the mass matrix M given by (5.44)
is (up to round off errors) diagonal and then for small time step 7 the linear algebraic
problem (5.43) can be solved very fast in few iterations. However, for increasing size of
the time step this advantage is diminishing, see Section 6.1, the comment to Fig. 5 (left).

Choice of the time step

The time steps 14, k=0,1,--- are chosen adaptively. We use the identical technique as
in [28] where the inviscid flow simulation was treated. This approach is based on a use
of two semi-implicit multistep formulae of the same order of accuracy and from their dif-
ference we estimate the local discretization error and propose a new time step. However,
this adaptive method optimizes the number of time steps but no the computational time.

The optimal choice of the time step with respect to the computational time (including
setting of suitable stopping condition for the linear algebra solver) is quite open and it
will be a subject of further research.

Representation of non-polygonal boundaries

In order to obtain a physically admissible distribution of physical quantities on non-
polygonal boundaries, we employ the super-parametric finite elements, see [23].

Choice of the penalty parameter ¢

The penalty coefficient o appearing in the definition of Jj (-,-) is given by relation (5.10)
which is a natural generalization of (4.7). In the case of the model scalar equation, the
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value Cyy > 0 in (4.7) can be set by from the theory. Whereas, for the NIPG variant of
the DGFE method, it is sufficient to put Cyy =1, for the SIPG and the IIPG variants, the
value of Cyy should be sufficiently large, the limit values were derived analytically, see,
e.g. [22,24,27,41].

However, for the Navier-Stokes equations the situation is more complicated since a rel-
evant mathematical theory is missing. Therefore, the appropriate values of Cy have to
be found experimentally. This aspect together with the influence of the size of Cyy on the
solution is studied in Section 6.

6 Numerical examples

In this section we present three two-dimensional numerical examples. The first one is a
basic benchmark of steady viscous flow around a flat plate. The second and third ones
represent a steady and an unsteady flows around NACA 0012 profile, respectively.

6.1 Blasius problem

We consider the laminar flow on the adiabatic flat plate {(x1,x2); 0<x; <1,x, =0} cha-
racterised by the freestream Mach number M = 0.1 and the Reynolds number Re = 10%.
The computation domain is viewed in Fig. 3, where two used triangular grids are plotted
together with their details around the leading edge. We prescribe the adiabatic bound-
ary conditions (2.10), c) at the flat plate, the outflow boundary conditions (2.10), b) at
{(x1,x2); x1=1,—1.5<x, <1.5} and the inflow boundary conditions (2.10), a) on the rest
of the boundary.

We seek the steady state solution by the time stabilization approach where the com-
putational process is carried out for “t — c0”. As a stopping criterion we employ the
condition
_ HTkHLZ(Q)

H=——"+2
st = e

<o, (6.1)
where @ >0 is a prescribed tolerance and ¥ € S, is an approximation of 2w (ty), ty€(0,T)
given by

1

= E <w’fl—w’,‘z_1>. (6.2)

In the computations presented within Section 6.1 we put @=10°.

6.1.1 Stability of the method

We compared the NIPG, IIPG, SIPG variants of the DGFEM using piecewise linear,
quadratic and cubic space approximation. Our aim is to find a suitable value of the
constant Cy in (5.10) which ensures the stability of the scheme, i.e., a convergence
to the steady-state solution. Firstly, we carried out computations for the values of
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Figure 3: Blasius problem, computational grids B1 and B2, the coarser one Bl having 662 elements (top) and
the finer one B2 having 2648 elements (bottom), the whole computational domain (left) and their details around
the leading edge (right).

Cw =1,5, 25, 125, 625, 3125 and consequently, several additional values of Cy were
chosen in order to find a limit value of Cy. These results obtained on the grid Bl are
shown in Table 2, where an indication of a convergence of the appropriate variant of the
DGFEM with a given value Cy is marked, namely, (i): “convergence” (C), i.e., the stop-
ping condition (6.1) was achieved after less than 200 time steps; (ii): “quasi-convergence”
(qC), i.e., the stopping condition (6.1) was achieved after more than 200 time steps; (iii):
“no-convergence” (NC), i.e., the stopping condition (6.1) was not achieved after 500 time
steps.

The “quasi-convergence” in fact means that the appropriate value Cyy is just under
the limit value ensuring a reasonable convergence to the steady-state solution.

From Table 2 we found that (i): NIPG variant converges for any Cyy >1 independently
on the degree of polynomial approximation; (ii): IIPG variant requires higher values of
Cw for P, and P; approximations, namely Cy =5 and Cy =10 are sufficient, respectively.
On the other hand, P; approximation converges for any Cy >1; (iii): SIPG variant requires
significantly higher values of Cyy. We observe that Cyy > 125 for P;, Cyy > 400 for P; and
Cw >1000 for Ps. This is in a good agreement with the theoretical results from [41] carried
out for a scalar quasilinear elliptic problem, where the dependence Cyy = cp?, ¢ >0 is
employed (p denotes the polynomial degree of approximation).

Fig. 4 shows the histories of convergence to the steady-state solution (i.e., the depen-
dence of res(k) on k) for some interesting cases from Table 2.

Furthermore, it is interesting to observe the size of time steps adaptively chosen by the
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Table 2: Blasius problem, the convergence (C), non-convergence (NC) or quasi-convergence (qC) of the NIPG,
IIPG and SIPG variants of the DGFEM for Py, P, and P5 approximations for different values of Cyy (symbol “-”
means that the appropriate combination of the method, the degree of approximation and the value of Cy; was
not tested).

NIPG PG SIPG
Cw|PL D, P3| P, P, Ds [P, P, D
1/]C C C|C NC NCI[N N N
5/)C C C|C C NC|[N N N
0|- - -|- ¢ cCc|- - -
2»5|C C C|C C C|N N N
00| - - -|- - - IN - -
125|C C C|Cc C C|C N N
50| - - -|- - -]lc - -
50| - - -|- - - |- N -
30| - - -|]- - - ]- qC -
40(- - -|- - - |- C N
500 - - -|- - - |- C N
65/|C C C|C C C|C C qC

1000 - - -|- - - |- - ¢C
315|C C C|C € C|Cc C C

BDF-DGFE method in a possible comparison with a fictitious explicit time discretization
method. Hence, we define the so-called cfl-value by

cfl(k) =nA(wk), k=1,--,r, (6.3)

where A(-) is an approximation of the maximal eigenvalue of the ODE system (5.24)
given by
A(wf) =max (minL min@> , (6.4)

KeTy rr(wf,n)|T|” KeT, Re

where rr(wk,n) denotes the spectral radius of the matrix P(wf,n)|r given by (2.14) and
Re is the Reynolds number. Numerical experiments show that an explicit time scheme is
stable if cfl(k) <1, see, e.g., [20, relation (70)] or [33].

Fig. 5 (left) shows a typical dependence of the cfl(k) quantity on t, k=0,---,r. We
observe that the cfl-value exponentially increases for k=1,2---. This indicates that the
semi-implicit BDF-DGFEM (5.37), a)-d) is practically unconditionally stable. Fig. 5 (right)
shows the corresponding numbers of GMRES iterations necessary to solve the linear alge-
bra problem (5.43) at each time step. We observed that the increasing size of the time step
T requires higher number of iterations. However, if the numerical solution is close to the
steady state one then the number of GMRES iterations starts decreasing. It is caused by
the fact that the initial guess of the solution of problem (5.43) is very close to the resulting
solution.
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Figure 4: Blasius problem, the histories of convergence for some computations from Table 2, (e.g., 'NIPG-
625.P3’ means the NIPG variant of DGFEM with Cyy =625 and P5 approximation).
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Figure 5: Blasius problem, a typical dependence of the cfl(k)-value (left) and the number of GMRES iterations
(right) on the number of time steps.

Remark 6.1. The number of GMRES iterations is very high and hence the present nu-
merical scheme is not very efficient. It would be suitable to use a more efficient linear
algebra solver. A promising seems to be an application of the BiCGSTAB method with an
updating technique for the ILU(x) preconditioners. This approach was developed in [11],
where an implicit finite volume discretization of an inviscid compressible flow was con-
sidered. Our preliminary numerical experiments give significantly smaller number of
iterations.

6.1.2 Accuracy of the method

We compared the numerical solutions with the “theoretical” one, which can be obtained
from the well-known Blasius problem represented by an incompressible flow along a flat
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plate. Therefore, we introduce the non-dimensional velocities in the stream-direction and
in the normal to stream direction by

v} = v’;(n|) and v3 =V Rey v|2 (17|) , (6.5)
respectively, where
qzx/Rex%, Rex =|veo| Re x1, (6.6)
1

Re is the Reynolds number and v, is the free-stream velocity.

Figs. 6-9 shows the velocity profiles vj and v5 obtained by P;, P, and Ps; approxima-
tions on meshes B1 and B2 at x; =0.1, x; =0.3 and x; =0.5 in comparison with the exact
solution. We employed the NIPG technique with Cyy =25. The velocity profiles obtained
by the SIPG and IIPG variants are almost identical. We observed very accurate capturing
of the v}-profile and a reasonable capturing of the v5-profile. An increase of the accuracy
for an increasing degree of approximation and a decreasing mesh size is evident.

Moreover, Fig. 10 shows the comparison of the computed skin friction coefficient c¢
achieved by P;, P, and P; approximations on meshes B1 and B2 with the exact solution
given by the Blasius formula. We observed a good agreement with the Blasius solution.
However, P; and P; approximations give in fact the same value of ¢y at the first element
on the flat plate. Similar results were obtained in [6, Fig. 2] where the difference among
Py, P, and Ps approximations on the first cell of the flat plate is almost negligible. We sup-
pose that it can be caused by the singularity of the solution at x; = x; =0 which decreases
the local order of accuracy of the DGFE method. This phenomenon was numerically
verified for a scalar nonlinear convection-diffusion equation in [26].

6.2 Steady-state flow around NACAO0012 profile

In Section 6.1, we studied the influence of the value of the penalty parameter Cyy intro-
duced in (5.10) on the stability of the NIPG, IIPG and SIPG variants of the BDF-DGFE
method (5.37). We did not observe any essential influence of Cy on, e.g., the velocity
profiles. Nevertheless, the influence of Cyy on the numerical solution should be investi-
gated by a quantitative characteristic of the flow. Hence, we consider a flow around the
profile NACAQ012 at the free stream Mach number M =0.5, the angle of attack « =0° and
Reynolds number Re=5000. The walls of the profile are adiabatic. The Reynolds number
is near to the upper limit for the steady laminar flow. A characteristic feature of this flow
problem is the separation of the flow occurring near to the trailing edge.

We carried out computations on a set of six successively generated grids N1 — N6
from [1]. Fig. 11 shows these grids around the NACA profile and their zooms around the
trailing and leading edges. The numbers of elements (=#7;,) and mesh sizes (=1//#7)
of grids N1 — N6 are shown in Table 3 (top). We investigated a “convergence” of the drag
coefficient cp for “h— 0" for the NIPG variant with several choices of Cyy. (We observed
the same behaviour as well as for the IIPG and SIPG techniques.) The values of cp are
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x1=0.3 and x; =0.5 in comparison with the exact solution (dotted lines).

approximations at x; =0.1,
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Figure 8: Blasius problem, mesh B2, velocity profiles v =v7(5) for P, P, and P3 approximations at x; =0.1,
x1=0.3 and x1 =0.5 in comparison with the exact solution (dotted lines).
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Figure 9: Blasius problem, mesh B2, velocity profiles v5 =v}(1) for P;, P, and P3 approximations at x; =0.1,
x1=0.3 and x; =0.5 in comparison with the exact solution (dotted lines).



260 V. Dolejsi / Commun. Comput. Phys., 4 (2008), pp. 231-274

0.2 T T T T 0.2 T T T

CF Pl —— ‘CF_PL —+—
CF P2 —x— 'CF_ P2’ -
0.15 ‘CFPS x4 015 [ CFP3 x|
exact ‘exact’
01 x b 01| - Ko
\ N
0.05 :\;\,M g 005 |
0 L L L  — 0 L 1 1 L
mesh B1 0 0.2 0.4 0.6 0.8 1 0 0.01 0.02 0.03 0.04 0.05
02 T T T 0.2 T T T
CF Pl —— CF Pl ——
CF_P2 —--- « CF P2 —x—
0.15 CFP3 % 015 | X CEPg %
exact \ exact
N
0.1 E o1f o
0.05 %‘,mq‘w g 0.05 [
0 L T 1 0 L 1 L L
mesh B2 0 0.2 0.4 0.6 0.8 1 0 0.01 0.02 0.03 0.04 0.05

Figure 10: Blasius problem, skin friction coefficient computed on meshes B1 and B2 by P; ('P_1"), P, ('P2")
and P3 ('P_3") approximation in comparison with the Blasius formula (‘exact’), distributions along the whole
plate (left), their details around the leading edge (right).

Table 3: NACA 0012 profile (M =0.5, « =0°, Re=5000), numbers of elements (=#7},) and mesh sizes

(=1/#1},) of grids N1 — N6 and the corresponding values of the drag coefficient cp computed by the NIPG
variant of the BDF-DGFE method for different values of Cy.

mesh N1 N2 N3 N4 N5 N6
#7), 1148 2262 4216 8482 17888 40440
1/+/#7, | 295E-02 2.10E-02 1.54E-02 1.09E-02 7.48E-03 4.97E-03
P, Cw N1 N2 N3 N4 N5 N6

P 1| 0.03322 0.04913  0.05288  0.05429  0.05470  0.05492
P 5| 0.04289 0.04945 0.05150 0.05356  0.05459  0.05488
Py 25 0.04692 0.04749 0.04910 0.05203  0.05379  0.05448
P, 250 | 0.04157 0.04217 0.04605 0.05093 0.05271  0.05379
P, 1| 0.05538 0.05548 0.05489 0.05482  0.05486 -
P, 51 0.05431 0.05423 0.05436  0.05467  0.05473 -
P, 251 0.05167 0.05199 0.05373 0.05458  0.05473 -
P, 250 | 0.04796  0.05137  0.05337 0.05428  0.05459 -
P3 1| 0.05939 0.05599  0.05500  0.05492 - -
P 51 0.05783 0.05523  0.05467  0.05468 - -
P 25| 0.05475 0.05393 0.05374  0.05471 - -
P; 250 | 0.05178  0.05232  0.05477  0.05480 - -

presented in Table 3 and also visualized in Fig. 12. We easily observe a non-negligible
dependence of cp on Cy on coarser grids but for increasing number of elements #7}, the
influence of Cyy on cp decreases and cp converges to an asymptotic value. All values of
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Figure 12: NACA 0012 profile (M=0.5, =0°, Re=5000), visualization of results from Table 3, the dependencies
of the drag coefficient cp on mesh size (=1/+/#17,) obtained by the NIPG variant of the BDF-DGFE method
for different values of Cyy and P;, P, and P3 approximations on meshes N1 — N6 (left) and its detail on meshes
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cp obtained on the finest employed meshes are within the range size 0.00113 (~ 2% of
the value cp) for P; approximation, 0.00027 (= 0.5%) for P, approximation and 0.00024
(=0.5%) for P; approximation.

Finally, we carried out additional computations on an adaptively refined grid A1 (ob-
tained by the anisotropic adaptation technique [18,19]) having 2 600 elements, see Fig. 13
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Table 4: NACA 0012 profile (M=0.5, a=0°, Re=5000), values of CDp,p, €D,w and cp obtained by the BDF-DGFE
method on mesh Al in the comparison with our former results [20], finite volume computations from [48] and
discontinuous Galerkin solutions obtained by piecewise linear (P ), quadratic (P;) and cubic approximations (P3)

in [6].

method #7;1 DOF CD,p CD,v CD
BDE-DGM - P, 2600 31200 | 0.02441 0.02894 0.05335
BDF-DGM - P, 2600 62400 | 0.02241 0.03173 0.05414
BDF-DGM - P; 2600 104000 | 0.02279 0.03216 0.05495
[20] - P, 6792 81504 | 0.02309 0.03113 0.05422
[48] - P 32768 131072 | 0.02256 0.03301 0.05557
[48] — Py 131072 524288 | 0.02235 0.03299 0.05534
[6] - P 2048 24576 | 0.01963 0.03051 0.05014
[6] - P, 2048 49152 | 0.01991 0.03361 0.05352
[6] - P5 2048 81920 | 0.02208 0.03303 0.05511
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Figure 14: NACA 0012 profile (M =0.5, a =0°, Re=>5000), distribution of the skin friction coefficient (left)
with a detail around leading edge (right) obtained by piecewise linear (CF_P1), quadratic (CF_P2) and cu-
bic approximations (CF_P3) on mesh Al in comparison with “an exact” solution obtained by an “overkill”
computation.

(top). Table 4 shows a comparison of the pressure (cp,) and viscous parts (cp,,) of the
drag coefficient (cp) obtained by P;, P, and P; approximations of the NIPG technique
with Cy =1 on grid Al with reference values from [6,48] and our previous results [20].
Fig. 14 shows the corresponding distributions of the skin friction coefficient in compar-
ison with an “exact” solution obtain by an “overkill” computation. The isolines of the
Mach number are shown in Fig. 15. We observe an increase of accuracy for increasing
polynomial degree of approximation.
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Ps-approximation

Figure 15: NACA 0012 profile (M =0.5, a =0°, Re=5000), isolines of the Mach number (left) with details
around the leading (middle) and trailing edges (right) computed by P;, P, and P3 approximations.

6.3 Unsteady flow around NACA0012 profile

The last example represents a flow around the profile NACA 0012 at the free stream Mach
number M =0.85, the angle of attack « = 0° and Reynolds number Re =10000. The walls
of the profile are adiabatic. This flow regime leads to an unsteady solution and hence
a sufficient accuracy with respect to time is required (on the contrary to the previous
steady-steady examples).

The computations were carried out on the an adaptively refined grid A2 having 3206
elements, see Fig. 13 (bottom). Fig. 16 shows a dependence of the drag (cp) and lift
(cr) coefficients on time obtained by the BDF-DGFE method with piecewise linear (P1),
quadratic (P2) and cubic (P3) polynomial approximation in space and the third order
in time. A characteristic development of oscillations of c; are observed, see, e.g., [47].
Moreover, Fig. 17 shows a propagation of the lift coefficient obtained with the BDF-DGFE
methods with the second and third order accuracy with respect to time in a comparison
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Figure 16: NACA 0012 profile (M=0.85, a=0°, Re=10000), dependence of the drag (up) and lift (middle and
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Figure 17: NACA 0012 profile (M =0.85, a =0°, Re=10000), dependence of the lift coefficient on time
computed by the BDF-DGFE method with the second (up) and third (down) order of accuracy with respect to
time in comparison with the reference solution.

with reference solution (obtained by an “overkill” computation with respect to time).
Fig. 18 shows the density distribution at six time instants within one period of the lift
coefficient obtained the piecewise cubic polynomial approximation with respect to space
and third order of accuracy with respect to time.

7 Conclusion

We carried out a numerical solution of the compressible Navier-Stokes equations by a
combination of the discontinuous Galerkin finite element method and the backward dif-
ference formulae scheme (BDF-DGFE method). This scheme is sufficiently stable, has a
high order of approximation with respect to space and time coordinates and at each time
step we solve a linear algebraic problem. Presented numerical examples of steady as well
as unsteady flows give promising results.

There are several open problems connected with the use of the BDF-DGFE method to
the Navier-Stokes equations:

e an optimization of the method with respect to the computational time, particularly,
the choice of the size of time step, type of linear algebra solver and its stopping
criterion,
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Figure 18: NACA 0012 profile (M =0.85, « =0°, Re=10000), Ps-approximation in space, third order in time,
Mach number distribution at 6 time instants within one period of the lift coefficient oscillations.

e a use of a hp-adaptation approach based on suitable a posteriori error analysis.

The work in progress is the implementation of the three-dimensional variant of the BDF-
DGEFE method.
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A Appendix

The matrices K,y = {K ﬁfnz 1» $,k=1,---,d introduced by (2.15) have (for d = 3) the
following form:
0 0 0 0 0
4 4 1
3 RZ}Z;% 3 Rew; 0 0 0
[ 1
Ki1= Re;v% 0 Rew, 0 0 p (A1)
w 1
RC;}% 0 0 REZU] O
(51) 1 /4 1 1 1
Ky m@‘% Z_% m(l—%)%—% m(l—%)z_;zl RgPrw_l
5,1
with Kil )= — = (§wi+wi+wl) + <_z_§+m>
0 0 0 0 0
1
~Rew? Rew; 0 0 0
4 w 4 1
Kz/zz _§Rezi)% 0 3 Rew; 0 0 , (A.2)
Wy 0 1 O
Rew? Rew;
(51) 1 1 (4 1 1
Kz,z R_e(l Plr Z—é R_e(§_Plr)z_§ R_e( _Plr)z_% RgPrw_1
(51) _ 1 4 w2 +wi4w?
with K3 = — o (W3 + 503+ i) + s <_z_?+ 3 4)’
0 0 0 0 0
1
RZCU;}% Rewr 0 0 0
[ 1
K33= o Re;v% 0 Rew, 0 0 , (A.3)
4 1
3 Rzeuzi)z 0 0 3 Rew; 0
(51) 1 1 1 /4 1
Kz’ w293 =m(-7)3 G-y mba
: (51) _ 1 2, .2 4.2 wi+wi+w
Wlth K3,3 —_Rew:]; (w2+w3+§w4)+R€PV ( + 2 w? 4)/
0 0 0 00 0 0 O 0 0
2 2 1 2 2 1
ngufu% 0 ~ 3 Rew; 00 3 204 0 0 ~ 3B Rew; 0
1
Kir= ——RZ’;}% Rew; 0 00|, Ki3= sz (1) 0 0 0 1,
0 0 0 00 T Rew? Rew 0 0 0
_lwws w2 _wp_ g 1wy _wy 0 —2_®_
3 RewS  Rew? 3 Rew? 3Rew Rew? 3 Rew?



V. Dolejsi / Commun. Comput. Phys., 4 (2008), pp. 231-274 269

0 0 0O 00 0 0 0 0 0
1
@m0 gl 000 0 0 0 0 0
K 2wy 2 1 0 00 Kon— %&2 0 0 —% R 1 0
21— 3 Rew% 3 Rew, , Ro3= R%:] . ew ,
0 0 0 00 “Rew 0 R 00
_lwyws _ 2 ws wy 0 0 _lwswy 0 Wy _ 2 wp 0
3 Rew? 3 Rew?  Rew? 3 Rew? Rew? 3 Rew?
(A5)
0 0 0 0 0 0 0 0 0 0
~Rou 0 0 gg O 0 0 0 0 0
—2a, 00 0
K3’1 = 0 0 0 0 0 , K3,2 = Rew? Rew;
2 2 1 2 2 1
3 RZGUZ;% " 3 Rew; 0 0 0 3 RZGUZ;% 0 — 3 Rew; 0 0
_lwwy 2 wg g _w _lwswy g _2_ws W_
3 Rew? 3 Rew? Rew? 3 Rew? 3 Rew?  Rew?
(A6)

For d =2, the form of K, s,k =1,2 can be easily derived from (A.1)-(A.6) by remov-
ing fourth rows and columns of matrices K, symbolically putting w4 :=0 and finally
“renaming” ws by wy. See also, e.g., [35, Section 4.3] or [39] where the explicit forms of
Kk, s,k=1,2 for d=2 are given.

. (m,n) d+2 .
The matrices Dg; = {Ds’k’ } , k=01,---,d, s=1,---,d introduced by (2.21) are

mn=1
given by
0 0 0 0 0
0 —4_ 1 ow 2 1 dw 2 1 dw 0
3 Rew? dx1 3 Rew? dxz 3 Rew? 9x3
0 ——Ldwm __1 du 0 0
Dllo(w,Vw) = Rew? 0x2 Rew? 0xq (A7)
0 —xi,% 0 —=L, % 0
Rew? 9x3 : Rezp% oxq
(5,2) (53 5,4) 1 9
0 D 1,0 D 1,0 D 1,0 B Plr Rew? %
with
1 4 ow Jw ow vy 1 wyow
D2 = _ 4 1 1 1 N w2
L0 Rew? 302 0x1 Tws 0x2 T 0x3 Pr Rew? wy 0x1”
3 _ 1 2 Jdw owq vy 1 wzodw;
DY = = - o1 wsown
W™ Rew? (3w2 oy Pox, ) Pr Rew? wy 0x;

(54) 1 gw owy —w owy N 1 @aﬂ
1 3\3 2 9x3 4 9x, Pr Rew? wy 0x1”
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0 0 0 0 0
1 Jw 1 Jw
0 - Rew% a_le B Rew% 3_361] 0 0
0 2.1 dwy _4_1 dwy 2_1 9w 0
Dz,o(w,Vw) = 3 Rew? 011 3 Rew? 0xz 3 Rew? 0x3 (A.8)
0 0 1 9w __1 ow 0
Rew? 0x3 Rew? ox;
(52) (53) (54) 1 9
0 Dz,o Dz,o Dz,o - % W %21
with
pea—_1 (2 odw__ dwi) 7 1 waowy
20 = Rew? \ 3 3 9x; 39x, Pr Rew? wy 0x2”
1 Jwy; 4 OJw ow vy 1 wsdw;
D(5/3) =_ 1 = 1 1 s =1
20 Rew? “29%, t3ws 9x7 T dx3 ) = Pr Rew? wy 0x;
D(5’4) 1 2 Jdwy 0wy v 1 wygow;
20 = Rea? \3% 9% Yom, ) T Pr Rew? wi s
ewy X3 Xo 7 Rew] w1 dx3
0 0 0 0 0
1 oJw 1 ow
0 - Rew% W; 0 - Rew% 3_3611 0
1 Jw 1 ow
D3,0 (w,Vw) = 0 0 o Rew% Wsl - Rew% Wzl 0 (A9)
0 2_1 dw;  2_1 Jdwp _4_1 Jw 0
3 Rew? 011 3 Rew? 0x2 3 Rew? 0x3
(52) (53) (54) 1 9
0 D3,o D3,0 D3,0 - % Rew? %31
with
1 2 ow Jw v 1 wyduw
D(5’2) = — _1 — _1 L ——,
30 " Rewd \3*9x;  20x3 ) T Pr Rew? wy ox,

53 _ 1 2  Jdun w1 v 1 ws3ow
D = — W4 —— — W3 —— L —_
30 (3W4 axz ws aX3 + Pr Rew% w1 axz

54) 1 oWy oWy é oWy 7y 1 @aﬂ
Pr Rew? wy 9x3

For d =2, the form of Dy, s =1,2 can be easily derived from (A.7)-(A.9 by remov-
ing fourth rows and columns of matrices D;,, symbolically putting w4 := 0 and finally
“renaming” ws by wy.

The matrix elements of Dy, s,k=1,---,d are defined by

(m,n) —7 ...
Ds(/r;:,n) _J Ky for n:2, ,d+2, (A.10)
0 forn=1,
where Ki’:’") with m,n=1,---,d+2 are elements of matrices K, s,k =1,---,d given by

(A.1)-(A.6).
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