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Abstract. We consider whether implicit simulation techniques can be extended in time
and space scales to magnetohydrodynamics without any change but the addition of
collisions. Our goal is to couple fluid and kinetic models together for application to
multi-scale problems. Within a simulation framework, transition from one model to
the other would occur not by a change of algorithm, but by a change of parameters.
This would greatly simplify the coupling. Along the way, we have found new ways
to impose consistent boundary conditions for the field solver that result in charge and
energy conservation, and establish that numerically-generated stochastic heating is
the problem to overcome. For an MHD-like problem, collisions are clearly necessary
to reduce the stochastic heating. Without collisions, the heating rate is unacceptable.
With collisions, the heating rate is significantly reduced.

PACS: 52.65.-y, 52.65Rr, 52.65Kj
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1 Introduction

Plasma dynamics span a large range of time and space scales, and no one model can
cover them all. For very fast time scales and very small spatial scales, classical plasma
simulations work very well, but at the cost of resolving all scales and consuming vast
amounts of computing power. Magnetofluid (MHD) calculations model large scales and
long times, but eliminate kinetic effects. In the landscape between, there are reduced
models, such as hybrid and gyrokinetic models, and there are implicit methods, which
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extend plasma simulations to larger scales while retaining the contributions of kinetic
electrons. An increase in applicability of any of these methods would be useful.

Here we ask if implicit methods can be extended to problems on MHD time scales. Do
the equations become so inaccurate and difficult to solve that there is no value in doing
so? Specifically, we ask if the field equations become substantially more difficult to solve,
and whether stochastic heating can be controlled as one increases time and length scales.
There is a recent review of implicit simulation [23], to which we direct readers wishing a
more comprehensive review. On the other hand, we include some details that have not
previously been reported in order to proceed with our analysis.

Implicit simulation methods were invented by Mason [25] and Denavit [13], who
combined fluid and kinetic models of electrostatic plasmas to bypass stability constraints
imposed by explicit-in-time methods. Explicit stability constraints require that

ωpe∆t<2, h/(ue/ωpe)<1,

and that c∆t/h < 1 for electromagnetic plasma interactions, where ωpe is the electron
plasma frequency, c is the speed of light, ∆t is the time step, and h is the minimum re-
solved length scale. The minimum resolved scale, h, must be less than the electron Debye
length, ue/ωpe, to avoid the finite grid instability [18, 24]. Mason and Denavit noted the
solution of the field equations requires only the first few moments of the particle dis-
tribution, and that the evolution of the moments can be predicted using a much smaller
system of equations than is required to advance the particle orbits. By solving implicit-in-
time moment and field equations self-consistently, the implicit moment method advances
the particle solutions just once each cycle, as in an explicit solution, while retaining the
superior numerical stability properties of a fully implicit method.

The moment equations are derived from an expansion of the moments about their
initial values in powers of ue∆t/h, where ue is the root mean square electron speed. The
accuracy of the expansion requires that ue∆t/h<1, but

ue∆t/h=(ue/ωpe)/h×ωpe∆t.

Thus ∆t can be increased if h is also increased. h can be increased because implicit meth-
ods are less prone to the finite-grid-instability than explicit methods [3], and ∆t can be
increased because of the unconditional stability of implicit methods. The advantage of
the implicit solution is most evident in the scaling of the cost of a simulation with the
ion/electron mass ratio. Given a problem on ion time and space scales with

T =nω−1
pi , L= l(c/ωpi),

the explicit/implicit cost ratio scales as (mi/me)3/2. Data on the relative cost of explicit
and implicit calculations in 2 dimensions is given in Table 1 of [31]. It should be noted
that the explicit calculations resolve all scales, and the implicit calculations do not. There
is much more detail in the explicit results. On the other hand, explicit calculations cost
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up to 40000 times as much for the same problem. That means that explicit calculations
with physical ion/electron mass ratios are still too costly to undertake, and computations
in 3-dimensions are even more impossible.

Low-frequency, electromagnetic simulation has had wide application. With the im-
plicit moment code, VENUS, simulations of the interaction of a CO2 laser with a target
revealed the lateral transport of electrons caused by the propagation of self-generated
magnetic fields across the target surface [10, 36]. Simulations of quasi-parallel [28] and
quasi-perpendicular [11] collisionless shocks in two dimensions revealed the unsteady
nature of the shocks and mechanisms for heating that had not previously been observed.
Simulations of the lower hybrid drift instability in a Harris sheet identified electron heat-
ing as the primary saturation mechanism, one which causes saturation at much lower
amplitudes than previously estimated [4]. More recent simulations are referenced in [23].

In all of these calculations, the motion is non-relativistic, ue/c≈ ǫ, where ǫ < 1, and
electromagnetic waves are not resolved, c∆t/h > 1. The electron Debye length is small
compared with minimum resolved spatial scales, (ue/ωpe)/h ≈ ǫ , but the collisionless
skin depth is not necessarily small, (c/ωpe)/h ≈ 1. However, the accuracy condition,
|u|∆t/h≈1, allows a large time step,

(ωpe∆t)≈1/ǫ2 .

Here, we review the current implicit moment algorithm, as it is implemented in CE-
LESTE, analyze its properties, with particular attention to nonlinear stability, solution of
the field equations in the MHD limit, and energy conservation. We conclude with some
results for a collisional plasma, showing that collisions reduce stochastic heating when
the collision frequency is high.

2 Implicit plasma simulation

2.1 Implicit-in-time equations

Implicit plasma simulation means the solution of a system of implicit-in-time equations
with time steps, ∆t, that are typically much larger than those allowed by explicit simu-
lations. Implicit equations may take many forms, but for reasons that will become more
evident when we examine certain features of the solutions, we will discuss a first order
formulation. Where E and B are the electric and magnetic fields, and ρ and J are the
charge and current density, and with the convention, that En ≡ E(n∆t), we write semi-
discrete approximations to Faraday’s law

∇×En+θ +
Bn+1−Bn

c∆t
=0, (2.1)

and Ampere’s law

∇×Bn+1/2−
En+1−En

c∆t
=

4π

c
Jn+1/2. (2.2)
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The fractional time levels are computed by linear interpolation. For example,

En+θ = θEn+1+(1−θ)En.

The choice of time levels is an attempt to satisfy a number of constraints. For example,
in Eq. (2.2), B on the LHS and J on the RHS are at the same time level because, in the low-
frequency, quasineutral limit, E is slowly varying and

4πJ≈ c∇×B.

Thus it would be inconsistent to have J and B at different times. If J is evaluated at any
time other than n+1/2, strong damping of gyromotion results. Thus, both J and B must
be at n+1/2. Tanaka argues that this choice, with B in Eq. (2.2) and E in Eq. (2.1) at
different times incorrectly computes the ponderomotive force [35, p. 120]. However, his
argument applies to high-frequency, electromagnetic waves where J and E dependent
terms nearly balance in Eq. (2.2).

The magnetic field is solenoidal,

∇·Bn =0, (2.3)

and charge is conserved,
∇·En =4πρn. (2.4)

The particle velocity, up, can be written,

un+1
p =un

p+
(( q

m

)

s
En+θ(xn+1/2

p )+un+1/2
p ×Ωps

)

∆t−Cps∆t, (2.5)

where the cyclotron frequency is defined by,

Ωps ≡
( q

m

)

s

Bn
(

xn+1/2
p

)

c
, (2.6)

and the simple collision model,

Cps =−νs

(

un+1/2
p −Un+1/2

s

(

xn+1/2
p

))

, (2.7)

is employed. The center-of-mass velocity, Us is defined below.
The time at which Ωps is evaluated anticipates the form in which we write Ohm’s law,

Eq. (3.8), below. The particle position is given by,

xn+1
p −xn

p

∆t
=un+1/2

p . (2.8)

All of the particles of species s will have the same charge/mass ratio, (q/m)s and collision
frequency, νs. However, each particle may have a different charge, qp, and mass mp.
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The particles also have a finite size, with the distribution of their properties in space
defined by a shape function, S(x), which is a positive, symmetric function with normal-
ization,

∫

D
S(x)dV =1. (2.9)

The shape function has bounded support, such that S(x)=0 for |x|>h.

The shape function allows us to compute particle moments by summing the contri-
butions of charge and current at each point in space. For example, the charge density, Qn,
and current density, Jn+1/2, are

Qn(x)=∑
p

qpS(x−xn
p),

Jn+1/2(x)=∑
p

qpun+1/2
p S(x−xn+1/2

p ).
(2.10)

The time at which each of the moments is evaluated anticipates its use below.

The center of mass velocity is defined such that,

∑
p

qp

(

up−Us(x)
)

S(x−xp)=0. (2.11)

One last detail. Because the particles have finite size, we must specify what we mean by
E(xp). Energy conservation constrains the definition in the following way.

The energy of the system is the sum of field and particle energies,

E =
∫

D

1

8π

(

E2+B2
)

dV+∑
p

1

2
mpu2

p. (2.12)

The change in energy over a time step is computed by forming the inner product of En+θ

with Faraday’s law, Eq. (2.1), Bn+1/2 with Ampere’s law, Eq. (2.2), and mpun+1/2
p with the

particle acceleration, Eq. (2.5) and summing the results. The change in the field energy is,

En+1
F −En

F =−∆t
∫

D

[ c

4π
∇·
(

En+θ×Bn+1/2
)

+Jn+1/2 ·En+θ

+
θ−1/2

4π

(

En+1−En
)2
]

dV. (2.13)

The last term in the integrand is the error due to de-centering the equations, which is
dissipative when θ >1/2.

The work done by the fields on the particles follows from the definition of the current
density,

∫

D
Jn+1/2 ·En+θdV =∑

p

qpun+1/2
p ·

∫

D
En+θS(x−xn+1/2

p )dV. (2.14)
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The change in the particle energy due to the action of the fields is,

En+1
KE −En

KE =∑
p

qpun+1/2
p ·qpEn+θ(xn+1/2

p ). (2.15)

The change in particle kinetic energy due to collisions is,

En+1
collisions−En

collisions =−νs ∑
p

mp(up−Us)
2∆t. (2.16)

To conserve energy, the particle kinetic energy dissipated by collisions is added to a par-
ticle internal energy, mpep. The work done by the fields and the change in particle energy
due to the action of the fields must be equal , and they are if we define the field at the
particle by the convolution,

En+θ(xn+1/2
p )≡

∫

D
En+θ(x)S(x−xn+1/2

p )dV. (2.17)

The magnetic field at the particle is defined similarly.

3 The implicit-moment approximation

3.1 Ohm’s law

We now identify the linear dependence of Jn+1/2 upon En+θ, and move it to the LHS of
Eq. (2.2). This results in a linear equation with only known quantities on the RHS. To do
so, we expand Jn+1/2 in powers of ǫ= |u|∆t/h, and discard terms of O(ǫ2) and higher.

The particle velocity equation, Eq. (2.5), with collisions, is simplified,

un+1/2
p = ũp+

(( q

m

)

s
En+θ(xn+1/2

p )+un+1/2
p ×Ωps

) τs

2
, (3.1)

by defining an effective collision time,

τs ≡
∆t

1+νs∆t/2
, (3.2)

and explicit displacement rate,

ũp≡un
p−
(

un
p−U1/2

s

)

νs
τs

2
. (3.3)

We note that

lim
νs∆t→0

ũp =un
p, lim

νs∆t→∞
un+1/2

p =U1/2
s ,

and that τ≤∆t for all values of νs and ∆t.
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The electric field at the particle position, Eq. (2.17), and the current density, Eq. (2.10),
S are defined with xn+1/2

p . This dependence can be expanded in powers of ǫ about xn
p.

Because S is symmetric, its derivative is anti-symmetric, and

S(x−xn+1/2
p )=

(

S(x−xn
p)−

∆t

2
un+1/2

p ·∇xS(x−xn
p)

)

+O(ǫ2). (3.4)

The electric and magnetic fields in Eq. (3.1) are evaluated at a time-advanced position of
the particle, xn+1/2

p . But if we substitute Eq. (3.4) into the definition of E(xp), for example,

En+θ
(

xn+1/2
p

)

=
∫

D
En+θ (x)S(x−xn

p)dV+O(ǫ), (3.5)

we see that the substitution of fields evaluated at xn
p into Eq. (3.1) introduces an error of

O(ǫ)2 into its solution. A first-order approximation to Eq. (2.5) is thus given by evaluat-
ing the fields at the n time level particle positions,

With this approximation, Eq. (2.5) can be solved for un+1/2
p by resolving it into com-

ponents parallel and perpendicular to B, which yields

un+1/2
p =Πps ·

(

ũp+
( q

m

)

s
En+θ

(

xn
p

) τs

2

)

, (3.6)

where the tensor Π is given by

Πps =

[

I−I×Ωps
τs
2 +ΩpsΩps

(

τs
2

)2
]

1+
(

Ωps
τs
2

)2
. (3.7)

with Πps evaluated with Bn(xn
p)

We sum over the set of particles of species

Ps ={Ps : p∈N,(qp/mp)=(q/m)s}

and substitute from definition of moments to derive Ohm’s law

Jn+1/2
s (x)≈ Ĵs +σ̂·En+θ. (3.8)

We approximate the current, Ĵ, by

Ĵs ≡ ∑
p∈Ps

qpΠ
n
p ·ũpS(x−xn

p)− ∑
p∈Ps

qpΠ
n
p ·ũpΠ

n
p ·ũp ·∇xS(x−xn

p)
∆t

2
, (3.9)

and the conductivity, σ̂, by

σ̂s ·E
n+θ ≡

( q

m

)

s
∑

p∈Ps

qpΠp ·

(

∫

D
En+θ

(

x′
)

S(x′−xn
p)dV ′

)

S(x−xn
p)

∆t

2
. (3.10)
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Because of Eq. (2.11), ∆t replaces τs in the definition of Πps. In other words, collisions
have no effect on the mean flow for each species. We note that if we were to evaluate Πp

with Bn+1/2 in Eq. (3.7), it would require our showing that Bn+1/2−Bn is small in some
sense. Only then could we still write Ohm’s law with a linear dependence on n+1/2
time level variables as given by Eq. (3.8). If Bn+1/2−Bn were large, there would be the
possibility of seriously degrading the accuracy of the field solution.

Consistent with Eq. (2.11), the center of mass velocity appearing in the collision term,
Eq. (8) is evaluated for each species using Eq. (3.8),

Un+1/2
s =

Jn+1/2
s

Qn
s

. (3.11)

The total current, for example, is computed by summing the species currents,

Jn+1/2 =∑
s

Jn+1/2
s . (3.12)

Unless there are collisions between species, there is no resistance to current flow, and
the conductivity is more accurately called a susceptibility, at which point Eq. (3.8) invites
a comparison with the direct implicit formulation [19, 20]. Mason comments there is
an equivalence between direct and moment methods under certain circumstances [26,
pp248-249].

3.2 Assignment functions

We now consider a set of points xv ={xv : xv ∈D,v=1,··· ,Nv}, with which we associate a
vertex volume Vv such that

∑
v

Vv =
∫

D
dV.

We define an assignment function by integrating the particle shape function over this
volume,

A(xv−x)≡
∫

Vv

S(x′−x)dV ′. (3.13)

The assignment function is a partition of unity, and

1=∑
v

A(xv−x).

It is trivial to show that the integral of A over D is,
∫

D
A(x−xv)dV =V. (3.14)

Vertex values of the moments are defined to be the average of the moments given by
Eq. (2.10) over Vv. The current density is,

Ĵvs ≡
1

Vv

[

∑
p∈Ps

qpΠ
n
p ·ũpA(xv−xn

p)− ∑
p∈Ps

qpΠ
n
p ·ũpΠ

n
p ·ũp ·∇xvA(xv−xn

p)
∆t

2

]

. (3.15)
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We introduce a functional representation for the field,

∑
v

EvA(xv−x)=
∫

D
E(x′)S(x′−x)dV ′, (3.16)

which, using Eq. (3.14), satisfies the conservation law,

∑
v

EvVv =
∫

D
E(x)dV. (3.17)

Substituting Eq. (3.16) into Eq. (3.10), and integrating over Vv, gives us a conductivity
matrix,

∑
v′

σ̂vv′s ·E
n+θ
v′ ≡

1

Vv

( q

m

)

s
∑

p∈Ps

qpΠp ·∑
v′

En+θ
v′ A(xv′−xn

p)A(xv−xn
p)

∆t

2
. (3.18)

3.3 Solution on a grid

We will now describe a ’staggered mesh method’, which has several very nice properties,
among them that they produce finite difference approximations that satisfy conservation
laws and preserve vector identities. The approximations were first developed by Schultz
[32], and extended to three dimensions by Brackbill [2].

We use the functional representation for E given by Eq. (3.16). to derive a difference
approximation to Faraday’s law by integrating over a control volumeVc,

∑
v

∫

Vc

∇A(x−xv)dV×En+θ
v +

∫

Vc

(

Bn+1−Bn
)

dV

c∆t
=0. (3.19)

We introduce Vc as a real geometric object, and

∑
c

Vc =VD.

In fact, we can restate the definition of Vv given by Eq. (3.14),

Vv =∑
c

∫

Vc

A(x−xv)dV. (3.20)

With BcVc≡
∫

Vc
BdV, our approximation to Faraday’s law is,

1

Vc
∑
v

gcv×En+θ
v +

Bn+1
c −Bn

c

c∆t
=0, (3.21)

where

gcv≡
∫

Vc

∇A(x−xv)dV. (3.22)
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The value of the integral is determined analytically. Any error in the difference equa-
tion comes from the approximation error in the functional representation for E, given by
Eq. (3.16).

We derive an approximation to Ampere’s law by the method of virtual work. First,
we define the electromagnetic field energy by,

E =
1

8π

[

∑
c

Bc ·BcVc+∑
v

Ev ·EvVv.

]

. (3.23)

The change in E over a time step is computed by forming the inner product of B with
Faraday’s law, Eq. (3.21), and of E with Ampere’s law, Eq. (2.2). The magnetic energy
from Eq. (3.21) is,

∆EB =−∑
c

Bn+1/2
c ·∑

v

gcv×En+θ
v . (3.24)

The change in the electric field energy, EE is computed from Ampere’s law, Eq. (2.2),
similarly to the magnetic field energy. We replace E·∇×B by the RHS of Eq. (3.27), with
opposite sign to force cancellation,

∆EE =c∆t∑
c

Bn+1/2
c ·∑

v

gcv×En+θ
v −∑

v

[

∆tEn+θ
v ·Jn+1/2

v −
(θ−1/2)

4π
(En+1−En)2

]

Vv, (3.25)

and the total energy change is equal to the work done on the plasma less the dissipation
that results when θ >1/2,

E =−∑
v

[

∆tEn+θ
v ·Jn+1/2

v −
(θ−1/2)

4π
(En+1−En)2

]

Vv. (3.26)

Using a vector identity and inverting the order of summation, we can rewrite the first
term on the RHS of Eq. (3.25),

∑
c

Bn+1/2
c ·∑

v

gcv×En+θ
v =−∑

v

En+θ
v ·∑

c

gcv×Bn+1/2
c . (3.27)

We note that unless we explicitly set boundary conditions, the Poynting flux at the bound-
ary vanishes. We can now factor En+θ

v Vv from Eq. (3.25), and since we can replace Ev by
an arbitrary vector, the difference equation that must be solved for each value of v is,

En+1
v −En

v =
1

Vv
c∆t∑

c

−gcv×Bn+1/2
c −4π∆tJn+1/2

v . (3.28)

The magnetic field can be eliminated between Faraday’s and Ampere’s laws to give an
equation for the electric field. We replace Jn+1/2 with the linearized Ohm’s law, Eq. (3.8),
using the conductivity, Eq. (3.18), in its lumped form, Eq. (4.5). The result is,

θ

2
(c∆t)2 1

Vv
∑

c

−gcv×
1

Vc
∑
v′

gcv′×En+θ
v′ +(I+4πθ∆tσv)·E

n+θ
v

= En
v +(cθ∆t)

(

1

Vv
∑

c

−gcv×Bn
c −

4π

c
Ĵv

)

. (3.29)
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4 Analysis

Perhaps this section might better be titled ’living with CELESTE’, for we discuss how to
manage plasma heating and how to solve the field equations. On the other hand, the
problems we consider are generic problems in plasma simulation, for example, plasma
heating and the solution of the field equations. We also discuss collisions as a means to
do fluid modeling with an implicit plasma simulation method.

4.1 Plasma heating

Cohen et al. made a systematic study of numerical heating for the direct implicit method
[9], in which they map the energy error as a surface in ∆t-h parameter space. They show
that energy increases because of plasma heating except in a narrow band

0.5<ue∆t/h<1.0,

even when the numerical scheme is dissipative.
The underlying cause of heating is the fluctuations in charge that result from using

small numbers of simulation particles to model the plasma. Hockney [14] gives a particle
heating rate for a stochastic process,

dEK

dt
=

q2

m

〈

E2
〉

τcorrelation, (4.1)

and an estimate of the stochastic field from kinetic theory,

〈

E2
〉

EK
≈

1

2

0.1

nλ2
De

. (4.2)

These results suggest that implicit simulations with ωpe∆t≈1 and h/λDe<1 should suffer
rapid heating.

The stochastic field enters the computation cycle through a correction of the electric
field at the beginning of each cycle to make it consistent with the charge density com-
puted from Eq. (2.10). A correction potential is computed from,

∇·∇φ=∇·[En−4πQn]. (4.3)

The stochastic field energy is measured by the correction potential,

∫

D
δE2dV =

∫

D
∇φ2dV.

In Fig. 1, we show a history of the total, particle, and magnetic field energies for a
Harris current sheet equilibrium [22,31] in the plane perpendicular to the magnetic field.
The x-directed magnetic field reverses polarity at the center of the current sheet where
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Figure 1: The total (top curve) and particle (third from top) energies increase, while the magnetic field energy

(second from top) decreases. Time in this and all succeeding plots is in units of ω−1
pi . The calculation with

ωpi∆t=0.1, mi/me =180, θ=0.5 and 25 electrons per cell uses the GEM challenge equilibrium, but is in a plane
perpendicular to the magnetic field. The decrease in magnetic field energy and some of the increase in particle
energy is a result of the action of a lower hybrid drift instability. The remainder of the particle heating, which
occurs at a roughly constant rate, is consistent with a stochastic cause.

the plasma density has its maximum value. The computation is performed on a grid
with 32 zones in y and 16 zones in z , and mesh spacing hx =0.4c/ωpi and hz =0.5c/ωpi,
where y is a periodic coordinate and z is the direction of variation for the equilibrium.
The time step is ωpi∆t = 0.1, and θ = 0.5, so the equations are second-order in the time
step, and non-dissipative. The ion/electron mass ratio is 180. The mean electron particle
displacement each time step is ue∆t/h=0.025.

In this problem, a lower hybrid drift instability causes electron heating at the expense
of magnetic field energy. With the implicit calculation, the total energy increases; numer-
ical particle heating accounts for the increase. With the numerical parameters above, the
’stochastic’ field, Fig. 2, is smaller than Hockney’s estimate, Eq. (4.2). The ratio

〈

E2
〉

/EK ≈0.015.

(Our measure is the integral of ∇φ·∇φ over the domain. The increase over time in the
measure is caused by particle heating.) This gives

nλ2
De≈10.

The estimated nλ2
De from the relation,

ue∆t

h
=

(

mi

me

)1/2 λDe

h
ωpi∆t, (4.4)
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λDe/h≈ 0.02. With 25 electrons per cell, there are only 1/100 particle per Debye circle!
Evidently, the implicit algorithm reduces the stochastic field to a value that would require
a much larger number of particles to achieve with an explicit code.

Figure 2: The energy in the correction field gives a measure of the ’stochastic’ field, since the only source should

be fluctuations in charge density. The ’stochastic’ field scales as the n1/2
e , where ne is the number of electrons

per cell. With 100 electrons per cell, the correction field is half the value with 25 electrons per cell.

If we increase the number of particles to 100 electrons per cell, the stochastic field is
roughly halved, Fig. 2, as does n−1/2. If the implicit equations are solved as backward-
Euler equations, θ = 1, there is numerical dissipation of the electric field, Fig. 3, which
improves overall energy conservation by partially balancing the stochastic field contri-
bution. The numerical dissipation is largest for high frequency, short wavelength modes,
and selectively filters the stochastic fields.

4.2 Other energy terms

The work done by the field on the particles, Eq. (2.14), and the work done on the par-
ticles by the fields, Eq. (2.15) balance to O(ue∆t/h)2, with the estimated conductivity in
Ohm’s law, Eq. (3.18). However, the conductivity matrix occupies an enormous amount
of computer memory. For standard area-weighting assignment functions, the storage
of the conductivity matrix in 3 dimensions requires 9×27 arrays (times the number of
species). Storage is reduced to 9 arrays if one uses a ‘lumped conductivity’,

σv =∑
v′

σvv′ , (4.5)

but this introduces an error.
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Figure 3: When the calculation shown in Fig. 1 is repeated with θ=1., numerical damping, defined in Eq. (2.13),
is sufficient to greatly improve overall energy conservation (left), but is small when compared directly with the
stochastic heating rate (right).

Recall that the conductivity matrix in Eq. (3.18) is derived directly from the particle
equations of motion, to which it is an approximation of O(ue∆t/h)2. To this order, there
is no error in the contributions of Ĵ , Eq. (3.15). Thus, the error caused by lumping is,

δEJ·E =−
1

Vv

( q

m

)

s
∑
v′

En+θ
v′ · ∑

p∈Ps

qpΠp(σvδv,v′−σvv′)+O(ue∆t/h)2. (4.6)

Also recall that

E(xp)=∑
v

EvA(xv−xp).

Second, we note that E(xp)·Πp ·E(xp)≥0 because the antisymmetric components give no
contribution. Since A≥ 0, the coefficient of each term in the sum over p is positive. We
now must determine the sign of (σvδv,v′−σvv′).

4.2.1 Gershgorin’s circle theorem: proof that all the eigenvalues of the conductivity

matrix are positive

Consider the matrix

Mvv′ ≡∑
p

mp

(

Avpδvv′−AvpAv′p

)

,

where Avp≡A(xv−xp). From Gershgorin’s circle theorem, we conclude the eigenvalues
of Mvv′ are always positive.
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Theorem 4.1. Every eigenvalue, λ, of Mvv′ lies in at least one of the circles C1,··· ,Cn, where Cv

has its center at the diagonal entry Mvv and its radius

Rv = ∑
v 6=v′

|Mvv′ |

equal to the absolute sum along the rest of the row [34, p. 426]. That is:

|λ−Mvv|≤Rv. (4.7)

First, we note that Avp≥0 for all v, and that ∑vAvp =1. Thus,

Rv = ∑
v 6=v′

AvpAv′p =Avp

(

1−Avp

)

= Mvv. (4.8)

Therefore, λ≥0. From this, we conclude that the error introduced by the substitution of
the lumped conductivity is always dissipative.

Figure 4: Work, J·E, is shown for a short calculation with ωpi∆t = 0.1 (left), and ωpi∆t = 1.0 (right). The

top curve in each plot is the work done by the fields, Eq. (2.13) and the bottom the work done on the
particles, Eq. (2.14). Note that the work done on the particles is, on average, nearly zero for both cases. The
difference between field and particle work is always positive for both time steps in agreement with Eq. (4.6),
and corresponds to dissipation. The increase of dissipation with time, i.e. the difference, corresponds to the
increase in the stochastic field with time.

In Fig. 4, we compare the work done by the fields with the work done on the particles.
The problem is the same as the problem shown in Fig. 1. In the upper plot, the time step
is ωpi∆t=0.1, and in the lower plot, ωpi∆t=1.0. For both time steps, the work done by the
fields (upper curve) is always greater that the work done on the particles (lower curve),
consistent with the proof above. In both cases, however, the total or time-integrated work
done on the particles is small. The significance of the positive difference is that the error
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Figure 5: This figure summarizes the energy analysis. Stochastic heating, defined by Eq. (4.1), is balanced by
the combined contributions of numerical damping, Eq. (2.13), and lumping error, Eq. (4.6). The net error is
relatively small.

Figure 6: The electric field energy contributed by its scalar potential component (true potential energy), is
larger than the stochastic potential energy, and much larger than the net energy error.

is always dissipative, and always tends to decrease total energy. A similar error occurs in
fluid particle-in-cell codes. There, the lost energy is added to the internal energy of the
particles to give conservation of total energy [6].

Fig. 5 shows how a balance between stochastic heating and numerical dissipation is
achieved in the implicit calculations. The stochastic heating is balanced by the combined
contributions of numerical damping, a time step dependent error, and ’lumping’, a space
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Figure 7: With ue∆t/h as above, but a larger ωpi, a more MHD-like problem is solved. The particle energy

nearly doubles in this short calculation (left). Although numerical damping nearly balances the heating due to
the stochastic field, the work done on the particles is always positive (right). The upper curve is J·E on the
grid, Eq. (2.13), and the lower curve is the rate of change in particle energy, Eq. (2.15).

step dependent error. The net energy error is small, but not zero. The maximum of the
net energy gain coincides roughly with the time at which the lower hybrid drift insta-
bility saturates. Fig. 6 compares the real and stochastic potentials. The ’real’ potential
is the scalar potential part of the electric field, and, and combines the ’stochastic’ and
lower-frequency potentials. The stochastic potential accounts for about a third of the to-
tal potential, but the net energy error is a very much smaller fraction of the real potential.

4.2.2 MHD

We will consider two definitions of MHD. The first, in the sense used by Lapenta et
al. in [23], is defined by quasi-neutrality and non-relativistic flow. This is approached
with a large ion/electron mass ratio, but resolves the ion collisionless skin depth. A sec-
ond definition observes the absence of length scales in MHD, and thus is approached as
the ion gyroradius becomes small compared with the domain size. The Harris sheet equi-
librium above approaches the MHD limit in this sense as the plasma density and field are
increased without any change to h or ∆t, if the ratios |B|/n1/2 and |J|/|B| are constant.
The current sheet thickness remains the same, and ratios, such as ωce/ωpe, which char-
acterize the problem are unchanged. In Fig. 7, we show the results for a calculation with
100 × the density of the problem shown in Fig. 1. For this calculation, ωpi∆t=1.0. In the
upper plot in Fig. 7, the heating is comparable to the earlier problem in 1/10 the time. In
the lower plot, the upper curve is J·E computed in on the grid, and the lower curve is
the J·E for the particles. The difference between grid and particle work terms is always
positive, and this difference, the lumping error, decreases the total energy. Nevertheless,
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Figure 8: The problem of Fig. 7 is repeated with a collision frequency, ν∆t = 0.1. The thermal energy of
the particles is rapidly converted to internal energy. The magnetic field energy decreases slowly due to the
momentum diffusion caused by lumping the mass matrix, Eq. (4.10). This causes a slow rise in the internal
energy with time.

the total energy still increases at an unacceptable rate.
When collisions are added with νe∆t = 1, the heating by stochastic fields is reduced,

because the electron thermal energy is quickly converted to ’internal’ energy, and the
charge fluctuation amplitude approaches zero. In Fig. 8 with νe∆t = νi∆t =1., the kinetic
energy of the particles is quickly converted to internal energy, and there follows a slow
decrease in magnetic energy and increase in particle internal energy. The total energy
decreases slightly. This can be compared with the correct result, which is no change at
all. Why is the solution not steady in time as expected?

One potential cause can be explored by considering the particle equation, Eq. (2.5),
for νs∆t≪1. For a high collision rate, the particle equation reduces to,

un+1
p −un

p≈νsτs(un
p−U(xp)), (4.9)

where U(xp)=∑v UvAvp.( The center of mass velocity is calculated in the same way as the
charge and current, Eq. (2.10)). The total particle momentum is a constant of the motion,
but the center of mass velocity is not,

Mv(Un+1
v −Un

v)=∑
p

mp(un+1
p −un

p)Avp,

=−νsτs

[

∑
p

mpun
pAvp−∑

v′
Uv′ ∑

p

mpAv′pAvp

]

=−∑
v′

(Mvδvv′−Mvv′U
′n
v . (4.10)

The mass matrix, Mvv′ , is defined implicitly by Eq. (4.10), and results in an expression
of the same form as discussed in Section 4.2. Clearly, the center of mass velocity is not
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constant unless Uv=const, even though, globally, momentum is conserved. In the case of
the current sheet equilibrium, the drift velocities slowly change. If the parameters were
the same as for the reference case, the growth of the lower hybrid drift instability will
cause shear flow to develop with time [21]. However, any process that causes inhomo-
geneities to develop in the density or flow velocity will cause the equilibrium to evolve.
The observed energy decrease, seems like the correct result since the errors are diffusive
in nature.

4.3 Solving the field equation

4.3.1 Non-relativistic, quasi-neutral plasma, or how difficult is it to solve Eq. (3.29)

We consider a non-relativistic plasma, ue/c∼ ǫ < 1, which we wish to model on the ion
time scale, ωpi∆t∼1.0. We ask what length scale do we resolve, and what is the relative
size of the terms in the field equation.

The accuracy condition in the moment expansion, ue∆t/h∼ ǫ<1 constrains the ratio
of ∆t to the minimum resolved length scale, h. The time step we have chosen means that

ωpe∆t∼ (mi/me)
1/2.

Thus, resolution of the ion collisionless skin depth is consistent with the accuracy condi-
tion, (c/ωpi)/h∼1.

We now estimate the relative size of terms in the field equation Eq. (3.29). We scale
the gradients by h, h∇=∇′ , drop numerical coefficients of order unity, and consider an
unmagnetized plasma for which

4π∆tσ≈ (ωpe∆t)2.

Combining the accuracy condition and the ratio ue/c, we infer that c∆t/h∼1, and that a
scaled Eq. (3.29) can be written,

(

me

mi

)

∇′×∇′×En+θ+

(

1+
me

mi

)

En+θ ∼

(

me

mi

)[

En+∇′×Bn−
4π

c
Ĵh

]

. (4.11)

The RHS is data, and thus arbitrary. The coefficients of the terms on the LHS give their
relative magnitudes. Clearly, the solution of Eq. (4.11) approaches quasi-neutrality as the
electron/ion mass ratio approaches its physical value, and

lim
me/mi→0

En+θ =0.

We also remark that the field equation, Eq. (3.29), is easy to solve on ion scales. A
finite difference or finite element approximation to this equation will have a matrix rep-
resentation with strong diagonal dominance. That is, numerically Eq. (3.29) becomes
an algebraic equation for the electric field to lowest order. The differential operator is a
perturbation.
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4.3.2 Charge conservation

Solutions of the field equation, Eq. (3.29), must also satisfy Poisson’s equation,

∇·
[

(I+(θ∆t)4πσ) ·En+θ−En+4πθ∆tĴ
]

=0. (4.12)

In both implicit moment and direct implicit methods, Poisson’s equation is solved in
addition to the field equation [5,20], because solutions of Eq. (3.29) don’t satisfy Poisson’s
equation. Hewett and Langdon argue the cause is imperfect information in the solution
of the field equation, which can be remedied by an adjustment of the longitudinal field
[20]. While it is true that the errors are in charge accumulation, the difficulty is that the
tensor conductivity in Eq. (4.12) couples the longitudinal and transverse electric fields,
and a change in charge affects both [30].

Aside from correctness, the solution of Eq. (4.12) presents a challenge. Finding a more
accurate and reliable algorithm for its solution is the theme of a series of papers over
many years, among them a reformulation of Eq. (4.12) as a converging sequence of po-
tential problems [1], and a multigrid-preconditioned Krylov method [17].

Mayergoyz argues that Maxwell’s equations have more equations than boundary con-
ditions as commonly solved, and remedies the deficiency by imposing additional bound-
ary conditions [27]. Jiang et al. use their div-curl method to argue that if one solves a
partial differential equation on the boundary to compute boundary conditions for the
field equation, Eq. (3.29) , Poisson’s equation will also be solved [15]. Ricci et al. applied
this method to implicit simulation, and satisfied Poisson’s equation to an accuracy de-
termined by the truncation error of the boundary equations without the need to solve
Poisson’s equation in the volume [30].

Subsequent work on this problem, which is outlined in [8], eliminates the need to
solve a partial differential equation on the boundary. One assumes that the vector E

solves Eq. (3.29), and thus that inner product of this equation with a suitable test vector
E′ is zero. But, by the Helmholtz decomposition theorem, E′ can be decomposed into
divergence-free and curl-free parts,

E′=−∇φ+A,

where ∇·A =0. The inner product of ∇φ with (3.29) is of course zero. If it is integrated
by parts the surface contributions are zero when the following boundary conditions are
satisfied: On magnetic symmetry boundaries where n̂×∇×E=0 it is necessary that,

n̂·
[

(I+(θ∆t)4πσ) ·En+θ−En+4πθ∆tĴ
]

=0. (4.13)

On conducting boundaries where n̂×E=0, a compatibility condition must be satisfied,

∫

∂D
n̂·
[

(I+(θ∆t)4πσ) ·En+θ−En+4πθ∆tĴ
]

dS=0. (4.14)
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Since the surface contributions are zero because of the boundary conditions, the volume
contribution must also be zero,

∫

D
φ
[

∇·
[

(I+(θ∆t)4πσ) ·En+θ−En+4πθ∆tĴ
]]

dV =0, (4.15)

for arbitrary φ.
This proof depends upon the vector identity,

∇·∇×V=0,

where V is an arbitrary vector. We now show that the geometric coefficients preserve this
identity on a regular rectilinear grid, and the proof is valid for the difference equations.

First, consider Eq. (2.3), the solenodial condition for the magnetic field. Using gener-
alized geometric coefficients, the approximation to ∇·∂B/∂t is,

−∑
c

gcv ·
1

Vc
∑
v′

gcv′×Ev′ =−∑
c

gcv ·
Bn+1

c −Bn
c

c∆t
. (4.16)

Interchange the order of summation and use a vector identity to interchange vector op-
erations, and get,

−∑
c

gcv ·
1

Vc
∑
v′

gcv′×E′
v =−∑

v′
∑

c

(gcv×gcv′)

Vc
·Ev′ . (4.17)

On a rectilinear mesh with constant spacing, the geometric coefficients are the same in all
cells, and sum over c on the RHS. The result is that it equals the negative of itself,

∑
c

(gcv×gcv′)=∑
c

(gcv′×gcv), (4.18)

and therefore must be zero. Thus, if ∇·B=0 initially, it will always equal zero.
The same method of proof shows that the numerical divergence operator acting on

Eq. (3.29) yields Poisson’s equation, Eq. (4.12) on a regular, rectilinear mesh.
In the solutions discussed in Section (4.1), both the field equation and Poisson’s equa-

tion are satisfied to the same accuracy, error<10−10 .

5 Remarks

The elimination of the need to solve Eq. (4.12) as a separate step simplifies the field so-
lution substantially. The work in [31] eliminates the equation in the volume, and [8]
eliminates the equation on the boundary and yields more accurate solutions. The scaling
of the field equation, Eq. (3.29), suggests that it will be no more difficult to solve in the
quasi-neutral limit, but numerical experiments indicate that some preconditioning of the
Krylov solver might increase efficiency.
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Our analysis shows how stochastic heating has been managed in implicit kinetic cal-
culations. When it is not possible to reduce heating by increasing the number of particles,
the negative-definite errors in energy contributed by using a lumped conductivity matrix
and a θ > 1/2 time centering in the implicit equations may still be sufficient to control
heating when

ue∆t/h≪1.

That the accuracy condition in the moment expansion and the condition for a balancing
of dissipation and stochastic heating should be the same seems a happy outcome, but is it
accidental? In [3], it is argued that dissipation due to using θ>1/2 dissipates frequencies
near the Nyquist time frequency most efficiently. Similarly, the error from using a lumped
conductivity matrix is largest at short wavelengths. The error can be estimated for an
area-weighting assignment function using its Fourier transform,

Ak =(sin(kh/2)/(kh/2))2 ,

where k is the wave number. The ratio of the estimated error, Eq. (4.6), to J·E evaluated
at the spatial Nyquist frequency,

kh=π,

is nearly 90%. Thus, spatial frequencies near the Nyquist space frequency are strongly
damped. On the other hand, statistical fluctuations in the charge density decrease with
sample size, so that the stochastic fields they produce should be concentrated at high
frequencies and short wavelengths. Finally, the accuracy condition causes the scaling of
the dissipation and the stochastic field amplitude to be linked.

If one attempts to solve a problem on an MHD time scale, the strategies above no
longer suffice. For these problems, the heating rate is substantially higher. Stochastic
heating is eliminated by collisions, but at the cost of suppressing kinetic phenomena.
However, for the kind of problems described in [33], where one combines fluid and ki-
netic calculations to accommodate wide variations in time and length scales, a method
which uses the same equations and solvers everywhere and only changes the collision
frequency to move from kinetic to fluid models, has many advantages. That is, a change
in grid size, time step, and collision frequency will distinguish regions where detailed
kinetic simulations are underway from regions where a plasma in local thermodynamic
equilibrium is undergoing large-scale, quasi-neutral flow. There may ultimately be road-
blocks preventing realization of this ultimate goal, but the efforts toward it have already
yielded the improvements in simulation technology outlined in this paper.

Finally, we remark that both the form of the collision model and the value of the con-
stant collision frequency are unphysical. However, they provide a means to test the fluid
limit of the kinetic equations, and their introduction results in solutions of multifluid,
magnetohydrodynamic equations with electron inertia retained. More physical collision
models and collision frequencies will surely reduce stochastic heating less, simply be-
cause they will be less effective at converting particle kinetic energy into internal energy.
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