
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 4, No. 3, pp. 506-518

Commun. Comput. Phys.
September 2008

A Spectral Element Implementation for the M3D

Extended MHD Code

H. R. Strauss1,∗, B. Hientzsch1 and J. Chen2

1 New York University, 251 Mercer Street, New York, NY 10012, USA.
2 Princeton Plasma Physics Laboratory, Princeton, NJ 08570, USA.

Received 29 October 2007; Accepted (in revised version) 20 December 2007

Available online 14 April 2008

Abstract. A spectral element library has been developed and integrated with the M3D
extended MHD code. The currently used linear triangular finite element implementa-
tion and the new high order quadrilateral spectral element implementation are directly
compared on equilibrium, linear stability, and nonlinear evolution calculations run on
the same problems.

AMS subject classifications: 65M70

PACS: 52.65.Kj

Key words: Spectral elements, extended MHD, M3D.

1 Introduction

Spectral element methods offer several possible advantages for MHD simulations. They
are high order discretizations and offer the possibility of exponential decrease of the er-
ror with increasing degree. Since spectral element methods can be implemented with
discrete operators that are combinations of tensor product matrices and point-wise op-
erations, they can be implemented efficiently at close-to-peak on modern computer ar-
chitectures. The resulting global stiffness and system matrices are sparse block matrices
in which the blocks are dense and of a special structure. Direct solvers can use static
condensation and sparse solvers for the much smaller Schur complement system which
leads to a fast and efficient solution algorithm.

M3D [1, 2] is a highly modular code for extended MHD problems. Its modularity al-
lows the implementation of several discretizations and the change from one to another
for the same problem. Originally, M3D used a spectral discretization in the toroidal and
poloidal angles combined with finite differences in the radial direction. While leading
to fast solvers and accurate solutions, that discretization did not allow for complicated

∗Corresponding author. Email addresses: strauss@cims.nyu.edu (H. R. Strauss), bernhard.hientzsch@

wachovia.com (B. Hientzsch), jchen@pppl.gov (J. Chen)

http://www.global-sci.com/ 506 c©2008 Global-Science Press

H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518 507

geometries of the cross sections such as needed to model stellarators and divertor toka-
maks. To handle such geometries, a discretization with linear finite elements (FEM) [3]
was introduced, which is still the standard version at present. The implementation of a
spectral element discretization, described in this presentation, should allow for complex
geometries while at the same time recovering the high accuracy that the original version
achieved on simple geometries.

Spectral element (SEL) methods [4–6] have been recently introduced in MHD simu-
lations [7,8]. The SEL approach offers several possible benefits. The discretization can be
made accurate to high order, with exponential decrease of error as the order is increased.
Static condensation provides an efficient solution method for elliptic problems, in which
the Schur complement matrix to be solved is orders of magnitude smaller than the origi-
nal matrix. Curved isoparametric elements allow alignment with relatively complicated
boundary shapes encountered in simulation of magnetic fusion experiments. Spectral
elements give a diagonal mass matrix, which is advantageous for the partially implicit
M3D time stepping scheme.

Against these benefits, there is a concern that high order methods are only good for
smooth problems and will not work for highly nonlinear turbulent MHD flows which
can occur in magnetic fusion disruptions and Edge Localized Modes (ELMs).

The implementation of M3D presented here solves exactly the same equations, using
the same top level code, with either FEM or SEL discretizations. This makes it possible to
compare the two methods. This paper presents a direct comparison of MHD equilibrium,
linear stability, and nonlinear evolution calculations using the FEM and SEL discretiza-
tions in M3D.

A spectral element discretization of M3D has been parallelized using OpenMP for
shared memory computers, and MPI/PETSc for distributed memory computers. The
OpenMP version is more restricted in problem size, mainly because no domain decom-
position in poloidal planes is employed. Each poloidal plane is assigned to a separate
processor. In M3D, all the elliptic solves such as Poisson’s equation are two dimensional,
and do not couple the poloidal planes. Parallelization consists of solving each poloidal
plane simultaneously, giving a linear scaling with number of processors. The MPI/PETSc
distributed memory spectral element version is being developed. For now, the standard
PETSc solvers are used, without taking advantage of static decomposition. We would ex-
pect that parallel scaling with number of processors should scale similarly to the scaling
of the present distributed memory M3D implementation. The use of static decomposi-
tion would be expected to improve performance of the solvers. This will be addressed in
the future.

2 Spectral elements

The implemented SEL elements have C0 continuity, which is the standard approach.
There are C1 SEL methods, but they are more complicated to implement and have certain

508 H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518

restrictions as to their applicability.
A Galerkin discretization of the extended MHD equations [2] is used. The solution is

expanded in terms of tensor products of one dimensional Lagrange basis functions, and
evaluated by collocation on the Gauss-Lobatto-Legendre (GLL) nodal points. The GLL
points sN

i , i=0,..N for degree N are the zeros of derivatives of the Legendre polynomials
LN of degree N,

(

1−
(

sN
i

)2
)

L′
N(sN

i)=0. (2.1)

A nodal representation is used. Each basis function is zero except at a single nodal point.
The Lagrange interpolatory basis functions are

lN
i (s)=−

(1−s2)L′
N(s)

N(N+1)LN(sN
i)(s−sN

i)
. (2.2)

They have the property
lN
i (sN

j)=δij. (2.3)

Hence the product of two basis functions, evaluated by collocation, is zero if the basis
functions are different.

In mapped spectral elements, the domain Ω is discretized as the union of K spectral
elements Ei, Ω=∪K

i=1Ei. There is a mapping φE from the reference element Ê=[−1,1]2 to
each element E, φE :(s,t) 7→(xE(s,t),yE(s,t)) with an inverse ψE :(x,y) 7→(sE(x,y),tE(x,y)).
Such mappings allow the mesh to be aligned with more or less arbitrary boundaries or
features in the solutions or right hand sides.

The solution uE on each element E is sought as a bivariate polynomial in PN,N(Ê)
(polynomials up to degree N in each variable separately), parameterized by its nodal
values on the GLL grid of degree N, and written in an interpolatory tensor basis as

uE(xE(s,t),yE(s,t)) =
N

∑
i=0

N

∑
i=0

ũE
i,jl

N
i (s)lN

j (t)

=
N

∑
i=0

N

∑
i=0

ũE
i,jl

N
i (sE(x,y))lN

j (tE(x,y)) (2.4)

with ũE
i,j = u(xE(sN

i ,sN
j),yE(sN

i ,sN
j)). As shown below, this allows for an efficient high

order discretization with implementations running close to peak on modern computer
architectures.

Depending on the circumstances it will be convenient to either write the nodal values
of the solution as matrix UE with elements UE

i,j=ũE
i,j or as vector uE with elements uE

ind(i,j)=

ũE
i,j for some index mapping ind(i, j) mapping from two-dimensional to one-dimensional

indices.
In parametric spectral elements, the mapping φE (and therefore the functions xE and

yE) are also chosen as polynomials from a space PM,M, in isoparametric spectral elements

H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518 509

M is chosen to be equal N:

xE(s,t)=
N

∑
i=0

N

∑
i=0

x̃E
i,jl

N
i (s)lN

j (t), (2.5)

yE(s,t)=
N

∑
i=0

N

∑
i=0

ỹE
i,jl

N
i (s)lN

j (t), (2.6)

with

x̃E
i,j = xE(sN

i ,sN
j), ỹE

i,j =yE(sN
i ,sN

j).

As above, these values are either written as matrices XE and YE or as vectors xE and yE.

In our implementation, we considered three different choices for the specification of
the xE and yE. In the first, only the coordinates of the mapped vertices are given, lead-
ing to straight-line quadrilateral elements and simplified mappings. In the second, the
coordinates of the mapped GLL points on the boundary are given, and the coordinates
of the interior points are computed by bilinear blending. In the third, the coordinates of
all mapped GLL points are given. The initial computations were done with straight-line
elements, currently the bilinear blending approach is used, and the complete mapping
case is being implemented.

To ensure C0 continuity, a point (x,y) belonging to two elements E and F must receive
the same function value in both elements, that is uE(x,y) must be equal to uF(x,y). This
can be ensured by the GLL points for the elements on the boundary (which coincide for
adjacent elements) receiving the same value in both elements.

The global spectral element solution is represented by its values on the global GLL
grid

ΞN =∪E

{(

x̃E
i,j,ỹ

E
i,j

)}N

i=0,j=0
. (2.7)

The values on the global GLL grid are either represented by a long vector u, with
mappings RE which return the vector of values within each element, uE =REu (the “flat”
vector representation) or by a vector of matrices U=(UE1,UE2 ,. . .,UEK) (the “distributed”
representation). The flat representation allows easier global operations, such as the form-
ing of Schur complements, global solves, and scatter-gather operations; the distributed
representation is redundant — values on the interfaces are represented more than once
and have to be forced to be the same - but it allows fast implementations of element-wise
operations. Mappings between the two representations can be implemented efficiently.

One-dimensional Gaussian quadrature on the GLL points {sN
i }

N
i=0 leads to integration

weights {ρN
i }, and the inner product is approximated by

(u,v) =
∫ +1

−1
u(t)v(t)dt≈

N

∑
i=0

ρN
i u(sN

i)v(sN
i)

= vT M̂u=vTΛ({ρN
i }N

i=0)u=vTΛ(ρN)u. (2.8)

510 H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518

Λ(x) stands here for a diagonal matrix with diagonal entries x. For two-dimensional
mapped elements, the inner product is approximated by

(u,v)=
∫

Ω
uv=

K

∑
i=1

∫

Ei

uv≈
K

∑
i=1

vT RT
Ei

MEi
REi

u,

where on each element
∫

E
uE(x,y)vE(x,y)dxdy=

∫

Ê
uE(s,t)vE(s,t)|JE |dsdt

=
N

∑
i=0

N

∑
j=0

uE
ijv

E
ij J

E
ij ρ

N
i ρN

j =vE,T(Λ(ρN)⊗Λ(ρN))Λ(JE)uE, (2.9)

with

JE =
∂x

∂s

∂y

∂t
−

∂x

∂t

∂y

∂s
,

evaluated on the GLL grid points. As can be seen, the resulting mass matrix is diagonal
and trivial to invert, allowing a large speedup in a partially explicit method as in M3D.
C= A⊗B is the tensor product of A and B,

Cind(i,j),ind(k,l)= AikBjl.

The matrix form of CuE can be computed as AUEBT, where UE is the matrix form of uE.
Also, Λ(A)uE (in matrix form) corresponds to an point-wise multiplication of the entries
of A and UE, denoted A⊛UE.

Differentiation of univariate polynomials can be written as a matrix DN, ∂
∂t u = DNu.

On the reference element Ê, differentiation can be written as (I being the identity matrix
of appropriate size)

∂

∂s
u=(DN⊗ I)u,

∂

∂t
u=(I⊗DN)u.

To differentiate on the mapped elements, one uses the chain rule to obtain on each
element

(

∂

∂x
u

)E

=

(

Λ

(

∂s

∂x

)

(DN⊗ I)+Λ

(

∂t

∂x

)

(I⊗DN)

)

u, (2.10)

(

∂

∂y
u

)E

=

(

Λ

(

∂s

∂y

)

(DN⊗ I)+Λ

(

∂t

∂y

)

(I⊗DN)

)

u. (2.11)

The derivatives appearing in the diagonal matrices, also known as geometry factors,
can be computed by solving a 2×2 system resulting from the chain rule:

∂s

∂x
=

∂y

∂t
/J,

∂s

∂y
=−

∂x

∂t
/J,

∂t

∂x
=−

∂y

∂s
/J,

∂t

∂y
=

∂x

∂s
/J.

H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518 511

Using the above and the notation A⊘B for the matrix resulting from the element-wise
division of matrices A and B, the Jacobian and the geometry factors on each element can
be computed as

JE = DNXE
⊛YEDN,T−XEDN,T

⊛DNYE,
(

∂s

∂x

)E

=YEDN,T⊘ JE,

(

∂s

∂y

)E

=−XEDN,T⊘ JE,

(

∂t

∂x

)E

=−DNYE⊘ JE,

(

∂t

∂y

)E

= DNXE⊘ JE.

(2.12)

The isoparametric element mappings allow one to manipulate the element mappings
exactly in the same way one would manipulate the spectral element functions, leading to
easier implementations.

With these forms of the mass and differentiation matrices, variational formulations of
partial differential operators can easily be derived. For instance, the variational form of
the Laplacian can be written on each element as

−(∆uE,vE)=(∇uE,∇vE)=vE,TK̃EuE

with

K̃E = (DN,T⊗ I)Λ(w11)(DN⊗ I)+(DN,T⊗ I)Λ(w12)(I⊗DN)

+(I⊗DN,T)Λ(w12)(DN⊗ I)+(I⊗DN,T)Λ(w22)(I⊗DN)

with appropriate geometry factors w11, w12, and w22 involving derivatives of the element
mappings and the Jacobian.

Some operators in the extended MHD equations lead to computations of inner prod-
ucts of polynomials with degrees that no longer can be integrated exactly on the GLL
grid on which the solution is represented. This happens, for instance, for the Poisson
bracket ([u,v],w). To gain flexibility in the discretization and to allow exact integration
for such operators, interpolation to GLL grids of higher degrees has been implemented,
involving tensor products of one-dimensional interpolation matrices as well as Gaussian
integration on such higher degree grids.

The used nodal representation can easily be transformed into a modal representation
which might lend itself to easier spatial filtering or truncation error analysis. In this
implementation we use no special filtering, but instead rely on adequate physically based
dissipation by viscosity, thermal conductivity, and resistivity.

The SEL and FEM discretizations are employed in the poloidal planes of constant
toroidal angle. In the periodic, toroidal direction, the representation of the solution is
pseudospectral.

512 H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518

3 Coupling of spectral elements to M3D

M3D is a highly modular code, which makes it possible to change the underlying dis-
cretization of the solution. The right hand side of the equations is built up by calling a
set of subroutines which implement various operations, such as derivatives in the three
coordinate directions, Poisson brackets, inner product of derivatives, and the Laplacian.
The left hand side of the equations involves solving a set of two dimensional elliptic oper-
ators in poloidal planes, such as Poisson and Helmholtz equations. The high level driver
part of the M3D code, which is for the most part Fortran legacy code, does not explicitly
contain mesh information. It simply calls functions from the SEL library of solvers, differ-
ential operators, and integral operators. The physical variables, as well as many auxiliary
variables, are stored in common blocks in the driver code. It is assumed that the mesh
is unstructured, and the variables are simply listed in two index arrays. The first index
refers to the location in the poloidal plane, and the second refers to the toroidal angle.
When an operator is called, the variables in its arguments are passed to functions in the
SEL library, which is written in C. The variables must be mapped to temporary C arrays
which have a different layout than the “flat” Fortran arrays. The C arrays are organized
by elements, and include storage for the nodal values interior to each element, and the
boundary values of each element. This arrangement is convenient for the implementa-
tion of element-wise operations.

Static condensation solves the matrix equation

Ax=b (3.1)

by splitting the vector x into element interior and edge values. The vector xi consists of
element interior values, while the vector xe consists of element edge values.

x=

[

xi

xe

]

, (3.2)

A=

[

Aii Aie

Aei Aee

]

. (3.3)

The interior values can be eliminated in terms of the edge values

xi =−A−1
ii Aiexe+A−1

ii bi. (3.4)

The edge values can be determined from the Schur complement problem

Âxe =be−AeiA
−1
ii bi, (3.5)

where, using (3.4), the system matrix is

Â= Aee−AeiA
−1
ii Aie. (3.6)

H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518 513

(a) (b) (c)

Figure 1: (a) skeleton mesh for spectral elements (b) spectral element mesh (c) Linear finite element mesh.

The Schur complement matrix Â is generally much smaller than the original matrix A.
(3.5) is solved with a direct sparse solver. A general interface for such solvers has been
implemented, allowing the use of a variety of packages. The package LDL has been
used for most calculations [9]. The inversion of the local element interior matrices and
the local solves (using (3.4)) are implemented with LAPACK. Highly optimized libraries
providing those LAPACK and BLAS functions are linked for optimal performance. The
exact choice of libraries depends on the particular machine.

Mesh generation is initiated in the driver code. A skeleton mesh is generated, which
consists of the GLL points lying on the curved quadrilateral element boundaries. An
example skeleton mesh is shown in Fig. 1(a). This information is passed to the SEL library,
which generates the full mesh, which consists of the GLL points on lines connecting the
boundary points. The interior points lie on curves which are linearly blended from the
element boundary points. An example, using fourth order elements, is shown in Fig. 1(b).
It has 45 elements and 741 meshpoints. For comparison, a piecewise linear finite element
mesh with a comparable number of meshpoints is shown in Fig. 1(c). It has 1081 elements
and 570 meshpoints.

4 Equilibrium, linear stability, and nonlinear comparison of

spectral element and FEM implementations

The same M3D driver code can be compiled with either a linear finite element (FEM) li-
brary, or the new spectral element (SEL) library. This permits direct comparison of equi-
librium, linear stability, and nonlinear evolution calculations using linear triangular finite
elements and high order quadrilateral spectral elements. The equilibria were produced
by choosing the same non-equilibrium initial state for both versions and relaxing to a
two dimensional equilibrium. A simple case was chosen which was used to benchmark
the FEM version to the initial spectral M3D. The equilibria are in excellent agreement for
sufficiently high resolution. The SEL runs used the skeleton mesh shown in Fig. 1, with

514 H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518

(a) (b)

Figure 2: Equilibrium (a) pressure (b) toroidal current density calculated with linear finite elements.

(a) (b)

Figure 3: Equilibrium (a) pressure (b) toroidal current density calculated with 8th order spectral elements.

(a) (b)

Figure 4: perturbed magnetic flux function ψ (a) calculated with linear finite elements (b) calculated with 8th
order spectral elements.

H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518 515

 0

 0.05

 0.1

 0.15

 0.2

 0 1000 2000 3000 4000 5000 6000 7000

ga
m

m
a

n

Growth Rate vs. Mesh Size

Figure 5: Growth rate as a function of number of mesh points. Solid curve: Finite elements; Dotted curve,
spectral elements. Note the expected improved convergence of the growth rate with spectral elements. The
number of mesh points in the SEL mesh was changed by varying the polynomial order from 2 to 12.

2nd to 12th order polynomials. The FEM runs used several different mesh sizes. Fig. 2(a)
shows the equilibrium pressure, and Fig. 2(b) shows the toroidal current density, which is
much more sensitive to the discretization, for a FEM run with 1050 meshpoints. Fig. 3(a)
shows the pressure, and Fig. 3(b) shows the toroidal current density, for a SEL run with
8th order polynomials. All the equilibrium, stability, and nonlinear simulations used the
same parameters: a fixed time step dt = 0.01τA , where τA = R/vA is the toroidal Alfvén
transit time, R is the major radius, R = 3a, with a being the minor radius, and vA is the
Alfvén speed. The normalized resistivity η, the perpendicular viscosity µ, and the per-
pendicular thermal conductivity κ are all 10−4avA .

These equilibria were perturbed with toroidal mode number n=3 perturbations and
were advanced in time until the solution was dominated by unstable eigenfunctions. The
eigenfunctions show some small differences in detail. This can be seen in Fig. 4, where (a)
is the FEM and (b) is the SEL solution. The figures show the perturbed poloidal magnetic
flux function ψ. The convergence of the growth rate with the number of mesh points
in shown in Fig. 5. The solid curve shows the growth rate as a function of number of
mesh points for the FEM, and the dashed curve shows the same for the SEL. The SEL
calculations all used the skeleton mesh of Fig. 1(a), but the polynomial order was varied
from 2 to 12. Except for order 2, the growth rate does not seem to vary very much with
order. This is an example of the improved convergence expected of SEL methods.

The equilibria were perturbed with linear eigenmodes and allowed to evolve non-
linearly until saturation of the instability. The nonlinear pressure is shown in Fig. 6(a),
calculated with FEM. The initial pressure was initially aligned with flux surfaces shown
in Fig. 2(a), and develops into a highly nonlinear “crab” shape. The toroidal current,
shown in Fig. 6(b), is highly fragmented compared to its initial state in Fig. 2(b). Some
of the structure of the linear eigenmode Fig. 4 is visible in the nonlinear current density.

516 H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518

(a) (b)

Figure 6: (a) nonlinear pressure (b) nonlinear current density calculated with linear finite elements.

(a) (b)

Figure 7: (a) nonlinear pressure (b) nonlinear current density calculated with 8th order spectral elements.

The nonlinear SEL pressure contours are shown in Fig. 7(a). There are some differences
when compared to Fig. 6(a). The FEM solution is smoother. The SEL solution shows
some structure which is aligned with element boundaries. The nonlinear current shown
in Fig. 7(b) shows even more differences from Fig. 6(b). The reason is the solution inside
each element is beginning to lose convergence. Other simulations show that this can be
ameliorated using higher order elements or more dissipation.

M3D uses a potential representation of the magnetic field, which ensures that the
divergence of the magnetic field vanishes, but also introduces higher derivatives into
the equations to be solved. We see that satisfactory methods of solving the equations
have been developed with both low order and high order discretizations. The high order
method performs better for smooth problems, such as equilibrium and linear stability,
while the low order method is better for highly nonlinear problems. The tendency of

H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518 517

spectral methods to lose convergence at element boundaries is not primarily caused by
the potential representation of M3D. It has been observed in fluid dynamics simulations
using primitive variables [10]. It was shown that filtering could stabilize unwanted oscil-
lations at element boundaries. Application of filtering methods to M3D will be consid-
ered in further research.

5 Conclusions

A spectral element library has been developed for the extended MHD code M3D. The
same driver code can be used with a linear triangular finite element discretization and
a high order quadrilateral spectral element discretization. This permits direct compar-
ison of equilibrium, linear stability, and nonlinear evolution calculations using the two
approaches.

The equilibrium and linear calculations using FEM and SEL libraries are in good
agreement. The growth rate calculated with SEL appears to converge at a lower reso-
lution than the growth rate calculated with FEM.

The low order FEM is more robust in nonlinear simulations, because it is inherently
smoother. An important lesson seems to be that adequate smoothing must be included,
by means of viscous dissipation coefficients such as viscosity and resistivity, to keep the
solution sufficiently smooth for spectral elements.

An important lesson also seems to be that while high order spectral elements are very
good, linear finite elements seem to also work quite well. Further comparisons will be
carried out in future work to assess the advantages and disadvantages of high order SEL
for extended MHD computation.

Acknowledgments

This work was supported by the U.S.D.O.E.

References

[1] W. Park, E. V. Belova, G. Y. Fu, X. Tang, H. R. Strauss and L. E. Sugiyama, Plasma simulation
studies using multilevel physics models, Phys. Plasmas, 6 (1999), 1796.

[2] L. E. Sugiyama and W. Park, A nonlinear two-fluid model for toroidal plasmas, Phys.
Plasma, 7 (2000), 4644.

[3] H. R. Strauss and W. Longcope, An adaptive finite element method for magnetohydrody-
namics, J. Comput. Phys., 147 (1998), 318.

[4] A. T. Patera, A spectral element method for fluid dynamics - laminar flow in a channel
expansion, J. Comput. Phys., 54 (1984), 463.

[5] G. E. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational Fluid
Dynamics, 2nd edition, Oxford University Press, 2005.

518 H. R. Strauss, B. Hientzsch and J. Chen / Commun. Comput. Phys., 4 (2008), pp. 506-518

[6] P. F. Fischer and A. T. Patera, Parallel spectral element solution of the Stokes problem, J.
Comput. Phys., 92(2) (1991), 380.

[7] A. H. Glasser and X. Z. Tang, The SEL macroscopic modeling code, Comput. Phys. Com-
mun., 164 (2004), 237.

[8] C. R. Sovinec, A. H. Glasser, T. A. Gianakon, D. C. Barnes, R. A. Nebel, S. E. Kruger, D.
D. Schnack, S. J. Plimpton, A. Tarditi and M. S. Chu, Nonlinear magnetohydrodynamics
simulation using high-order finite elements, J. Comput. Phys., 195 (2004), 355.

[9] T. A. Davis, Algorithm 849: A concise sparse Cholesky factorization package, ACM Trans.
Math. Software, 31 (2005), 587.

[10] P. F. Fischer and J. S. Mullen, Filter-based stabilization of spectral element methods, Comptes
Rendus de l’Académie des sciences Paris, Série I-Analyse numérique, 332 (2001), 265.

