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Abstract. Flute mode turbulence plays an important role in numerous applications,
such as tokamak, Z-pinch, space and astrophysical plasmas. In a low beta plasma
flute oscillations are electrostatic and in the nonlinear stage they produce large scale
density structures co-mingling with short scale oscillations. Large scale structures are
responsible for the enhanced transport across the magnetic field and appearance of
short scales leads to ion heating, associated with the ion viscosity. In the present paper
nonlinear equations which describe the nonlinear evolution of the flute modes treated
as compressible electromagnetic oscillations in a finite beta inhomogeneous plasma
with nonuniform magnetic field are derived and solved numerically. For this purpose
the 2D numerical code FLUTE was developed. Numerical results show that even in
a finite beta plasma flute mode instability can develop along with formation of large
scale structures co-existing with short scale perturbations in the nonlinear stage.

AMS subject classifications: 70K75, 82D10, 76F35
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1 Introduction

In the flute or interchange instability the perturbations are uniform parallel to the mag-
netic field. In cylindrical geometry, the structure resembles a fluted column. In the

∗Corresponding author. Email addresses: Sotnikov@unr.edu (V. I. Sotnikov), Ivanov@unr.edu (V. V. Ivanov),
Presura@unr.edu (R. Presura), jnlscientific@hotmail.com (J. N. Leboeuf), onish@ifz.ru (O. G. On-
ishchenko), bvolive@sandia.gov (B. V. Oliver), bmjones@sandia.gov (B. Jones), tamehlh@sandia.gov

(T. A. Mehlhorn), Chris.Deeney@nnsa.doe.gov (C. Deeney)

http://www.global-sci.com/ 611 c©2008 Global-Science Press



612 V. I. Sotnikov et al. / Commun. Comput. Phys., 4 (2008), pp. 611-623

jz

  B0

n

r

g

Figure 1: In the left plot the current-carrying plasma in the center of a cylindrical wire array is displayed. In the
right plot the radial density dependence inside the plasma cylinder and artificial gravity constant g, associated
with the magnetic field lines curvature are presented. A high-density plasma is on top of a low-density plasma
in the gravitational field.

current-carrying cylindrical plasma of the precursor (Fig. 1) particles moving along the
azimuthal magnetic field lines experience centrifugal acceleration due to the curvature
of the magnetic field lines. This acceleration can be explained by introduction of the fic-
titious gravity force with gravitational constant g, directed outward along the plasma
cylinder radius. This configuration creates a situation typical of Rayleigh-Taylor or in-
terchange type instabilities, when a high-density fluid is placed on top of a low-density
fluid in a gravitational field. Any perturbation in density at the fluid interface allows
gravity to pull the high-density fluid downwards so that the low-density fluid ends up
on top. As a result the two fluids interchange places. In plasmas with magnetic fields,
both the plasma and the field have pressure and therefore the plasma may interchange
position with the magnetic field.

Flute mode turbulence in laboratory and space plasmas can be responsible for for-
mation of large scale structures associated with the anomalous plasma transport across a
magnetic field and for appearance of short scales in the turbulent wave spectrum, result-
ing in enhanced ion heating due to ion viscosity. Analysis of the data obtained during
laboratory experiments on imploding wire arrays [1, 2] has demonstrated that flute-like
perturbations of density appear in the finite beta z-pinch plasma of the precursor. The
difference in the electron and ion drifts due to the curvature of magnetic field lines is
the source of the flute type instability in the axially current-carrying precursor plasma of
cylindrical geometry.

Moreover, density perturbations were observed simultaneously with magnetic field
perturbations which were directed along the direction of the ambient magnetic field in
the pinch. It was also observed that with time the excited perturbations evolved into
large scale structures while the excited wave spectrum migrated into the region of shorter
wavelengths.

Laboratory experiments on the interaction of a plasma flow produced by laser ab-
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lation of a solid target with the inhomogeneous magnetic field from the Zebra pulsed
power generator have also demonstrated the presence of strong wave activity in the
region of flow deceleration [3, 4]. Deceleration of the plasma flow can be interpreted
as the appearance of a gravity-like force. The drift due to this force can lead to excita-
tion of flute modes. The linear dispersion relation for the excitation of electromagnetic
flute-type modes with plasma and magnetic field parameters corresponding to ongoing
experiments at the Nevada Terawatt Facility (NTF) has been derived and solved. Re-
sults indicate that the wavelength of the excited flute modes strongly depends on the
strength of the external magnetic field. For magnetic field strengths <0.1 MG the excited
wavelengths are larger than the width of the laser ablated plasma plume and cannot be
observed during the experiment. But for magnetic field strengths > 0.1 MG the excited
wavelengths are much smaller and can then be detected.

Results of these experiments are related to supernova explosions [5], interaction of the
solar wind with the magnetopause [6] and active space experiments, such as the artificial
magnetospheric releases, similar to the AMPTE magnetotail release [7, 8].

2 Two fluid description of compressible flute mode turbulence

in a finite beta plasma

Two-fluid macroscopic equations will be used to describe low frequency flute modes
[9–11] (ω ≪Ωi, where ω is the frequency of the flute mode and Ωi = ZeB0Z/Mic is the
cyclotron frequency of the ion with charge Z and mass Mi =µaMp, Mp being the proton
mass and µa the atomic weight) in a weakly inhomogeneous plasma with nonuniform
external magnetic field B0z(x). As is customary in flute mode turbulence, oscillations are
taken to be uniform in the direction of the magnetic field, i.e., the wave vector along the
magnetic field k||| = 0. We consider a weakly inhomogeneous high beta plasma of slab
geometry with density n0(x) in the presence of an inhomogeneous magnetic field B0z(x),
where x is the direction of inhomogeneity. The curvature of the magnetic field lines,
consistent with the axial current, causes a centrifugal force on the particles emulated by
the gravity-like term g= g~ex, which drives the instability of the flute modes.

In the high beta precursor plasma of a Z-pinch the electric field in the flute oscillations
is not irrotational (i.e., ∇×~E 6=0), as in the low beta case [12–16], and is now written as

~E=−~∇Φ−
1

c

∂~A

∂t
,

where Φ and ~A are scalar and vector potentials of the excited wave field. The plasma
density N can be expressed as the sum of a slowly varying component with x, the equilib-
rium plasma density n0(x), and a perturbed component due to flute oscillations δn(x,y,t).
Likewise the magnetic field is written as Bz=B0z(x)+δBz(x,y). We also assume the quasi-
neutrality condition Ne = ZNi, where Ne and Ni are the electron and ion densities. The
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equilibrium condition in this case is written as:

κB =

(

1+
ZTe

Ti

)

βi

2
κN +

βi

V2
Ti

g, (2.1)

where:

κN =−
1

n0

dn0

dx
>0, κB =

1

B0z

dB0z

dx
>0, βi =

8πn0iTi

B2
0

.

As will be shown later, the characteristic wave numbers of the excited waves for the
plasma parameters observed in the experiment (Fig. 2) are such that k≤ωpi/c, where k is
the wave number, ωpi is the ion plasma frequency and c is the speed of light. For ion beta
βi ∼ 0.05 this corresponds to values of kρi ≪ 1, where ρi is the ion Larmor radius. This
means that hydrodynamic equations suitably modified to include magnetic viscosity can
be used for the precursor plasma [16]. This was successfully demonstrated early on for
the problem of flute mode instability of a plasma with a finite ion Larmor radius [17, 18].
Also, we should satisfy

Ωiτi =2x1011BT3/2
i /ZA1/2λni ≪1

(τi is ion-ion collision time and λ is the Coulomb logarithm) and thus finite Larmor radius
(FLR) effects are not pertinent. At the same time the total plasma beta β= βi +βe ∼0.5.

It is also worth mentioning that the nonlinearity of low frequency flute modes is a
rather coarse effect. The simplest and most natural way to describe this nonlinearity is
thus within the framework of hydrodynamics. In the future we plan to carry out detailed
investigations of the linear properties of electromagnetic flute modes using a kinetic ap-
proach.

The coupled nonlinear system of equations for density N, electrostatic potential Φ

and magnetic field δBz was derived in [1]. Below we present a system of equations mod-
ified in comparison with [1] where we retain nonlinear terms containing the perturbed
magnetic field in equations for vorticity and electron density and also the perturbed mag-
netic field in the linear terms of the electron density equation. These equations can now
be written in the following form:

∂

∂t
△⊥Φ+

Tic

2ZeB0z
κB

∂

∂y
△⊥Φ+

Ti

Zen0i

∂

∂t
△⊥δni

−
Ti

2Ze

∂

∂t
△⊥

δBz

B0z
+

B0z

n0i

g

c

∂δni

∂y
−

g

c

∂δBz

∂y

=
cTi

2ZeBoz
{Φ,△⊥(

δBz

B0z
)}−

cTi

ZeB0zn0i
∇⊥{Φ,∇⊥δni}−

c

B0z
{Φ,△⊥Φ}, (2.2)

∂δne

∂t
−

cTe

eB0z
κB

∂δne

∂y
+

n0ec

B0z
(κB+κN)

∂Φ

∂y
−

n0e

B0z

(

∂δBz

∂t
+

cTe

eB0z
κN

∂δBz

∂y

)

=
c

B0z
{δne,Φ}+

cn0e

B2
0z

{Φ,δBz}. (2.3)
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In (2.2) and (2.3) Poisson brackets are defined as:

{a,b}=
∂a

∂x

∂b

∂y
−

∂a

∂y

∂b

∂x
,

and the ⊥ subscript defines operations in the plane (x,y), perpendicular to an external
magnetic field.

We will also use the following relation which connects δn and δBz:

δBz

B0z
=−

1

2
β

δn

n0
, (2.4)

where β= βi +βe.
Eqs. (2.2)-(2.4) describe the excitation and nonlinear evolution of compressible electro-

magnetic flute modes in a finite beta plasma with inhomogeneous magnetic field B0z(x).
They will be used to analyze flute mode turbulence experimentally observed in the Z-
pinch precursor region as well as in laboratory astrophysics experiments on interaction
of laser ablated plasma flow with strong magnetic field created by the Zebra pulse power
generator.

3 Linear theory analysis

The dispersion relation for flute mode instability can be obtained from the linearized
equations (2.2)-(2.4). The dispersion relation was solved numerically for two different
cases.

The first case is with plasma parameters typical of the Z-pinch experiments: n0e =
2.0×1019cm−3, n0i =2.0×1018cm−3, Ti∼Te =50eV, B0 =0.3MG. The solution is displayed
in Fig. 2, where the growth rates of the flute-like electromagnetic perturbations excited
in the precursor region are plotted as a function of wave vector. As follows from Fig. 2,
the flute modes can be excited in the wide range of wavelengths 0.1mm < λ <1mm. The
wavelengths of the excited waves are smaller then the radius of the precursor (∼1.5mm)
which satisfy the condition for the local approximation to hold, i.e., λ<1.5mm.

In the second case the dispersion relation was solved with the set of plasma pa-
rameters typical for experiments on interaction of laser ablated plasma flow with the
strong magnetic field produced by the Zebra pulse power generator: n0e=1.0×1018cm−3,
n0i =3.0×1017cm−3, Ti∼Te=150eV, B0=(0.1−1.0)MG and g∼5∗1014cm/s2. Only modes
propagating along the plasma-magnetic field interface region (along the y-direction) were
considered, because during the experiment only perturbations along the y-axis were ob-
served. The solution of the dispersion relation is displayed in Fig. 3, where the frequency
and growth rate of the flute-like electromagnetic perturbations are plotted as a function of
wave vector ky. As follows from Fig. 3, for an external magnetic field B0=0.1MG, the low-
est possible wavelength of the excited flute modes along the y-direction is λ∼0.2mm. The
waves with wavelengths 0.2mm < λ <1.5mm can be excited in the system, because their
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Figure 2: Dependence of the growth rate γ (in Ωci units) of the electromagnetic flute-type modes on the
wave vector ky (in units of the inverse Larmor radius defined through the electron temperature Ωci/Cs) for the
experimental plasma parameters in the Z-pinch precursor.

Figure 3: Dependence of the growth rate γ (in Ωci units) of the electromagnetic flute-type modes on the
wave vector ky (in units of the inverse Larmor radius defined through the electron temperature Ωci/Cs) for the
experimental plasma parameters in laboratory astrophysics experiments.

wavelengths are smaller than the characteristic size of the laser ablated plasma plume in
this direction. The growth rate yields a characteristic time for the instability to develop
of ∼10ns.

4 Numerical solution of nonlinear equations

In order to obtain numerical solutions of the nonlinear equations (2.2)-(2.4) we first rewrite
them in dimensionless variables. For dimensionless time and space variables we will use

τ =Ωcit, x=
X

cs/Ωci
,
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where c2
s =Te/Mi . Dimensionless density and electrostatic potential are defined as:

δn=
δni

n0i
=

δne

n0e
, Φ=

eϕ

Te
.

We will also define the gravitational constant g=2c2
s /R and ρ∗i = cs/Ωci. Now, applying

the Laplacian operator to both sides of Eq. (2.3) and eliminating the third term on the left
hand side of Eq. (2.2), we are able to obtain the following system of nonlinear equations
in dimensionless form:

∂

∂τ
△⊥Φ−

Ti

Te

Vn

2+β

κB+(2+ 1
2 β)κN

κN

∂

∂y
△⊥Φ−

1+ 1
4 β

1+ 1
2 β

Ti

Te
Vn

1
2 βκN−κB

κN

∂

∂y
△⊥δn

+(1+
1

2
β)Vg

∂δn

∂y
=(1+

1

2
β)

Ti

Te
div{∇⊥Φ,δn}−

1

4
β

Ti

Te
{△⊥Φ,δn}

+Z{△⊥Φ,Φ}+µ△⊥(△⊥Φ)−
Ti

Te
(1+

1

4
β)D△2

⊥δn, (4.1)

∂δn

∂τ
−

ZVn

1+ 1
2 β

κB−
1
2 βκN

κN

∂δn

∂y
+

ZVn

1+ 1
2 β

κB +κN

κN

∂Φ

∂y
=Z{δn,Φ}+D△⊥δn. (4.2)

In Eqs. (4.1)-(4.2), the viscosity µ and the coefficient of diffusion across the magnetic field
D are such that:

µ=
3

10

Tivi

MiΩci
, D=

me

e2

Teve

B2
0z

. (4.3)

In order to numerically solve the nonlinear system of equations (4.1)-(4.2) the two-
dimensional code FLUTE has been developed. In this code a two-step time integration
scheme was used. Taking the density equation as an example we show below the predic-
tor step (from time step n to n+1/2):

nn+1/2
p =<n>

n +
△t

2
Fn

n +
△t

2
Dn(∇

2
⊥n)n, (4.4)

with optional Lax spatial average:

<n>=
1

4
(ni+i,j+ni−1,j+ni,j+1+ni,j−1). (4.5)

Otherwise:
<n>=ni,j. (4.6)

The corrector step (from time step n to n+1) is such that:

nn+1
c =nn+△tFn+1/2

np
+△tDn(∇

2
⊥n)n, (4.7)

where Fn is given by:

Fn =−C1
n

∂n

∂y
−C2

n

∂φ

∂y
+C3

n{n,φ}, (4.8)
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and C1
n, C2

n and C3
n regroup the appropriate coefficients in Eq. (4.2). In the code diffusivity

and viscosity were treated explicitly in time. We also use space-centered derivatives:

∂n

∂y
=

(ni,j+1−ni,j−1)

2△y
. (4.9)

The nonlinear advective terms in Poisson brackets such as:

{n,φ}=
∂n

∂x

∂φ

∂y
−

∂n

∂y

∂φ

∂x
= J(n,Φ), (4.10)

were handled using Arakawa’s conservative method [19, 20]:

Ji,j(n,φ)=−
1

12△x△y
[(φi,j−1+φi+1,j−1−φi,j+1−φi+1,j+1)(ni+1,j−ni,j)

+(φi−1,j−1+φi,j−1−φi−1,j+1−φi,j+1)(ni,j−ni−1,j)

+(φi+1,j+φi+1,j+1−φi−1,j−φi−1,j+1)(ni,j+1−ni,j)

+(φi+1,j−1+φi+1,j−φi−1,j−1−φi−1,j)(ni,j−ni,j−1)

+(φi+1,j+φi,j+1)(ni+1,j+1−ni,j)+(φi,j−1−φi−1,j)(ni,j−ni−1,j−1)

+(φi,j+1−φi−1,j)(ni−1,j+1−ni,j)+(φi+1,j−φi,j−1)(ni,j−ni+1,j−1)]. (4.11)

The fourth order derivative of density in the dissipative term of the vorticity equation
has been treated as a biharmonic operator [21]:

∇4ni,j =
1

(△x)2(△y)2

[

20ni,j−8(ni+1,j+ni,j+1+ni−1,j+ni,j−1)

+2(ni+1,j+1+ni+1,j−1+ni−1,j+1+ni−1,j−1)+(ni,j+2+ni+2,j+ni−2,j+ni,j−2)
]

. (4.12)

The potential is obtained from the vorticity using Fast Fourier Transforms (FFT2 or
FFTW):

φk =−
1

k2
Uk. (4.13)

An additional and important feature of the numerics is the dynamic time step. Initially
the nonlinear numerical calculations are started with a suitably small and numerically
stable normalized time step dt0 = 0.05. The maximum velocity in all directions on the
grid vmax is continuously monitored during the calculations and the time step is adjusted
dynamically to dt−dyn =0.5/vmax when dt−dyn <dt0. This insures that all perturbations
on the grid are temporally well resolved throughout the calculations.

In Fig. 4 the time evolution and saturation of the square of absolute value of elec-
trostatic potential |Φ|2 and density perturbations |δn|2 are presented. After a period of
exponential growth with the linear growth rate of electromagnetic flute modes, the in-
stability saturates due to nonlinear mode interactions (through the nonlinear terms in
Poisson brackets in Eqs. (4.1) and (4.2) and the presence of viscous and diffusion terms.
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Figure 4: Evolution in time of the sum over all Fourier harmonics of |Φ|2 and |δ|2 obtained from numerical
solutions of Eqs. (4.1)-(4.2).

Figure 5: Random initial density perturbations with δn/n0∼10−6.

In the series of figures below the evolution in time of initially randomly seeded den-
sity perturbations is presented. The initial level of density perturbations presented in
Fig. 5 is δn/n0∼10−6.

In Fig. 6 density perturbations in the linear stage of flute mode instability develop-
ment are presented. It is clearly seen that perturbations are elongated along the x-axis.
This is directly connected with the fact that the growth rate is largest for waves propa-
gating along the y-axis and for such waves kx ≪ ky. This results in a much shorter scale
for perturbations in the y-direction.

In Fig. 7 the density perturbations in the nonlinear stage of flute mode instability
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Figure 6: Growth of density perturbations in the linear stage of flute mode instability in (x,y) plane. The left
and right plots correspond to the same data but the right plot in black and white has higher pictorial resolution.

Figure 7: Formation of large scale structures and short scale perturbations in the nonlinear stage of flute mode
instability in (x,y) plane. The left and right plots correspond to the same data but the right plot in black and
white has higher pictorial resolution.

are presented. One can observe formation of large scale structures and on top of them
development of short scale perturbations. The appearance of modes with kx ∼ ky in this
stage is due to nonlinear interaction between the unstable flute modes.

5 Experimental results

In the early stages of wire array implosion part of the current flows through the plasma
column of the Z-pinch precursor which forms as ablated material reaches the axis. Mul-
tiframe shadowgraphy has revealed the appearance of strong wave turbulence in the
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AxisAxis

Figure 8: Development of plasma turbulence in the precursor of the Al 8×15µm wire array. Shadowgrams
of the precursor plasma at instants with 20 ns separation in time. In (a) - seeded density perturbations are
presented. In (b) - at late times formation of large and short scales is observed.

precursor stage in the central plasma column of the Al wire array. A detailed description
of experimental results can be found in [1, 2, 22]. The latest experimental result obtained
with multiframe shadowgraphy and presented in Fig. 8 also demonstrates formation in
late times of large and short scales in the perturbed density initially seeded with pertur-
bations of typical size ∼0.5mm.

Another application, with similar linear and nonlinear consequences, of the model
of compressible electromagnetic flute mode instability is connected with laboratory ex-
periments on interaction of laser ablated plasma flow with magnetic field [4] where flute
mode instability can develop in the region of plasma flow deceleration by the magnetic
field. In this experiment [4] a plasma flow was produced by laser ablation and was de-
celerated by the external magnetic field produced by the Zebra pulse power generator.
The interaction region was diagnosed with multiframe schlieren imaging. About 5 ns
after the creation of the plasma, the plasma-field boundary became unstable, with per-
turbations growing in the plane perpendicular to the magnetic field, but not in the plane
containing the magnetic field lines. Fourier analysis showed a dominant wavelength of
about 0.5mm, close to the maximum growth rate predicted for the experimental condi-
tions (see Fig. 3). At 7 ns later one can notice cascading in the spectrum towards both
shorter and longer wavelengths. These experimental results are indeed similar to the
previous ones in Z-pinch precursor plasmas.

6 Discussion and conclusions

The instability of compressible electromagnetic magnetic-curvature-driven flute-like
modes in a finite-beta plasma has been investigated to explain the experimentally ob-
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served excitation of turbulence in the precursor plasma of imploding wire arrays in Z-
pinches and in laser ablated plasma flows during their interaction with the strong mag-
netic field produced by the Zebra pulse power generator.

In a low beta plasma flute modes are electrostatic oscillations propagating in the plane
perpendicular to the external magnetic field. In both the finite beta precursor plasma and
in the laser ablated plasma flow interacting with the magnetic field, it is necessary to treat
the flute modes as electromagnetic. The presence of the electromagnetic component in
the wave field leads to significant changes in the dispersion relation of the flute modes.
Inclusion of finite plasma beta effects also results in the appearance of new nonlinear
terms. Nevertheless this does not prevent the emergence of the instability of the flute
modes and the formation of large and small scale perturbations in the system.

The experimentally observed spatial and temporal scales of large-scale cells and
small-scale density perturbations correspond to those predicted by our theoretical model
of compressible electromagnetic flute mode turbulence.

In the future we plan to investigate the appearance in such systems of zonal modes
and streamers and their interaction with the isotropic flute modes.
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