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Abstract. Based on the generalizations of the Funk-Hecke formula and the Rayleigh
plan-wave expansion formula, an alternative and succinct derivation of the addition
theorem for general tensor field is obtained. This new derivation facilitates the diag-
onalization of the tensor addition theorem. In order to complete this derivation, we
have carried out the evaluation of the generalization of the Gaunt coefficient for tensor
fields. Since vector fields (special case of tensor fields) are very useful in practice, we
discuss vector multipole fields and vector addition theorem in details. The work is
important in multiple scattering and fast algorithms in wave physics.
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1 Introduction

The fast multipole method (FMM) was proposed to accelerate the method of moments
(MOM) for scattering problems [1–4]. The crucial step in the fast multipole method for
solving the Helmholtz equation is the diagonalization of the translation operators [1, 2,
5]. The diagonalization of a translation operator in 2D was introduced in [1]. It was
extended to 3D in [2,6]. One can also refer to [2,6–9] for some detailed discussions on the
diagonalization of the translation operator. All these discussions were based on scalar
addition theorems.
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Recently, the diagonalizations of the translation operators have been extended to vec-
tor fields [10]. In this paper, we will extend the diagonalizations of the translation oper-
ators to general tensor fields†. To arrive at this, we shall present a succinct derivation of
the tensor addition theorem. Our derivation is different from Danos and Maximon’s [13].
Our derivation is based on tensorial plane-wave expansion while Danos and Maximon’s
is based on the scalar addition theorem. This new derivation facilitates the diagonaliza-
tion of the tensor addition theorem. To the best of our knowledge, the diagonalization
of the tensor addition theorem has not been discussed before. The diagonalization of the
tensor addition theorem facilitates applying FMM to elastodynamics, fluid dynamics,
and Dirac equations, etc., where higher-rank tensors are used.

In Section 2, we extend the Funk-Hecke formula and Rayleigh plane-wave expansion
for tensor fields by the use of the irreducible tensor technique. In Section 3, we present an
alternative derivation of the tensor addition theorem by introducing a generalized Gaunt
coefficient. In Section 4 we will show how to diagonalize the tensor addition theorem. In
Section 5, we discuss the vector addition theorem in details, since vector fields are very
useful in electromagnetics and elastodynamics.

2 Tensorial spherical wave formulas and tensorial plane-wave

expansion

Plane waves can be expanded in terms of spherical waves by the use of the Rayleigh
plane-wave expansion [14], and conversely, spherical waves can be expanded in terms of
plane waves by the use of the Funk-Hecke formula. In this section, we shall extend the
Funk-Hecke formula and Rayleigh plane-wave expansion formula for tensor fields.

2.1 Tensorial spherical wave formulas

We begin with the Rayleigh plane-wave expansion formula [15]‡

eik·r =∑
lm

4πilYlm(r̂)jl(kr)Y∗
lm(k̂), (2.3)

†Here, the tensor is defined as the irreducible tensor, including spinors [11, 12].
‡The Rayleigh plane-wave expansion reads [15]

eik·r =∑
l

(2l+1)il jl(kr)Pl(r̂ · k̂), (2.1)

where l is summed from 0 to ∞. The identity (2.1) is also called Bauer’s identity, since according to Watson
[16] it was discovered by Bauer as early as 1859 (Journal für Math. LVI. (1859) pp. 104, 106). Using the
Legendre’s addition theorem [17] (also called spherical-harmonic addition theorem [18])

Pl(r̂ · k̂)=∑
m

4π

2l+1
Ylm(r̂)Y∗

lm(k̂), (2.2)

where m is summed from −l to l, one can also write the Rayleigh plane-wave expansion as (2.3). To the best
of our knowledge, this double summation formulation (2.3) was first derived by Stratton [14].
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where l is summed from 0 to ∞ and m is summed from −l to l. After multiplying both
sides by Ylm(k̂), integrating over k̂, and using the orthogonality relation

∫

©
dk̂Y∗

l′m′(k̂)Ylm(k̂)=δll′δmm′, (2.4)

where the integral is over a unit circle, and we have the Funk-Hecke formula [17]

jl(kr)Ylm(r̂)=
(−i)l

4π

∫

©
dk̂eik·rYlm(k̂). (2.5)

Now we generalize the Funk-Hecke formula (2.5) for tensor fields. To do this, one
needs to find the spin operator S, by studying the rotational operator for tensor fields.
For a rotationally symmetric system, angular momentum is conserved, and hence, the
rotational operator can be constructed from the angular momentum operator [12].

Let e
[S]
µ be the eigenvectors of the spin operator S. They are also called irreducible

unit tensors [11, 12], which satisfy the orthogonality relationship

e
∗[S]
µ ·e[S]

ν =δµν, (2.6)

where the values of µ or ν are from −S to S. For example, for S =1, the unit tensors are

e
[1]
−1, e

[1]
0 , and e

[1]
+1, which can be written in terms of the Cartesian unit vectors x̂, ŷ, and ẑ

as [12]

e
[1]
−1 =(x̂−iŷ)/

√
2, (2.7)

e
[1]
0 = ẑ, (2.8)

e
[1]
+1 =−(x̂+iŷ)/

√
2. (2.9)

Let e[S] be the set of the eigenvectors of spin operator S

e[S]≡
{

e
[S]
µ ;µ=−S,−S+1,··· ,S

}

. (2.10)

Coupling e[S] to both sides of (2.5) gives

jl(kr)Y
[J]
lSM(r̂)=

(−i)l

4π

∫

©
dk̂eik·rY[J]

lSM(k̂), (2.11)

where Y
[J]
lSM(k̂) is the tensor spherical harmonics defined by [12, 18, 19]

Y
[J]
lSM(k̂)=∑

mµ

〈lmSµ|lSJM〉Ylm(k̂)e
[S]
µ , (2.12)
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and 〈lmSµ|lSJM〉 is the Clebsch-Gordan coefficient. The tensor spherical harmonic func-

tions Y
[J]
lSM, which are the eigenfunctions of the addition of angular momenta J = L+S,

satisfy the orthogonality and completeness relationships
∫

©
dk̂Y

∗[J′]
l′SM′(k̂)·Y[J]

lSM(k̂)=δJ J′δll′δMM′ , (2.13)

∑
JlM

Y
[J]
lSM(k̂)Y

∗[J]
lSM(k̂′)=∑

µ

e
[S]
µ e

∗[S]
µ δ(k̂− k̂′), (2.14)

where in (2.13) the dot · stands for dot products of two irreducible tensors and (2.14)
implies the outer product between two tensors. For the proofs of (2.13) and (2.14), one
can refer to Appendix A. Here we are only interested in the case where S is fixed, for

example, S=1. In (2.14), the expression ∑µ e
[S]
µ e

∗[S]
µ represents an identity operator in the

space spanned by the vectors e
[S]
µ . Hence, we can alternatively define

∑
µ

e
[S]
µ e

∗[S]
µ = I[S]. (2.15)

Note that the Funk-Hecke formula for tensor fields (2.11) corresponds to angular part
of the Fourier transform as discussed in [20] for vector fields.

2.2 Tensorial plane-wave expansion

Right-multiplying both sides of (2.11) by Y
∗[J]
lSM(k̂), summing over JlM, and using the

completeness relationship (2.14), we have tensorial plane-wave expansion

I[S]eik·r =∑
µ

e
[S]
µ e

∗[S]
µ eik·r = ∑

JlM

4πilY
[J]
lSM(r̂)jl(kr)Y

∗[J]
lSM(k̂). (2.16)

One good feature of (2.16) is that the left-hand side is a single summation. Namely, the
irreducible tensor is diagonalized.

Right-multiplying both sides of (2.16) by e
[S]
ν , using the orthogonality relation (2.6),

we have

e
[S]
ν eik·r = ∑

JlM

4πilY
[J]
lSM(r̂)jl(kr)(Y

∗[J]
lSM(k̂)·e[S]

ν ), (2.17)

which is another version of tensorial plane-wave expansion.

3 A succinct derivation of the tensor addition theorem

The addition theorem transforms the wave functions from one coordinate system into
another. The addition theorem of scalar fields along an arbitrary direction was first de-
rived by Friedman and Russek [21]. It was generalized to vector fields by Stein [22] and
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Figure 1: Addition theorem.

Cruzan [23]. It was further generalized to tensor fields by Danos and Maximon [13]. One
can refer to [24] for the references and details on addition theorem. Here we suggest a
new way to derive the tensor addition theorem, paralleling the derivation of the scalar
addition theorem [13, 25].

Letting (Fig. 1)

r=R+r′, (3.1)

we have

I[S]eik·r = eik·RI[S]eik·r′ . (3.2)

Substituting (2.16) and (2.3) into (3.2), we have

∑
JlM

4πilY
[J]
lSM(r̂)jl(kr)Y

∗[J]
lSM(k̂)

= ∑
l′′m′′

4πil′′Yl′′m′′(R̂)jl′′(kR)Y∗
l′′m′′(k̂) ∑

J′ l′M′
4πil′Y

[J′]
l′SM′(r̂′)jl′(kr′)Y

∗[J′]
l′SM′(k̂). (3.3)

Right-multiplying (dot product) both sides of (3.3) by Y
[J]
lSM(k̂), integrating over k̂, and

using the orthogonality (2.13), we have

Y
[J]
lSM(r̂)jl(kr)= ∑

J′ l′M′
∑

l′′m′′
4πil′′+l′−lYl′′m′′(R̂)jl′′(kR)Y

[J′ ]
l′SM′(r̂′)jl′(kr′)

×
∫

©
dk̂Y

∗[J′]
l′SM′(k̂)·Y[J]

lSM(k̂)Y∗
l′′m′′(k̂). (3.4)

Let

G[S](l′ J′M′|l JM|l′′m′′)=
∫

©
dk̂Y

∗[J′]
l′SM′(k̂)·Y[J]

lSM(k̂)Y∗
l′′m′′(k̂), (3.5)
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which is a generalization of the Gaunt coefficient.§ Note that the Gaunt coefficient is a

scalar constant. Thus, we obtain the matrix elements T
[S]
l′ J′M′,l JM(R) of translator

T
[S]
l′ J′M′,l JM(R)= ∑

l′′m′′
G[S](l′ J′M′|l JM|l′′m′′)4πil′′+l′−lYl′′m′′(R̂)jl′′(kR). (3.6)

Using (2.3) and (3.5), the matrix elements T
[S]
l′ J′M′,l JM(R) can also be written as

T
[S]
l′ J′M′,l JM(R)= il′−l

∫

©
dk̂Y

∗[J′]
l′SM′(k̂)·Y[J]

lSM(k̂)eik·R. (3.7)

It can be shown that [25]

∫ ∞

0
dkk2 jl(kr0)jl(kr)

k2−k2
0

=
πi

2
k0 jl(k0r0)h

(1)
l (k0r), r> r0, (3.8)

∫ ∞

0
dkk2 jl(kr0)jl′(kr′)jl′′(kR)

k2−k2
0

=
πi

2
k0 jl(k0r0)

{

h
(1)
l′′ (k0R)jl′(k0r′), R> r′+r0,

jl′′(k0R)h
(1)
l′ (k0r′), r′ > R+r0,

(3.9)

where k0 has a small positive imaginary part (r0 can be chosen arbitrarily small so
that it become insignificant in (3.9)). Since (3.4) is valid for all k, multiplying it by
k2 jl(kr0)/(k2−k2

0) and integrating over k from 0 to ∞ give

∫ ∞

0
dkk2 jl(kr0)jl(kr)

k2−k2
0

Y
[J]
lSM(r̂)=

∫ ∞

0
dkk2 jl(kr0)

k2−k2
0

× ∑
J′ l′M′

∑
l′′m′′

4πil′′+l′−lYl′′m′′(R̂)jl′′(kR)Y
[J′]
l′SM′(r̂′)jl′(kr′)G[S](l′ J′M′|l JM|l′′m′′). (3.10)

Using (3.8) and (3.9), we can simplify (3.10) to be

Y
[J]
lSM(r̂)h

(1)
l (k0r)= ∑

J′ l′M′
∑

l′′m′′
4πil′′+l′−lG[S](l′ J′M′|l JM|l′′m′′)

×Yl′′m′′(R̂)Y
[J′]
l′SM′(r̂′)

{

h
(1)
l′′ (k0R)jl′(k0r′), R> r′,

jl′′(k0R)h
(1)
l′ (k0r′), r′ > R.

(3.11)

Since

jl(x)=
1

2

(

h
(1)
l (x)+h

(2)
l (x)

)

, (3.12)

§Another version of the generalized Gaunt coefficient is proposed in [26], using a set of quite different tensor
harmonics.
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based on (3.4) and (3.11), we can obtain the translation for the spherical Hankel function

of the second kind h
(2)
l (x)

Y
[J]
lSM(r̂)h

(2)
l (k0r)= ∑

J′ l′M′
∑

l′′m′′
4πil′′+l′−lG[S](l′ J′M′|l JM|l′′m′′)

×Yl′′m′′(R̂)Y
[J′]
l′SM′(r̂′)

{

h
(2)
l′′ (k0R)jl′(k0r′), R> r′,

jl′′(k0R)h
(2)
l′ (k0r′), r′> R.

(3.13)

Define T̃
[S]
l′ J′M′,l JM(R) by

T̃
[S]
l′ J′M′,l JM(R)= ∑

l′′m′′
G[S](l′ J′M′|l JM|l′′m′′)4πil′′+l′−lYl′′m′′(R̂)zl′′(kR), (3.14)

where zl(x) is either the spherical Bessel function of the first kind jl(x), the spherical
Bessel function of the second kind yl(x), the spherical Hankel function of the first kind

h
(1)
l (x), and the spherical Hankel function of the second kind h

(2)
l (x). Note that the trans-

lator T̃
[S]
l′ J′M′,l JM(R) can be obtained replacing the jl′′(kR) with zl′′(kR) in the translator

T
[S]
l′ J′M′,l JM(R).¶

Without losing any physical meaning, replacing k0 with k in (3.11) and (3.13), we can
summarize (3.4), (3.11) and (3.13) as follows

Y
[J]
lSM(r̂)zl(kr)=

{

∑J′l′M′ T
[S]
l′ J′M′,l JM(R)Y

[J′]
l′SM′(r̂′)zl′(kr′), r′> R,

∑J′ l′M′ T̃
[S]
l′ J′M′,l JM(R)Y

[J′]
l′SM′(r̂′)jl′(kr′), r′< R.

(3.15)

Note that the translators for tensor wave fields T
[S]
l′ J′M′,l JM(R) and T̃

[S]
l′ J′M′,l JM(R) are scalar

functions since the translators themselves do not carry nonzero spins. Namely, both sides
of (3.15) have same spin S.

The evaluation of the generalized Gaunt coefficient is presented in Appendix B . Plug-

ging (B.11) into (3.6) and (3.14), we have the explicit forms of translators T
[S]
l′ J′M′,l JM(R) and

T̃
[S]
l′ J′M′,l JM(R), which are same as those derived by Danos and Maximon [13]. Here we

have corrected the coefficients given by [13]. There is also a sign error before M in [28].

4 Diagonalization of the tensor addition theorem

The diagonalization of the translation operators is the crucial step in the fast multipole
method for solving the wave equations [1, 2, 5]. We shall derive the diagonal form of the
tensor addition theorem, paralleling the derivation of the diagonal form of the scalar and
vector addition theorem [9, 10, 29].

¶Similar observation for the vector addition theorem (special case of tensor addition theorem) was made by
Bruning and Lo. See the appendix in [27].
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Specializing zl′′(kR) as the spherical Hankel function of the first kind h
(1)
l′′ (kR), we

have the translator T̃
[S]
l JM,l′ J′M′(R) to be

T̃
[S]
l JM,l′ J′M′(R)= ∑

l′′m′′
G[S](l JM|l′ J′M′|l′′m′′)4πil′′+l−l′Yl′′m′′(R̂)h

(1)
l′′ (kR). (4.1)

In a fast multipole algorithm, the translator for tensor wave functions can be factorized
by

T̃
[S]
l JM,l′ J′M′(Rij)= ∑

l1 J1 M1,l′1 J′1 M′
1

T
[S]
l JM,l1 J1 M1

(Riλ)T̃
[S]
l1 J1 M1,l′1 J′1 M′

1
(Rλλ′)T

[S]
l′1 J′1 M′

1,l′ J′M′(Rλ′ j). (4.2)

Using (3.7) and (4.1), we compute (4.2) as

T̃
[S]
l JM,l′ J′M′(Rij)= ∑

l1 J1 M1,l′1 J′1 M′
1

il−l1

∫

©
dk̂Y

∗[J]
lSM(k̂)·Y[J1 ]

l1SM1
(k̂)eikk̂·Riλ

× ∑
l′′m′′

4πil1+l′′−l′1 Ψ̃l′′m′′(Rλλ′)
∫

©
dk̂′Y∗[J1]

l1SM1
(k̂′)·Y[J′1 ]

l′1SM′
1
(k̂′)Y∗

l′′m′′(k̂′)

×il′1−l′
∫

©
dk̂′′Y

∗[J′1]
l′1SM′

1
(k̂′′)·Y[J′]

l′SM′(k̂′′)eikk̂′′ ·Rλ′ j , (4.3)

where

Ψ̃l′′m′′(R)=Yl′′m′′(R̂)h
(1)
l′′ (kR). (4.4)

In order to simplify (4.3), we consider

∑
l1 J1 M1,l′1 J′1 M′

1

[

Y
∗[J]
lSM(k̂)·Y[J1 ]

l1SM1
(k̂)

][

Y
∗[J1]
l1SM1

(k̂′)·Y[J′1 ]
l′1SM′

1
(k̂′)

][

Y
∗[J′1]
l′1SM′

1
(k̂′′)·Y[J′]

l′SM′(k̂′′)
]

= ∑
l1 J1 M1,l′1 J′1 M′

1

{

Y
∗[J]
lSM(k̂)·

[

Y
[J1]
l1SM1

(k̂)Y
∗[J1]
l1SM1

(k̂′)
]}

·
{[

Y
[J′1]
l′1SM′

1
(k̂′)Y

∗[J′1]
l′1SM′

1
(k̂′′)

]

·Y[J′]
l′SM′(k̂′′)

}

=
[

Y
∗[J]
lSM(k̂)·I[S]δ(k̂− k̂′)

]

·
[

I[S]δ(k̂′′− k̂′)·Y[J′]
l′SM′(k̂′′)

]

=Y
∗[J]
lSM(k̂)·Y[J′ ]

l′SM′(k̂′′)δ(k̂− k̂′)δ(k̂′′− k̂′). (4.5)

In the above, we have used completeness relation (2.14), orthogonality relation (2.6), and
the rule of associativity.

The use of (4.5) simplifies (4.3) to be

T̃
[S]
l JM,l′ J′M′(Rij)=

∫

©
dk̂ilY

∗[J]
lSM(k̂)·eik·Riλ T̆(k,Rλλ′)i−l′Y

[J′]
l′SM′(k̂)eik·Rλ′ j , (4.6)

where

T̆(k,Rλλ′)= ∑
l′′m′′

4πil′′ Ψ̃l′′m′′(Rλλ′)Y∗
l′′m′′(k̂). (4.7)

Note that the factor T̆(k,Rλλ′) is exactly same as the factor for the diagonalization of
the scalar addition theorem.
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5 Vector spherical harmonics, vector multipole fields, and vector

addition theorem

Since vector fields (special case of tensor fields with spin S=1) are very useful in practice,
we will discuss vector multipole fields and vector addition theorem in details. Two sets of
vector spherical harmonics and the corresponding vector multipole fields are discussed.
One set is the eigenstates of the angular momentum, each of which involves a single
orbital angular momentum. The other set naturally describes the divergence and curl
properties of the vector fields, so it is often used in electromagnetics and elastodynamics.
Similar to [10, 29], we shall present a succinct derivation of the vector addition theorem.

5.1 Vector spherical harmonics

The tensor spherical harmonics becomes usual vector spherical harmonics Y
[J]
l1M(r̂) by

setting S=1 in (2.12), where the value l can be only J−1, J and J+1. It follows that these
3 vector spherical harmonics can be denoted as

Y
[J]
J−1,M(r̂), Y

[J]
J,M(r̂), Y

[J]
J+1,M(r̂). (5.1)

Another set of vector spherical harmonics called Hansen spherical harmonics can be de-
noted as [20].

PJM(r̂)= êrYlm(r̂), BJM(r̂)=
∇αYlm(r̂)
√

l(l+1)
, CJM(r̂)=−êr×BJM(r̂), (5.2)

where ∇α is defined by

∇α = êθ
∂

∂θ
+

êϕ

sinθ

∂

∂ϕ
. (5.3)

From the definition (5.2), it can be shown that the vector spherical harmonics and Hansen
spherical harmonics have the relation

PJM(r̂)=
1√

2J+1

[

−
√

J+1Y
[J]
J+1,M(r̂)+

√

JY
[J]
J−1,M(r̂)

]

, (5.4)

BJM(r̂)=
1√

2J+1

[

√

JY
[J]
J+1,M(r̂)+

√

J+1Y
[J]
J−1,M(r̂)

]

, (5.5)

CJM(r̂)=−iY
[J]
J,M(r̂). (5.6)

Replacing r̂ with k̂ in (5.1), (5.2), (5.4)-(5.6), one also can define these spherical harmonics
in momentum space. Letting S=1 in (2.13) and using (5.4)-(5.6), we have the orthogonal-



806 B. He and W. C. Chew / Commun. Comput. Phys., 4 (2008), pp. 797-819

ity of Hansen spherical harmonic functions

∫

©
dk̂P∗

J′M′(k̂)·PJM(k̂)=δJ J′δMM′ , (5.7)

∫

©
dk̂B∗

J′M′(k̂)·BJM(k̂)=δJ J′δMM′ , (5.8)

∫

©
dk̂C∗

J′M′(k̂)·CJM(k̂)=δJ J′δMM′ . (5.9)

Letting S=1 in (2.14) and using (5.4)-(5.6), we have the completeness of Hansen spherical
harmonic functions

∑
JM

PJM(k̂)P∗
JM(k̂′)+BJM(k̂)B∗

JM(k̂′)+CJM(k̂)C∗
JM(k̂′)

=∑
µ

e
[1]
µ e

∗[1]
µ δ(k̂− k̂′)= I[1]δ(k̂− k̂′). (5.10)

5.2 Vector multipole fields

Vector multipole fields can be defined by

zJ−1(kr)Y
[J]
J−1,M(r̂), zJ(kr)Y

[J]
J,M(r̂), zJ+1(kr)Y

[J]
J+1,M(r̂). (5.11)

In electromagnetics and elastodynamics, in order to describe the divergence and curl
properties of the vector fields, Hansen multipole fields is often used . Hansen multipole
fields can be defined by

MJM(r)=∇×[rzl(kr)Ylm(r̂)], NJM(r)=
1

k
∇×MJM(r),

LJM(r)=
1

k
∇[zl(kr)Ylm(r̂)].

(5.12)

Hansen multipole fields MJM(r) and NJM(r) describe solenoidal waves and LJM(r) de-
scribes longitudinal waves. Working out the curl and grad in (5.12), we can express
Hansen multipole fields as

MJM(r)=−i
√

J(J+1)zJ(kr)Y
[J]
J,M(r̂), (5.13)

NJM(r)=− J
√

J+1√
2J+1

zJ+1(kr)Y
[J]
J+1,M(r̂)+

(J+1)
√

J√
2J+1

zJ−1(kr)Y
[J]
J−1,M(r̂), (5.14)

LJM(r)=

√
J+1√

2J+1
zJ+1(kr)Y

[J]
J+1,M(r̂)+

√
J√

2J+1
zJ−1(kr)Y

[J]
J−1,M(r̂). (5.15)
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5.3 Vector Funk-Hecke formulas

Letting S=1 in (2.11) gives the formulas for vector fields as follows

jJ−1(kr)Y
[J]
J−1,M(r̂)=

(−i)J−1

4π

∫

©
dk̂eik·rY[J]

J−1,M(k̂), (5.16)

jJ(kr)Y
[J]
J,M(r̂)=

(−i)J

4π

∫

©
dk̂eik·rY[J]

J,M(k̂), (5.17)

jJ+1(kr)Y
[J]
J+1,M(r̂)=

(−i)J+1

4π

∫

©
dk̂eik·rY[J]

J+1,M(k̂). (5.18)

Using (5.4)-(5.6) and (5.13)-(5.15) in (5.16)-(5.18), we can prove the Funk-Hecke formulas
for vector fields

ℜgMJM(r)=
√

J(J+1)
(−i)J

4π

∫

©
dk̂eik·rCJM(k̂), (5.19)

ℜgNJM(r)= i
√

J(J+1)
(−i)J

4π

∫

©
dk̂eik·rBJM(k̂), (5.20)

ℜgLJM(r)= i
(−i)J

4π

∫

©
dk̂eik·rPJM(k̂), (5.21)

where the ℜg operator implies taking the regular part of the function, that is, a spherical
Hankel function is replaced by a spherical Bessel function. The above proof is different
from those in [10, 20, 29, 30].

It will be discussed in Subsection 5.5 that the wave number of the solenoidal waves
can be different from that of longitudinal waves because of the decoupling the transla-
tions of the solenoidal waves and longitudinal waves. Thus, in general, one may express
the vector Funk-Hecke formulas as follows [20]

ℜgMJM(r)=
√

J(J+1)
(−i)J

4π

∫

©
dk̂eiksek·rCJM(k̂), (5.22)

ℜgNJM(r)= i
√

J(J+1)
(−i)J

4π

∫

©
dk̂eiksek ·rBJM(k̂), (5.23)

ℜgLJM(r)= i
(−i)J

4π

∫

©
dk̂eikpek ·rPJM(k̂), (5.24)

where ks and kp are the wave numbers of the solenoidal waves and the longitudinal
waves, respectively.
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5.4 Vector plane-wave expansion

Letting S=1 in (2.16), we have the vectorial plane-wave expansion

I[1]eik·r =∑
JM

4πi J−1 jJ−1(kr)Y
[J]
J−1,M(r̂)Y

∗[J]
J−1,M(k̂)

+∑
JM

4πi J jJ(kr)Y
[J]
J,M(r̂)Y

∗[J]
J,M(k̂)

+∑
JM

4πi J+1 jJ+1(kr)Y
[J]
J+1,M(r̂)Y

∗[J]
J+1,M(k̂). (5.25)

Using (5.4)-(5.6) and (5.13)-(5.15) in (5.25), we have the vectorial plane-wave expansion
in terms of Hansen multipole fields

I[1]eik·r =∑
JM

4πi J

[

1
√

J(J+1)
ℜgMJM(r)C∗

JM(k̂)

− i
√

J(J+1)
ℜgNJM(r)B∗

JM(k̂)−iℜgLJM(r)P∗
JM(k̂)

]

. (5.26)

It can be shown that

I[1] =∑
µ

e
[1]
µ e

∗[1]
µ =ekek+eθeθ +eϕeϕ. (5.27)

Using (5.27) in (5.26), we have

(ekek+eθeθ +eϕeϕ)eik·r =∑
JM

4πi J

[

1
√

J(J+1)
ℜgMJM(r)C∗

JM(k̂)

− i
√

J(J+1)
ℜgNJM(r)B∗

JM(k̂)−iℜgLJM(r)P∗
JM(k̂)

]

. (5.28)

Taking dot product of both sides of (5.28) with ek, we have the plane-wave expansion for
the longitudinal waves

ekeik·r =−i∑
JM

4πi JℜgLJM(r)Y∗
JM(k̂). (5.29)

Taking cross product of both sides of (5.28) with ek, we have the plane-wave expansion
for the solenoidal waves

(−eθeϕ+eϕeθ)eik·r =∑
JM

4πi J

[

1
√

J(J+1)
ℜgMJM(r)C∗

JM(k̂)

− i
√

J(J+1)
ℜgNJM(r)B∗

JM(k̂)

]

×ek. (5.30)

For detailed discussions on the vectorial plane-wave expansion in terms of Hansen mul-
tipole fields, one can refer to [10, 14, 29, 31, 32].



B. He and W. C. Chew / Commun. Comput. Phys., 4 (2008), pp. 797-819 809

5.5 Vector addition theorem

Letting S =1 in (3.15) gives vector addition theorem immediately. However, in practice,
Hansen multipole fields are often used. Here we present a derivation of vector addition
theorem based on Hansen multipole fields. This derivation is similar to that presented
in [10,29], but here we include longitudinal waves. This derivation clearly shows that the
translations of longitudinal waves and solenoidal waves are decoupled.

Consider the tensor addition theorem by letting (Fig. 1)

r=R+r′, (5.31)

then

I[1]eik·r = eik·RI[1]eik·r′ . (5.32)

Plugging (5.26) and (2.3) into (5.32), we have

∑
JM

4πi J

[

1
√

J(J+1)
ℜgMJM(r)C∗

JM(k̂)− i
√

J(J+1)
ℜgNJM(r)B∗

JM(k̂)−iℜgLJM(r)P∗
JM(k̂)

]

= ∑
l′′m′′

4πil′′Yl′′m′′(R̂)jl′′(kR)Y∗
l′′m′′(k̂) ∑

J′M′
4πi J′

[

1
√

J′(J′+1)
ℜgMJ′M′(r′)C∗

J′M′(k̂)

− i
√

J′(J′+1)
ℜgNJ′M′(r′)B∗

J′M′(k̂)−iℜgLJ′M′(r′)P∗
J′M′(k̂)

]

. (5.33)

Taking dot product of both sides of (5.33) with CJM(k̂), integrating over k̂, and using
orthogonality (5.7)-(5.9), we have

ℜgMJM(r)= ∑
J′M′

∑
l′′m′′

4πi J′+l′′−J

[

√

J(J+1)
√

J′(J′+1)
ℜgMJ′M′(r′)Yl′′m′′(R̂)jl′′(kR)GCC

+
−i

√

J(J+1)
√

J′(J′+1)
ℜgNJ′M′(r′)Yl′′m′′(R̂)jl′′(kR)GBC

]

, (5.34)

where

GCC =
∫

©
dk̂C∗

J′M′(k̂)·CJM(k̂)Y∗
l′′m′′(k̂), (5.35)

GBC =
∫

©
dk̂B∗

J′M′(k̂)·CJM(k̂)Y∗
l′′m′′(k̂). (5.36)

Taking dot product both sides of (5.33) with BJM(k̂), integrating over k̂, using orthogo-
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nality (5.7)-(5.9), we have

ℜgNJM(r)= ∑
J′M′

∑
l′′m′′

4πi J′+l′′−J

[

i
√

J(J+1)
√

J′(J′+1)
ℜgMJ′M′(r′)Yl′′m′′(R̂)jl′′(kR)GCB

+

√

J(J+1)
√

J′(J′+1)
ℜgNJ′M′(r′)Yl′′m′′(R̂)jl′′(kR)GBB

]

, (5.37)

where

GCB =
∫

©
dk̂C∗

J′M′(k̂)·BJM(k̂)Y∗
l′′m′′(k̂), (5.38)

GBB =
∫

©
dk̂B∗

J′M′(k̂)·BJM(k̂)Y∗
l′′m′′(k̂). (5.39)

Taking dot product of both sides of (5.33) with PJM(k̂), integrating over k̂, and using
orthogonality (5.7)-(5.9), we have

ℜgLJM(r)= ∑
J′M′

∑
l′′m′′

4πi J′+l′′−JℜgLJ′M′(r′)Yl′′m′′(R̂)jl′′(kR)GPP, (5.40)

where

GPP =
∫

©
dk̂P∗

J′M′(k̂)·PJM(k̂)Y∗
l′′m′′(k̂). (5.41)

The Hansen spherical harmonics (5.2) have the following properties [10]

C∗
J′M′(k̂)·CJM(k̂)=B∗

J′M′(k̂)·BJM(k̂), (5.42)

B∗
J′M′(k̂)·CJM(k̂)=−C∗

J′M′(k̂)·BJM(k̂). (5.43)

It follows that

GBB =GCC, GBC =−GCB. (5.44)

With (5.44), we can summarize (5.34), (5.37), and (5.40) as




ℜgMJM(r)
ℜgNJM(r)
ℜgLJM(r)



= ∑
J′M′

∑
l′′m′′

4πi J′+l′′−JYl′′m′′(R̂)jl′′(kR)[TJM,J′M′ ]





ℜgMJ′M′(r′)
ℜgNJ′M′(r′)
ℜgLJ′M′(r′)



, (5.45)

where [TJM,J′M′ ] is a 3×3 matrix

[TJM,J′M′ ]=











√
J(J+1)√

J′(J′+1)
GCC

−i
√

J(J+1)√
J′(J′+1)

GBC 0

−i
√

J(J+1)√
J′(J′+1)

GBC

√
J(J+1)√

J′(J′+1)
GCC 0

0 0 GPP











. (5.46)
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The Gaunt coefficients GCC and GBC (in slightly different formulations) were intro-
duced in [10]. See Appendix B for the evaluations of the Gaunt coefficient GCC, GBC

and GPP. Plugging (B.12), (B.17) and (B.20) into (5.46), we have the explicit forms of the
vector addition theorem. The translations of solenoidal fields (the parts determined by
GCC and GBC) of the above explicit forms are same as those presented in Appendix D of
reference [25], except for a sign error before the last 1 in the fourth line of (D.23a) of [25].

Using (5.13), (5.14), and (5.15), (3.8) and (3.9), and following the method in Section 3,
we can extend the vector addition theorem (5.45) to include singular Hansen multipole
fields





MJM(r)
NJM(r)
LJM(r)



= ∑
J′M′

∑
l′′m′′

4πi J′+l′′−JYl′′m′′(R̂)jl′′(kR)[TJM,J′M′ ]





MJ′M′(r′)
NJ′M′(r′)
LJ′M′(r′)



, r′> R, (5.47)





MJM(r)
NJM(r)
LJM(r)



= ∑
J′M′

∑
l′′m′′

4πi J′+l′′−JYl′′m′′(R̂)zl′′(kR)[TJM,J′M′ ]





ℜgMJ′M′(r′)
ℜgNJ′M′(r′)
ℜgLJ′M′(r′)



, r′ < R.

(5.48)

Note that zero entries in (5.46) suggest that the solenoidal waves MJM(r), and NJM(r),
and longitudinal waves, LJM(r), are translated separately. This is because

P∗
J′M′(k̂)·BJM(k̂)=0, P∗

J′M′(k̂)·CJM(k̂)=0 (5.49)

holds for all J′M′, JM. This decoupling of the solenoidal waves and longitudinal waves
also implies that the wave numbers can be different for the solenoidal waves and longi-
tudinal waves, just as in elastodynamics. One can refer to [33] for the detailed properties
of elastodynamics. Also note that the translation of the longitudinal waves is just as that
of scalar wave since gradient operator is translationally invariant [34, 35]. Furthermore,
the block for solenoidal waves of the matrix (5.46) also shows that the diagonal elements
are same, and off-diagonal elements are equal to each other [10], because

NJM(r)=
1

k
∇×MJM(r)

is translationally invariant [35].
It can be shown that the dyadic Green’s function for electromagnetics can be written

in terms of Hansen multipole fields as [25]

Ḡ(r,r′)= ik∑
JM

1

J(J+1)
[ℜgMJM(r)M∗

JM(r′)+ℜgNJM(r)N∗
JM(r′)], (5.50)

where M∗
JM(r′), N∗

JM(r′), and L∗
JM(r′) are specialized by letting zl(kr) = h

(1)
l (kr). This

formulation of the dyadic Green’s function (5.50) can be factorized in terms of the vec-
tor field translator [10]. The diagonalizations of the vector addition theorem based on
Hansen multipole fields has been discussed in great detail in [10, 29].
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6 Concluding remarks

An alternative derivation of the tensor addition theorem has been obtained based on
the generalization of the Funk-Hecke formula and Rayleigh plane-wave expansion for
tensor fields. This new derivation facilitates the diagonalization of the tensor addition
theorem. Our diagonal form unifies scalar, vector, and general tensor fields such that
the implementation of scalar, vector, and tensor fields can be treated in a unified fashion.
Moreover, we have discussed vector multipole fields and vector addition theorem from
a different angle.

In a FMM, the summation in (4.7) should be truncated, and the integration in (4.6)
is approximated by quadrature rules. The error analysis for the truncations and integra-
tions will be studied in future work.

A The orthogonality and completeness relationships of the

tensor spherical harmonics

In this Appendix, we shall prove the orthogonality (2.13) and completeness (2.14) rela-
tionships of the tensor spherical harmonics.

A.1 The orthogonality of the tensor spherical harmonics
∫

©
dk̂Y

∗[J′]
l′SM′(k̂)·Y[J]

lSM(k̂)

=
∫

©
dk̂ ∑

m′µ′
(〈l′m′Sµ′|l′SJ′M′〉)∗Y∗

l′m′(k̂)e
∗[S]
µ′ ·∑

mµ

〈lmSµ|lSJM〉Ylm(k̂)e
[S]
µ

=
∫

©
dk̂ ∑

m′µ′
〈l′SJ′M′|l′m′Sµ′〉Y∗

l′m′(k̂)∑
mµ

〈lmSµ|lSJM〉Ylm(k̂)δµ′µ

= ∑
m′µm

〈l′SJ′M′|l′m′Sµ〉〈lmSµ|lSJM〉δl′ lδm′m

=∑
µm

〈lSJ′M′|lmSµ〉〈lmSµ|lSJM〉δl′ l =δJ J′δll′δMM′ . (A.1)

In the above, we have used (2.6), the orthogonality of the spherical harmonics
∫

©
dk̂Y∗

l′m′(k̂)Ylm(k̂)=δl′lδm′m, (A.2)

and the unitary property of the Clebsch-Gordan coefficient [12]

∑
µm

〈lSJ′M′|lmSµ〉〈lmSµ|lSJM〉=δJ J′δMM′δ(lSJ) (A.3)

with δ(lSJ)=1.
To the best of our knowledge, the orthogonality of the vector spherical harmonics

(special case of (2.13) with S=1) was first presented in [36].
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A.2 The completeness of the tensor spherical harmonics

∑
JlM

Y
[J]
lSM(k̂)Y

∗[J]
lSM(k̂′)= ∑

JlM
∑
mµ

〈lmSµ|lSJM〉Ylm(k̂)e
[S]
µ ∑

m′µ′
(〈lm′Sµ′|lSJM〉)∗Y∗

lm′(k̂′)e
∗[S]
µ′

= ∑
JlM

∑
mµm′µ′

〈lmSµ|lSJM〉〈lSJM|lm′Sµ′〉Ylm(k̂)Y∗
lm′(k̂′)e

[S]
µ e

∗[S]
µ′

=∑
l

∑
mµm′µ′

δmm′δµµ′Ylm(k̂)Y∗
lm′(k̂′)e

[S]
µ e

∗[S]
µ′

=∑
l

∑
mµ

Ylm(k̂)Y∗
lm(k̂′)e

[S]
µ e

∗[S]
µ

=∑
µ

e
[S]
µ e

∗[S]
µ δ(k̂− k̂′)= I[S]δ(k̂− k̂′). (A.4)

In the above, we have used the completeness of the spherical harmonics

∑
lm

Ylm(k̂)Y∗
lm(k̂′)=δ(k̂− k̂′), (A.5)

and the unitary property of the Clebsch-Gordan coefficient [12]

∑
JM

〈lmSµ|lSJM〉〈lSJM|lm′Sµ′〉=δmm′δµµ′. (A.6)

Since LHS of (2.14) can be written as

∑
JlM

∑
µν

[Y
[J]
lSM(k̂)]µ[Y

∗[J]
lSM(k̂′)]νe

[S]
µ e

∗[S]
ν (A.7)

and RHS of (2.14) can be written as

∑
µν

e
[S]
µ e

∗[S]
ν δµνδ(k̂− k̂′), (A.8)

we have

∑
JlM

∑
µν

[Y
[J]
lSM(k̂)]µ[Y

∗[J]
lSM(k̂′)]νe

[S]
µ e

∗[S]
ν =∑

µν

e
[S]
µ e

∗[S]
ν δµνδ(k̂− k̂′), (A.9)

which suggests another formulation of the completeness of the tensor spherical harmon-
ics

∑
JlM

[Y
[J]
lSM(k̂)]µ[Y

∗[J]
lSM(k̂′)]ν =δµνδ(k̂− k̂′). (A.10)

To the best of our knowledge, the formulation (A.10) was first presented in reference [37]
without proof.
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B Evaluations of the Gaunt coefficients

As discussed in Sections 3, 4 and 5, the generalized Gaunt coefficients are introduced to
facilitate the diagonalizations of the vector and tensor addition theorems. In this Ap-
pendix, for complete derivations of the vector and tensor addition theorems, we shall
carry out the evaluations of the Gaunt coefficients. Moreover, the evaluations of the
Gaunt coefficients are useful for the applications of the vector and tensor addition theo-
rems.

B.1 Evaluation of the generalized Gaunt coefficient

The tensor spherical harmonics Y
[J]
lSM(k̂) can be written in terms of Wigner 3-j symbol as

Y
[J]
lSM(k̂)=∑

mµ

(−1)l−S+M(2J+1)
1
2

(

l S J
m µ −M

)

Ylm(k̂)e
[S]
µ . (B.1)

Similarly,

Y
∗[J′]
l′SM′(k̂)= ∑

m′ν

(−1)l′−S+M′
(2J′+1)

1
2

(

l′ S J′

m′ ν −M′

)

Y∗
l′m′(k̂)e

∗[S]
ν . (B.2)

Plugging (B.1) and (B.2) into (3.5), we have

G[S](l′ J′M′|l JM|l′′m′′)= ∑
mµm′ν

(−1)l+M+l′+M′
(2J+1)

1
2 (2J′+1)

1
2 e

∗[S]
ν ·e[S]

µ

×
(

l S J
m µ −M

)(

l′ S J′

m′ ν −M′

)

G[0](l′m′|lm|l′′m′′), (B.3)

where G[0](l′m′|lm|l′′m′′) is the usual Gaunt coefficient (the solid angle integral of the
product of triple spherical harmonics)

G[0](l′m′|lm|l′′m′′)=
∫

©
dk̂Y∗

l′m′(k̂)Ylm(k̂)Y∗
l′′m′′(k̂). (B.4)

The use of (2.6) simplifies (B.3) to be

G[S](l′ J′M′|l JM|l′′m′′)= ∑
mµm′

(−1)l+M+l′+M′
(2J+1)

1
2 (2J′+1)

1
2

×
(

l S J
m µ −M

)(

l′ S J′

m′ µ −M′

)

G[0](l′m′|lm|l′′m′′). (B.5)

The Gaunt coefficient G[0](l′m′|lm|l′′m′′) can be evaluated by either interpreting one
of the triple spherical harmonics as a spherical harmonics operator and using the Wigner-
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Eckart theorem [19, 37] or specializing the integral of a triple product of rotation D func-
tions [12]. Its value written in terms of Wigner 3-j symbols is

G[0](l′m′|lm|l′′m′′)=(−1)m[(2l+1)(2l′+1)(2l′′+1)/4π]
1
2

×
(

l l′ l′′

0 0 0

)(

l l′ l′′

−m m′ m′′

)

. (B.6)

Plugging (B.6) into (B.5), we have

G[S](l′ J′M′|l JM|l′′m′′)= ∑
mµm′

(−1)l+M+l′+M′
(2J+1)

1
2 (2J′+1)

1
2

×
(

l S J
m µ −M

)(

l′ S J′

m′ µ −M′

)

(−1)m[(2l+1)(2l′+1)(2l′′+1)/4π]
1
2

×
(

l l′ l′′

0 0 0

)(

l l′ l′′

−m m′ m′′

)

. (B.7)

We rewrite the summation of the triple product of the Wigner 3-j symbols in (B.7) as
follows

∑
m,µ,m′

(−1)m

(

l S J
m µ −M

)(

l′ S J′

m′ µ −M′

)(

l l′ l′′

−m m′ m′′

)

= ∑
m,µ,m′

(−1)m

(

J l S
−M m µ

)(

l′ J′ S
−m′ M′ −µ

)(

l′ l l′′

m′ −m m′′

)

. (B.8)

In the above, we have used the symmetry properties of Wigner 3-j symbols, and l+l′+l′′

being an even integer. Let µ̃=−µ, (B.8) can be written as

∑
m,µ̃,m′

(−1)m

(

J l S
−M m −µ̃

)(

l′ J′ S
−m′ M′ µ̃

)(

l′ l l′′

m′ −m m′′

)

. (B.9)

Wigner 3-j and 6-j symbols have the relation

∑
m,µ̃,m′

(−1)l′+l+S+m′+m+µ̃

(

J l S
−M m −µ̃

)(

l′ J′ S
−m′ M′ µ̃

)(

l′ l l′′

m′ −m m′′

)

=

(

J J′ l′′

−M M′ m′′

){

J J′ l′′

l′ l S

}

. (B.10)

Notice that left-hand side of (B.10) is not the product of arbitrary triple Wigner 3-j
symbols. Using (B.10) and (B.9), we have the generalized Gaunt coefficient in terms of
Wigner 3-j and 6-j symbols

G[S](l′ J′M′|l JM|l′′m′′)=(−1)M+S[(2J+1)(2J′+1)(2l+1)(2l′+1)(2l′′+1)/4π]
1
2

×
(

l l′ l′′

0 0 0

)(

J J′ l′′

−M M′ m′′

){

J J′ l′′

l′ l S

}

. (B.11)
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B.2 Evaluation of the Gaunt coefficient GCC

GCC =
∫

©
dk̂C∗

J′M′(k̂)·CJM(k̂)Y∗
l′′m′′(k̂)=

∫

©
dk̂Y

∗[J′]
J′,M′(k̂)·Y[J]

J,M(k̂)Y∗
l′′m′′(k̂)

=(−1)M+1[(2J+1)(2J′+1)(2J+1)(2J′+1)(2l′′+1)/4π]
1
2

×
(

J J′ l′′

0 0 0

)(

J J′ l′′

−M M′ m′′

){

J J′ l′′

J′ J 1

}

=(−1)M[(2J+1)(2J′+1)(2l′′+1)/4π]
1
2

J′(J′+1)+ J(J+1)−l′′(l′′+1)

2[J′(J′+1)J(J+1)]
1
2

×
(

J J′ l′′

0 0 0

)(

J J′ l′′

−M M′ m′′

)

. (B.12)

In the above, we have used the relation (5.6), (B.11) and the property of the Wigner 6-j
symbol [12]

{

J J′ l′′

J′ J 1

}

=(−1)J+J′+l′′+1 2[J′(J′+1)+ J(J+1)−l′′(l′′+1)]

[2J′(2J′+1)(2J′+2)2J(2J+1)(2J+2)]
1
2

. (B.13)

B.3 Evaluation of the Gaunt coefficient GBC

Using (5.4), (5.5), (5.6) and (5.49), we can write the Gaunt coefficient GBC as

GBC =
∫

©
dk̂B∗

J′M′(k̂)·CJM(k̂)Y∗
l′′m′′(k̂)

=−i
∫

©
dk̂

√
2J′+1√

J′
Y
∗[J′]
J′+1,M′(k̂)·Y[J]

J,M(k̂)Y∗
l′′m′′(k̂). (B.14)

Using (B.11), the property of the Wigner 6-j symbol [12]
{

J J′ l′′

J′+1 J 1

}

=(−1)J+J′+l′′+1

[

2(l′′+ J+ J′+2)(−l′′+ J+ J′+1)(l′′− J+ J′+1)(l′′+ J− J′)
2J(2J+1)(2J+2)(2J′+1)(2J′+2)(2J′+3)

]
1
2

(B.15)

and the property of the Wigner 3-j symbol

(

J J′+1 l′′

0 0 0

)

=−
[

(J+ J′+1+l′′)(J′+l′′− J)

(J′+l′′− J+1)(J+ J′+l′′+2)

]
1
2

×
(

J J′ l′′−1
0 0 0

)

, (B.16)

we obtain the evaluation of (B.14) as

GBC =−iα(J, J′ ,l′′)(−1)M 1

2
√

J(J+1)
√

J′(J′+1)

×
(

J J′ l′′−1
0 0 0

)(

J J′ l′′

−M M′ m′′

)

, (B.17)
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where

α(J, J′ ,l′′)=[(2J+1)(2J′+1)(2l′′+1)/4π]
1
2

×[(J+ J′+l′′+1)(J′+l′′− J)(J+ J′−l′′+1)(l′′+ J− J′)]
1
2 . (B.18)

B.4 Evaluation of the Gaunt coefficient GPP

Observe that

GPP =
∫

©
dk̂P∗

J′M′(k̂)·PJM(k̂)Y∗
l′′m′′(k̂)

=
∫

©
dk̂ê∗k Y∗

J′M′(k̂)·êkYJM(k̂)Y∗
l′′m′′(k̂)

=
∫

©
dk̂Y∗

J′M′(k̂)YJM(k̂)Y∗
l′′m′′(k̂)=G[0](J′M′|JM|l′′m′′). (B.19)

Note that the identity GPP=G[0](J′M′|JM|l′′m′′) provides another insight for the fact that
the translation of the longitudinal waves is just as that of scalar wave. Using (B.6), we
have

GPP =(−1)M[(2J+1)(2J′+1)(2l′′+1)/4π]
1
2 ×

(

J J′ l′′

0 0 0

)(

J J′ l′′

−M M′ m′′

)

. (B.20)

It is remarked that the Gaunt coefficients GCC, GBC and GPP can be generally written as

(−1)M f (J, J′ ,l′′)
(

J J′ l′′

−M M′ m′′

)

. (B.21)

Since f (J, J′ ,l′′) depends only on 3 parameters, and

(

J J′ l′′

−M M′ m′′

)

depends on 6 parameters, the computation cost of (B.21) is mainly determined by the
evaluation of the Wigner 3-j symbol. For the fast evaluation of the Wigner 3-j symbol, one
can refer to [38]. The evaluation of vector translation coefficients based on the recurrence
relations was presented in [39].
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