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1 Introduction

Lattice Boltzmann models (LBMs) have become a competitive numerical tool for simu-
lating fluid flows over a wide range of complex physical problems [1–7]. LBMs were
initially derived from lattice gas cellular automata (LGCA). The basic idea of LGCA is
to simulate the macroscopic behavior of a fluid flow by implementing an extremely sim-
plified model of the microscopic interactions between particles. LBMs were developed,
starting from LGCA, in the attempt to overcome their major drawbacks: statistical noise,
increasing complexity of the collision operator (for three dimensional problems) and high
viscosity (due to small number of collisions) [1–3]. Nowadays, LBM has consolidated into
a powerful alternative to more classical computational fluid dynamics models based on
the discretization of the Navier-Stokes equations of continuum mechanics.

However, LBM and, in general, the lattice kinetic approach has been mostly used with
classical (non-quantum) fluid. Nonetheless, with the theorization of quantum computers,
some authors have extended the lattice kinetic approach to quantum mechanics [8–16].
In fact, as it was first suggested by Feynman [17], the most natural application of quan-
tum computers would be quantum mechanics [18]. The lattice kinetic approach is very
interesting in this respect, because it was shown that the so-called quantum lattice gas
cellular automata (QLGCA) [11] can be used to simulate systems of nonrelativistic quan-
tum particles with exponential speedup in the number of particles [8].

Besides their hypothetical and future application to quantum computing , these lattice
kinetic methods for quantum mechanics are interesting numerical schemes, which can be
implemented on classical computers retaining the usual attractive features of LGCA and
LBM: simplicity, computational speed, straightforward parallel implementation.

In this paper, we will focus on the so-called quantum lattice Boltzmann (qLB) model
proposed by Succi and Benzi [16,19]. The qLB model was initially derived from a formal
parallel between the kinetic lattice Boltzmann equation (LBE) and the relativistic Dirac
equation. It was then shown that the non-relativistic Schrödinger equation ensues from
the Dirac equation under an adiabatic assumption that is formally similar to the one
which takes the Boltzmann equation to the Navier-Stokes equations in kinetic theory [16].

The basic idea of the qLB model is to associate the wave functions composing the
Dirac quadrispinor with the discrete distribution functions of the LBE. In one spatial di-
mension, this analogy is natural and the quadrispinor components can be assimilated to
quantum particles of different types propagating with velocities ±c and colliding when
they meet at the same space-time location. However, in multi-dimensional formulation,
the analogy is no longer straightforward. This is mainly due to the fact that the Dirac
streaming operator is not diagonal along all the spatial directions (i.e., Dirac matrices
can not be simultaneously diagonalized). We could roughly say that, unlike classical



982 S. Palpacelli and S. Succi / Commun. Comput. Phys., 4 (2008), pp. 980-1007

particles, quantum particles of different types mix up while propagating (“spinning par-
ticles”). To cope with this problem, a new step has to be included besides the classical
collision and streaming steps: a so-called “rotation” step. The rotation step is needed to
align the spin along each direction of propagation [16].

Recently, such multi-dimensional version of the model has been implemented and
numerically validated [20]. Moreover, an imaginary-time version of the model has been
proposed to compute the ground state solution of the Gross-Pitaevskii equation (GPE)
[21]. In this paper, we will review the theoretical derivation of the qLB model and its
most recent developments and applications. Numerical results for the two-dimensional
linear Schrödinger equation, one- and two-dimensional nonlinear Schrödinger equation
(namely the GPE) and for the ground state solution of the GPE are also presented.

2 Formal parallel between LBE and Dirac equation

The quantum lattice Boltmzmann equation (qLBE) was initially derived from a formal
parallel between the kinetic lattice Boltzmann equation and the Dirac equation [16, 22].
This association was suggested by the interesting analogies between quantum mechanics
and fluid mechanics which were pointed out from the early days of the formulation of
quantum theory [23]. For example, it is well known that the non-relativistic Schrödinger
equation can be written in fluid form by simply defining the quantum fluid density and
momentum as ρ = |ψ|2 and Ja ≡ ρua = (h̄/m)ρ∂aθ, where the complex wave function ψ
is represented as ψ = ρ1/2 exp(iθ). A similar analogy is also valid for the relativistic
Dirac equation. In this case, the quantum fluid can be seen as a mixture of particles
of four different types, since the Dirac equation describes the time evolution of a com-
plex quadrispinor ψ = (ψ1,ψ2,ψ3,ψ4)

T. As for classical particle motion, these quantum
particles propagate in space and collide when they “meet”, but, differently from classical
particles, they get mixed during the streaming step because the Dirac streaming operator
is not diagonal [22].

For all their intellectual charm, it is now commonly accepted that they are only for-
mal similarities. However, they can be extremely useful for modeling purposes to for-
mulate non-relativistic quantum mechanics in terms of first-order (relativistic) numerical
schemes. As we mentioned, the qLBE is based on an analogy between the LBE and the
Dirac equation. To clarify this point, we consider the kinetic LBE

fi(x+vi∆t,t+∆t)− fi(x,t)= Aij( f j− f
eq
j ), (2.1)

where fi for i=1,··· ,b are the discrete distribution functions along the lattice speeds vi, f
eq
i

are the equilibrium distribution functions and Aij is the scattering matrix. This equation
can be though of as a discretization of the following set of partial differential equations:

∂t fi+via∂a fi = Aij( f j− f
eq
j ). (2.2)
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It can be shown that Eq. (2.2) is the first-order equation resulting from the multiscale ex-
pansion procedure commonly adopted to study the macrodynamics of LBE [4]. Eq. (2.2)
is formally very similar to the Dirac equation

∂tψi+cαa
ij∂aψj = i

mc2

h̄
βijψj, (2.3)

where αa for a=x,y,z and β are the standard Dirac matrices, c is the speed of light and m
is the mass of the particle.

By projecting Eq. (2.2) upon the eigenvectors of the scattering matrix Aij, a set of
hyperbolic equations for the hydrodynamic fields

ρ=∑
i

fi, ρua =∑
i

via fi, Pab =∑
i

viavib fi

are derived. From LBE theory, it is known that Navier-Stokes equations ensue from the
hyperbolic system deriving from Eq. (2.2) by means of an adiabatic assumption. In this
context, adiabatic assumption means that the shear tensor Sab = ∑i Qiab fi (with Qiab =
viavib−(v2/D)δab, where v is the norm of the lattice vectors vi and D is the number of
spatial dimensions) is adiabatically enslaved to its equilibrium value in the low Knudsen
number limit:

|∂tSab|≪λ(Sab−S
eq
ab),

where λ is the leading eigenvalue of the scattering matrix Aij [4].

The Schrödinger equation can be derived from the Dirac equation in a formally equiv-
alent adiabatic assumption valid in the non-relativistic limit β = v/c≪ 1, where v is the
particle speed. To show this point, we consider, for the sake of simplicity, the one di-
mensional version of Eq. (2.3) written in the Majorana form [24], where all the streaming
matrices are real valued. This reads:

∂tu1,2+c∂zu1,2 =ωcd2,1,

∂td1,2−c∂zd1,2 =−ωcu2,1,
(2.4)

where u1,2 and d1,2 are the four wave functions composing the Dirac quadrispinor and
ωc=mc2/h̄ is the Compton frequency. Let us define the symmetric/antisymmetric modes
according to the unitary transformation

φ±
1,2 =

1√
2
(u1,2±id2,1).

Starting from Eq. (2.4), it is easy to check that φ±
1,2 fulfill the following equations:

∂tφ
+
1,2+c∂zφ−

1,2 =−iωcφ
+
1,2,

∂tφ
−
1,2+c∂zφ+

1,2 = iωcφ
−
1,2.

(2.5)
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Up to now, the system is still symmetric and time and space derivative are in balance
(both first order). As in kinetic theory, we need to break the symmetry of this hyperbolic
system and write it in a dissipative form, where spatial and time derivative are no more
in balance. The symmetry is broken by choosing a specific time direction via the energy
phase-shift φ±

1,2→φ±
1,2exp(iωct) [25]. With this definition of φ±

1,2, Eq. (2.5) transform into:

∂tφ
+
1,2+c∂zφ−

1,2 =0,

∂tφ
−
1,2+c∂zφ+

1,2 =2iωcφ−
1,2.

(2.6)

In the non-relativistic limit, β=v/c≪1, the following adiabatic assumption holds:

|∂tφ
−
1,2|≪2ωc|φ−

1,2|.

From the second equation of Eq. (2.6), by neglecting the time derivative, we obtain

φ−
1,2∼

c

2iωc
∂zφ−

1,2. (2.7)

Inserting Eq. (2.7) into the first equation of Eq. (2.6), we finally obtain the Schrödinger
equation for a free particle of mass m,

ih̄∂tφ
+
1,2 =− h̄2

2m
∂2

zφ+
1,2.

The fast modes φ−
1,2 can be though of as “ghost” variables of the dynamics, in the sense

that they are needed to preserve the correct symmetries, although they do not “emerge”
at the macroscopic scale. To inspect the behavior of φ−

1,2 with respect to φ+
1,2, we rewrite

Eq. (2.5) in terms of the energy and momentum operators of quantum mechanics ih̄∂t→E,
−ih̄∂z → pz:

Eφ+
1,2−cpzφ−

1,2 =mc2φ+
1,2,

Eφ−
1,2−cpzφ+

1,2 =−mc2φ−
1,2.

(2.8)

In order to take the non-relativistic limit, we make the usual replacement E → E′+mc2

with E′ ≪ mc2 for β → 0 [26]. This corresponds to the energy shift and the adiabatic
assumption. Hence, Eq. (2.8) becomes

E′φ+
1,2−cpzφ−

1,2 =0,

(E′+2mc2)φ−
1,2−cpzφ+

1,2∼2mc2φ−
1,2−cpzφ+

1,2 =0.
(2.9)

From the second of Eq. (2.9), we obtain

|φ−
1,2|

|φ+
1,2|

=
1

2

v

c
=

β

2
.
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From a standard Fourier analysis of Eq. (2.6), i.e., taking

φ+ =ρ+exp[i(kz−ω+t)], φ−=ρ−exp[i(kz−ω−t)],

it can be checked that ω−/ω+ ∼ 1/β2. Hence, the amplitude of φ−
1,2 goes to zero for

β→ 0, while their frequencies increase as 1/β2. In conclusion, φ−
1,2 are small-amplitude,

fast-oscillating wave functions. These ghost fields are similar to the ghost fields emerging
from the hydrodynamic LBE. However, there is a fundamental difference: ghost fields for
hydrodynamic LBE tend to die out in a short time because of the real valued relaxation
coefficient, while φ−

1,2 keep oscillating since their relaxation coefficient is purely imaginary
(time-reversible dynamics).

3 Quantum lattice Boltzmann equation

In the previous section, we pointed out an intriguing analogy between the Dirac equation
and the LBE: the Schrödinger equation can be obtained from the Dirac equation in the
same way as the Navier-Stokes equations is derived from the LBE. This invites a quanti-
tative correspondence between LBE and Dirac equation. To this end, let us consider the
three-dimensional Dirac equation in Majorana form. This reads:

(
∂t−cαx∂x +cβ∂y−cαz∂z

)
ψ=−iωcαyψ. (3.1)

The formal parallel between Eq. (3.1) and Eq. (2.2) is as follows [16]:

• fi →ψi,

• vi →L≡ c(−αx,β,−αz),

• Aij →−iωcα
y
ij.

Some observations are in order:

1. the distribution functions fi are real valued, whereas ψi are complex wave func-
tions;

2. the number of distribution functions fi is related to the lattice used to discretize
the phase space, whereas ψ is composed by exactly four complex wave functions
independently from the lattice;

3. the LBE streaming operator is diagonal along all the spatial directions, while the
Dirac streaming operator is not, because it is not possible to simultaneously diago-
nalize the matrices L= c(−αx,β,−αz).

The main problem of this approach is clearly given by point three above. However, there
is a way out: to diagonalize each matrix of L separately in a sequence. The basic idea
is to use an operator splitting technique and hence consider three equivalent formula-
tions of the same equation, each having a diagonal streaming operator along x, y and
z, respectively. In practice, we write the one-dimensional Dirac equation with, say, the
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z-streaming operator in diagonal form. As we shall see, in this one-dimensional formu-
lation, a full correspondence with LBE is achieved. Thus, collision and streaming are
performed along z by using the one-dimensional qLBE. Then the system is rotated (i.e. a
unitary transformation Y is applied) so that the y-streaming matrix is diagonal and the
qLBE is used along y. Finally, the equation is transformed again so that the x-streaming
matrix is diagonal and the qLBE is applied once again. After the three sequential appli-
cations of the qLBE, the Dirac quadrispinor is transformed back.

It is evident, from the sketch of this procedure, that the model is built upon the one
dimensional version of Eq. (3.1). Hence, in the following section we revise the one-
dimensional version of the model.

4 One-dimensional quantum lattice Boltzmann model

Let us consider Eq. (2.4), the one-dimensional Dirac equation in Majorana form. As ob-
served in [16], this is a discrete Boltzmann equation for a couple of complex bispinor u1,2

and d1,2. The propagation step consists on streaming u1,2 and d1,2 along z with speeds
±c, respectively, while the collision step is performed according to the scattering matrix
of the right hand side of Eq. (2.4).

The quantum lattice Boltzmann (qLB) model is obtained by integrating Eq. (2.4) along
the characteristics of u1,2 and d1,2 respectively and approximating the right hand side
integral by using the trapezoidal rule. By assuming ∆z= c∆t (light-cone rule), we have

û1,2−u1,2 =
m̃

2
(d2,1+ d̂2,1),

d̂1,2−d1,2 =− m̃

2
(u2,1+û2,1),

(4.1)

where û1,2 =u1,2(z+∆z,t+∆t), d̂1,2 =d1,2(z−∆z,t+∆t), u1,2 =u1,2(z,t), d1,2 =d1,2(z,t) and
m̃ = ωc∆t is the lattice Compton frequency. Note that, in the scheme of Eq. (4.1), the
integration of the lhs is exact, a numerical error is introduced only by the discretization
of the rhs integral. The system of Eq. (4.1) can be algebraically solved for û1,2 and d̂1,2

yielding the qLB scheme in explicit form

û1,2 = au1,2+bd2,1,

d̂1,2 = ad1,2−bu2,1,
(4.2)

where

a=
1−m̃2/4

1+m̃2/4
, b=

m̃

1+m̃2/4
. (4.3)

The scheme of Eq. (4.2) is a lattice Boltzmann equation in matrix form [3], where the
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collision step is performed by applying the unitary collision matrix

Q=




a 0 0 b
0 a b 0
0 −b a 0
−b 0 0 a


. (4.4)

Note that, due to unitarity of the collision matrix Q, the qLB method offers unconditioned
stability with the size of the time step/mesh spacing (making sure that the light-cone
relation is fulfilled). However, its accuracy is subjected to the condition ωc∆t=∆z/λB≤1,
where λB = c/ωc is the De Broglie wavelength of the particle. Since the time step scales
linearly with the mesh spacing, the grid resolution can be increased without suffering the
time step collapse typical of classical explicit schemes where the CFL stability condition,
∆t<(2m/h̄)∆z2, holds. On the other hand, a lack of adiabaticity could occur for ωc∆t≪1,
and this effect must be carefully watched, while decreasing the lattice spacing, in order
to preserve the validity of qLB.

5 Extension to two and three spatial dimensions

As we mentioned in Section 3, the extension to two and three spatial dimensions requires
the introduction of a “rotation” step, besides the usual collision and propagation steps.
This is due to the fact that we split the streaming operator and apply three times the one-
dimensional qLB model. In particular, assume we start from a formulation of Eq. (3.1),
for which the z-streaming matrix is diagonal, and we apply the 1D-qLB scheme along z:

ψ(Pz,t+∆t)=SzQ̃ψ(P,t),

where P=(x,y,z), Pz=P+∆zk̂, Sz is the z-streaming operator and Q̃ is the collision matrix
(as we shall see, the collision matrix is not exactly equal to Q of Eq. (4.4), this is due to a
factor 1/D emerging from the operator splitting procedure). Now, we rotate the system
so that it is aligned along y, and we apply, to the transformed equation, the 1D-qLB
scheme along y:

ψy(Pyz,t+∆t)=SyQ̃yψ(Pz,t+∆t), with ψy =Yψ, Q̃y =Y−1Q̃Y,

where Pyz = P+∆yĵ+∆zk̂, Sy is the streaming operator along y. The system is rotated
again so that it is aligned along x and the 1D-qLB is applied for the last time:

ψxy(Pxyz,t+∆t)=SxQ̃xyψy(Pyz,t+∆t), with ψxy =Xψy, Q̃xy =X−1Q̃yX,

where Pxyz=P+∆xî+∆yĵ+∆zk̂, Sx is the streaming operator along x. Finally, the updated
value is transformed back ψ=Y−1X−1ψxy.
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In the following, we discuss the mathematical details of this procedure in two dimen-
sions, for the three-dimensional case we refer to the original reference [20], however the
extension is straightforward.

The starting point is the two-dimensional version of Eq. (3.1)

(
∂t+cβ∂y−cαz∂z

)
ψ=−iωcαyψ,

we apply to this equation the unitary transformation Z

Z=
1√
2




0 −1 0 1
1 0 −1 0
0 1 0 1
1 0 1 0


,

so that the z-streaming matrix operator becomes diagonal. We, thus, obtain the following
equivalent problem {(

∂t+cAz∂z+cAy∂y

)
ψ=ωcCψ

ψ(z,y,0)=ψ0(z,y),
(5.1)

where

Az =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


, Ay =




0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0


, C=




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


.

By using the sequential splitting approach, Eq. (5.1) separates into two one-dimensional
problems {

(∂t+cAz∂z)ψn
1 = ωc

2 Cψn
1 , (n−1)∆t< t≤∆t,

ψn
1 [(n−1)∆t]=ψn−1

2 [(n−1)∆t],
(5.2)

and {
(∂t+cAy∂y)ψn

2 = ωc
2 Cψn

2 , (n−1)∆t< t≤∆t

ψn
2 [(n−1)∆t]=ψn

1(n∆t),
(5.3)

for n =1,2,··· ,N. To start the procedure, we set ψ0
2 = ψ0. The one dimensional problems

of Eqs. (5.2) and (5.3) can now be solved by using the 1D-qLB scheme. However, while
Az is already in diagonal form so that the 1D-qLB scheme can be directly applied, the
same is not true for Ay. Hence, Eq. (5.3) must be transformed (rotation step) in order to
diagonalize Ay and one possible choice for the transformation matrix Y is

Y =
1√
2




−1 0 0 1
0 −1 1 0
1 0 0 1
0 1 1 0


.
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Note that, the collision matrix of this 2D-qLB is not given by Eq. (4.4), because of the
factor 1/2 in the collision term of Eqs. (5.2) and (5.3). By direct calculations, it can be
easily shown that, in this case, the collision matrix is obtained from Eq. (4.4) by simply
substituting m̃ with m̃/2 in the definition of a and b (see Eq. (4.3)).

6 Adding a potential to the qLB model

In this section, we will show how to add a potential interaction into the model. We
will explicitly refer to the one dimensional case for the sake of simplicity. However, the
extension to multi-dimensional case is straightforward.

Consider the one-dimensional Dirac equation with an electrostatic potential interac-
tion

∂tu1,2+c∂zu1,2 =ωcd2,1+igu1,2,

∂td1,2−c∂zd1,2 =−ωcu2,1+igd1,2,
(6.1)

where g = qV/h̄ is the space dependent frequency coupling to the external potential V
and q is the particle electric charge. Discretizing as in the free particle case, we obtain

û1,2 = agu1,2+bgd2,1,

d̂1,2 = agd1,2−bgu2,1,
(6.2)

where

ag =
1−Ω/4

1+Ω/4−ig̃
, bg =

m̃

1+Ω/4−ig̃
,

with Ω = m̃2− g̃2 and g̃ = g∆t. We note that, when adding a potential, the Schrödinger
equation is still obtained in the adiabatic limit |ω−ωc|≤ |ωc+g| but with the additional
constraint of “small” potential interaction |g|≪ωc . In fact, by following the same proce-
dure outlined in Section 2 to recover the Schrödinger equation from Dirac equation, we
obtain

ih̄∂tφ
+
1,2 =− h̄c2

2ωc
∂z

(
2ωc

2ωc+g
∂zφ+

1,2

)
−qVφ+

1,2

≈− h̄2

2m
∂2

zφ+
1,2−qVφ+

1,2,

where the latter approximation is valid only if the potential g is negligible with respect
to ωc.

6.1 The time-dependent Gross-Pitaevskii equation

It is straightforward to apply the scheme of Eq. (6.2) to the solution of the Gross-Pitaevskii
equation (GPE), where a nonlinear self-interaction of the wave function is involved [27].
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At zero temperature, the dynamics of a trapped Bose-Einstein condensate (BEC) is de-
scribed by the GPE [28]. The GPE for a quantum wave function ψ(r,t) with r=(x,y,z)T ∈
R

3 reads as

ih̄
∂ψ(r,t)

∂t
=

(
− h̄2

2m
∆r +Vext(r)+NU0|ψ(r,t)|2

)
ψ(r,t),

where U0 = 4πh̄2a/m is the coupling strength, a is the scattering length and N is the
number of particles in the condensate, Vext(r) is the external trapping potential, usually
an harmonic potential. Furthermore, the wave function ψ(r,t) satisfies the normalization
condition ∫

R3
|ψ(r,t)|2dr =1. (6.3)

The three-dimensional GPE can be reduced to two dimensions or even one dimension,
still maintaining the same form, for two particular choices of the harmonic trap [29–32].
Hence, in general, we consider the equation

ih̄
∂ψ(r,t)

∂t
=

(
− h̄2

2m
∆r +Vext(r)+NUd|ψ(r,t)|2

)
ψ(r,t), (6.4)

for r∈R
d with d=1,2,3.

To apply the qLB model to this equation, we simply needs to define the following
total potential

V(r,t)=Vext(r)+NUd|φ+|2,

where |φ+|2≡|φ+
1 |2+|φ+

2 |2. Adding this potential to the model, as shown in the previous
section, the slow modes φ+

1,2 satisfy the GPE. Note that, the collision matrix is still unitary

(|ag|2+|bg|2 =1), but this is due to the fact that V is evaluated only at time t and position
r, i.e. it is treated as a constant in the integration of the rhs of Eq. (6.2). In particular, the
nonlinearity is evaluated only at the previous time step t, without any further iteration
so as to preserve unitarity and the consequent unconditional stability [33, 34].

7 Imaginary-time quantum lattice Boltzmann model

The qLB-model has been recently used to compute the ground state solution of the
GPE Eq. (6.4) [21]. In this section, we will revise the derivation of the one-dimensional
imaginary-time qLB scheme and its application to the computation of the ground state of
the GPE. The extension to the multi-dimensional case follows the same line already dis-
cussed for the real-time qLB scheme and for details we refer to the original reference [21].

7.1 The time-independent Gross-Piatevskii equation

In order to find stationary solutions of Eq. (6.4), one usually sets ψ(r,t) =
exp(−iµt/h̄)φ(r), where µ is the chemical potential [33,35]. By inserting the above wave
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function into Eq. (6.4), the following equation for µ and φ(r) is derived

µφ(r)=

(
− h̄2

2m
∆r +Vext(r)+NUd|φ(r)|2

)
φ(r), (7.1)

with the normalization condition
∫

Rd
|φ(r)|2 =1.

This is a constrained nonlinear eigenvalue problem, any eigenvalue µ can be computed
from its corresponding eigenfunction φ, by simply multiplying Eq. (7.1) by φ∗(r) and
integrating over R

d.
The ground state solution is the eigenfunction φg(r) associated with the minimum

eigenvalue µ and satisfying the normalization condition.
Typically, φg is found by applying a transformation known as Wick rotation, to the

time-dependent GPE. This consists of “rotating” the time axis on the complex plane so
that it becomes purely imaginary [36–39]. Let us introduce an imaginary variable τ de-
fined as τ = it. Rewriting Eq. (6.4) in terms of τ, we obtain a diffusion equation with an
absorption/emission term given by the potential

h̄∂τψ(r,τ)=

(
h̄2

2m
∆r−Vext(r)−NUd|ψ(r,τ)|2

)
ψ(r,τ). (7.2)

The problem is reduced to solve Eq. (7.2) under the normalization condition constraint
given by Eq. (6.3). In fact, for τ→+∞, the solution of this constrained equation tends to
a stationary profile, which turns out to be the ground state wave function of the GPE.

7.2 The one-dimensional imaginary-time qLB scheme

The imaginary-time qLB scheme is obtained by applying the Wick rotation to the Dirac
Eq. (6.1) from which qLB starts from. The basic idea is to rewrite the Dirac equation
(written in Majorana form) with respect to the imaginary variable τ = it.

In the one-dimensional case, we consider Eq. (6.1) and apply the Wick rotation, to
yield:

∂τu1,2−ic∂zu1,2 =−iωcd2,1+gu1,2,

∂τd1,2+ic∂zd1,2 = iωcu2,1+gd1,2.
(7.3)

Now, let ∆τ = i∆t be the imaginary-time discretization step, while ∆z =−ic∆τ = c∆t is,
as usual, the spatial step. Integrating Eq. (7.3) along the characteristics of u1,2 and d1,2

respectively and approximating the rhs integral with the trapezoidal rule, we obtain

û1,2−u1,2 =−i
m̃

2
(d2,1+ d̂2,1)+

g̃

2
(û1,2+u1,2),

d̂1,2−d1,2 = i
m̃

2
(u2,1+û2,1)+

g̃

2
(d̂1,2+d1,2),

(7.4)
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where û1,2 = u1,2(z+∆z,τ+∆τ), d̂1,2 = d1,2(z−∆z,τ+∆τ), u1,2 = u1,2(z,τ), d1,2 = d1,2(z,τ),
m̃ = ωc∆t and g̃ = g∆t. The system of Eq. (7.4) is algebraically solved for û1,2 and d̂1,2, to
yield the following explicit scheme

û1,2 = ai
gu1,2−bi

gd2,1,

d̂1,2 = ai
gd1,2+bi

gu2,1,

where

ai
g =

(1− g̃/2)(1+ g̃/2)+m̃2/4

(1− g̃/2)2−m̃2/4
, bi

g =
im̃

(1− g̃/2)2−m̃2/4
.

Note that, g is evaluated at time τ, i.e. there is no iteration over the nonlinearity.
We observe that |ai

g|2+|bi
g|2 6=1, hence the collision matrix is not unitary. This implies

that the model does not automatically verify the normalization condition. This is usual
for models which compute the ground state solution by solving dynamical equations in
fictitious time, such as Eq. (7.2). Hence, the normalization condition must be imposed at
each time step by directly re-normalizing the wave function [33, 35, 38].

In analogy with real-time qLB, we introduce the wave functions

φ±
1,2 =

1√
2

eωcτ(u1,2+id2,1). (7.5)

In [21], the equation governing φ−
1,2 is derived and it is shown, by inspecting its dispersion

relation, that φ−
1,2 fulfills Eq. (7.2). In particular, it is shown that the dispersion relation of

the equation governing φ−
1,2 coincides with the dispersion relation of Eq. (7.2) apart from

an additional mode whose effect is to uniformly amplify φ−
1,2, but the normalization step

compensates this anomalous behavior. For the details of this procedure, we refer to the
original reference [21]. Here we will revise the simpler free-particle case (Vext = 0 and
NU1 =0).

Since u1,2 and d1,2 fulfill Eq. (7.3), φ±
1,2 satisfy the following equations:

∂τφ+
1,2−ic∂zφ−

1,2 =0, (7.6)

∂τφ−
1,2−ic∂zφ+

1,2 =2ωcφ−
1,2. (7.7)

By multiplying (7.6) by c and taking the z derivative, multiplying Eq. (7.7) by i and de-
riving it with respect to τ and then subtracting the resulting equations, we obtain the
following governing equation for φ−

1,2

h̄∂τφ−
1,2 =

h̄2

2m
∂2

zφ−
1,2+

h̄2

2ωc
∂2

τφ−
1,2. (7.8)

The second order time derivative term drives an instability which tends to amplify φ−
1,2

while preserving its spatial profile. However, the normalization step tames the effect of
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this term. This point is clarified by the study of the dispersion relation we mentioned
above. Here, we just want to observe that, for the free-particle case (Vext=0 and NUd=0),
φ−

1,2 obey a diffusion equation with the correct diffusion coefficient (see Eq. (7.2)).

Note that, in this imaginary-time extension of the model, no adiabatic assumption is
needed and it is not required to have “small” potential interaction. As we shall see, in
this case the nonlinearity coefficient can be set to much larger values than in the real-time
case.

8 Numerical results

In this section, we will present some numerical results for the two-dimensional linear
Schrödinger, one- and two-dimensional time-dependent GPE and two-dimensional time-
independent GPE.

8.1 Linear Schrödinger equation

For the linear Schrödinger equation, we review some of the two-dimensional results pre-
sented in [20]. One-dimensional numerical results can be found in [19].

Let us consider, as initial condition, a minimum uncertainty wave packet

ψ0(z,y)=
(
2π∆0z∆0y

)−1/2
exp

(
− (z−z0)2

4∆2
0z

)
exp

(
− (y−y0)2

4∆2
0y

)
exp

(
−im(vzz+vyy)

)
.

(8.1)
This is a wave packet centered about (z0,y0) with initial spreads ∆0z, ∆0y along z and y
respectively and propagating at speed (vz,vy). With this initial condition, the analytical
solution of the Schrödinger equation for a free propagating particle is given by [40]:

ψan(z,y,t)=

[
2π

(
∆0z+

it

2m∆0z

)(
∆0y+

it

2m∆0y

)]−1/2

exp

(
− (z−z0−vzt)2

4∆2
0z+2it/m

)

×exp

(
− (y−y0−vyt)2

4∆2
0y+2it/m

)
exp

(
im(vzz+vyy)

)
exp

(
−

im(v2
z +v2

y)t

2

)
. (8.2)

Based on this solution, the mean position (Z(t),Y(t)) and the mean spreads ∆z(t) and
∆y(t) evolve according to the equations

Z(t)= z0+vzt, Y(t)=y0+vyt, (8.3)

and

∆z(t)=

[
∆2

0z +
t2

4m2∆2
0z

]1/2

, ∆y(t)=

[
∆2

0y+
t2

4m2∆2
0y

]1/2

. (8.4)
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Figure 1: Difference between the real part of the analytical solution and the model result for y=y0 (left column)
and z=z0 (right column) (see Eq. (8.5)) and for different values of Nz=Ny at times t=100, t=300 and t=500.

Parameters are set as follows: vz =0.02, vy =0.04, ∆0z = ∆0y =40 and m̃=(1/8)h. Solid line: Nz = Ny =128;
Dashed line: Nz = Ny = 256; Dotted line: Nz = Ny = 512; Dash-dotted line: Nz = Ny = 1024. Time and space
are expressed in lattice units.
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We compare the qLB numerical results with the analytical solution while decreasing the
discretization step h≡∆t = ∆z = ∆y (recall that c = 1 in lattice units). For this numerical
test, we set the computational domain as [0,512]×[0,512] and y0 =z0 =256 in lattice units
and the domain is discretized with Nz = Ny = 128, 256, 512 and 1024 lattice points. The
remaining parameters are set as follows: ∆0z =∆0y=40, vz =0.02, vy=0.04 and m̃≡ωc∆t=
(1/8)h. Periodic boundary conditions are imposed in all the simulations. The error with
respect to the analytical solution Eq. (8.2) is computed in L2 norm and is found to decrease
from 0.08 to 0.009 as the grid resolution was increased from 128 to 1024 points, but with
no clear evidence of a specific convergence rate. This could be the effect of concurrence
error sources: the time discretization error (O(h2)), the splitting error (O(h)) and the lack
of adiabaticity for m̃=ωc∆t→0. In Fig. 1 the function

e(z,y,t)= |ℜ(ψan(z,y,t))−ℜ(φ+(z,y,t))| (8.5)

taken at the cross sections y=y0 and z=z0 for the different values of Nz and Ny is plotted
at times 100, 300 and 500.

In Table 1 the propagation velocity and the mean spread of the packet with increasing
resolution are also shown. For the present setting the expected velocity is vz = 0.02 and
vy =0.04 and the spread at time t =500 is computed by Eq. (8.4) and is 64.03 since ∆0z =
∆0y =40.

Table 1: Propagation velocity and spread of the packet at time t = 500 for different values of Nz = Ny. The

expected values are: vz =0.02, vy =0.04 and ∆z(500)=∆y(500)=64.03. Here m̃=(1/8)h and ∆0z =∆0y =40.

Nz = Ny vz vy ∆z(500) ∆y(500)
128 0.0175 0.0355 60.20 60.19
256 0.0189 0.0379 62.41 62.40
512 0.0191 0.0384 62.97 62.95

1024 0.0193 0.0386 63.11 63.09

Now that the convergence of the scheme has been shown, we set h = 1 as it is usual
in lattice Boltzmann schemes. We want to show the ability of the model to reproduce the
mean quantities Z(t), Y(t), ∆z(t) and ∆y(t) as functions of time following the theoretical
relations of Eqs. (8.3), (8.4). In particular, we set Nz = Ny = 1024 and vz = 0.05, vy = 0.02,
∆0z = 50, ∆0y = 32 and m̃ = 0.2. In Fig. 2, we compare the numerical curve of Z(t), Y(t),
∆z(t) and ∆y(t) with the analytical functions given by Eqs. (8.3) and (8.4).

As a second example, we consider the introduction of an harmonic oscillator. The
harmonic potential is given by

V(z,y)=
1

2
mω2

0[(z−z0)
2+(y−y0)

2],

where we are assuming for simplicity ωz =ωy =ω0, not isotropic harmonic potentials are
considered in [20]. It is known that, in this case, the mean position satisfy the classical
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Figure 2: Comparison between Z(t), Y(t), ∆z(t) and ∆y(t) and the expected curves given by Eqs. (8.3) and
(8.4) for the following setting: Nz = Ny =1024, vz =0.05, vy =0.02, ∆0z =50, ∆0y =32 and m̃=0.2. Solid lines
represent numerical results; dashed lines are the expected curves. Time and space are expressed in lattice units.

equation of motion of the harmonic oscillator and this yields

Z(t)= z0+
vz

ω0
sin(ω0t), Y(t)=y0+

vy

ω0
sin(ω0t). (8.6)

Moreover, by setting ∆0≡∆0z =∆0y so that

ω0 =
1

2m∆2
0

,

the initial spreading is preserved all along the evolution. We want to check the ability
of the model to preserve ∆0 for different parameter settings. In Table 2, the results are
shown, here ∆z and ∆y are the packet spreads averaged over two periods. In all of the
simulations we set vz =0.02 and vy =0.04.

Table 2: Averaged variances of the packet along z and y for different setting of the parameters Nz = Ny, m̃ and
ω0. Here vz =0.02 and vy =0.04.

Nz = Ny ω0 m̃ ∆z ∆y Expected ∆

1024 8/642 1/16 64.35±1.33 64.35±1.33 64
1024 2/322 1/4 32.25±0.70 32.27±0.75 32
512 4/322 1/8 32.16±0.70 32.17±0.69 32
512 2/322 1/4 31.87±0.27 31.87±0.29 32
512 1/162 1/2 16.01±0.69 16.02±0.70 16
256 2/162 1/4 16.05±0.37 16.05±0.38 16
256 1/162 1/2 15.74±0.32 15.74±0.32 16

In Fig. 3, Z(t), Y(t), ∆z(t) and ∆y(t) are shown for Nz =Ny =512, ω0=2/322, m̃=1/4.
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Figure 3: Z(t), Y(t), ∆z(t) and ∆y(t) for the harmonic oscillator with parameters Nz = Ny =512, ω0 =2/322,

m̃=1/4, vz =0.02 and vy =0.04. The solid lines are Z(t) and Y(t), while the dotted ones are ∆z(t) and ∆y(t).
Time and space are expressed in lattice units.

8.2 Time-dependent GPE

Let us consider the following one-dimensional nonlinear potential

V(z,t)=
1

2
mω2

0(z−z0)
2+Vnl|ψ(z,t)|2,

where Vnl ≡NU1. This potential represents a self-interacting particle confined by an har-
monic trap. As an initial condition, we use again the one-dimensional Gaussian packet
of minimum uncertainty. We compare qLB numerical results with the ones given by a
classical Crank-Nicolson (CN) scheme. For both schemes the discretization steps are set
as h≡∆z=∆t=0.5 and Dirichlet boundary conditions are imposed.

It is well known that if the number of particles exceeds a given threshold (i.e. the
nonlinearity coefficient is larger than a fixed threshold), the BEC becomes unstable. This
is due to the fact that, when repulsive forces between the particles of the condensate pre-
vail over the confining effect of the harmonic trap, the BEC droplet breaks up. From a
mathematical point of view, this corresponds to the situation where the potential devel-
ops a doubly humped structure, so that an initially Gaussian wave packet, representing
the BEC droplet, would break up into two or more separate droplets and finally dissolve
into a purely chaotic configuration [27].

In one spatial dimension, the critical value, Vc, above which the BEC becomes unsta-
ble (expressed in lattice units) is given by

Vc =
√

2π∆3
0m̃ω2

0. (8.7)

Let us consider the following set of parameters: Nz=512, m̃=1/4, ∆0=32 and ω0=1/512.
From Eq. (8.7), we obtain Vc =0.19625.
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The effect of the nonlinear term is to cyclically contract and expand the wave packet.
The amplitude of these contractions/expansions is proportional to the strength of the
nonlinear term (i.e. to the value of Vnl). However, the condensate remains confined by
the harmonic trap.

For Vnl > Vc, after a large number of time steps, this cyclic behavior is broken and a
transition occurs which corresponds to strong variation of the wave function and leads
to a chaotic behavior, ending with the total dispersion of the wave packet.
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Figure 4: Mean spreading ∆z(t) for qLB and CN. Parameters are set as follows: Nz =512, z0 =256, m̃=1/4,
∆0 =32, ω0 =1/512, vz =0.0, Vnl =0.1.

We initially set Vnl = 0.1 < Vc. In Fig. 4, the mean spreading produced by the two
schemes up to time t = 32200 (∼ 10T, where T = 2π/ω0) is reported. From this figure,
we note that the packet spreading is oscillating from 32 (which corresponds to the initial
value) to about 39.2, with an oscillation period which is given by T/2. However, the
two schemes compute a slightly different value for ω0. In particular, ωqLB =1.926×10−3,
while ωCN = 1.951×10−3, leading to two different periods, TqLB ∼ 3260 and TCN ∼ 3220
while the expected value is T∼3217. We conclude that, qLB is slightly less accurate than
CN in computing the oscillation frequency. This is in line with the general observation
that qLB is very efficient in achieving a reasonable accuracy (within a few percent), but
cannot easily be pushed to high-accuracy because of the lack of adiabaticity in the limit
ωc∆t → 0. In Fig. 5, the wave function densities computed by qLB and CN at times 0,
TqLB/4, TqLB/2, 3TqLB/4, TqLB for qLB and 0, TCN/4, TCN/2, 3TCN/4, TCN for CN are
shown. We note that the expansion/contraction behavior is well visible and the results
are in good agreement. In Fig. 6, kinetic, potential and total energies computed by qLB
and CN schemes are also shown. A satisfactory energy conservation is achieved for both
models and the mean values of the total energy computed by qLB and CN are EqLB =
1.413×10−3 and ECN =1.417×10−3.

Let us briefly investigate the transition that occurs for Vnl > Vc after a large number
of time steps. In particular, we set Vnl =0.21>Vc, leaving unchanged the remaining pa-
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Figure 5: Wave function densities computed by qLB and CN. Parameters are set as follows: Nz =512, z0 =256,
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Figure 6: Kinetic, potential and total energy computed by qLB and CN. Parameters are set as follows: Nz=512,
z0 =256, m̃=1/4, ∆0 =32, ω0 =1/512, vz =0.0, Vnl =0.1.

rameters. After about 98000 time steps (∼30TqLB), the transition from the cyclic behavior
described above to a chaotic state takes place. In Fig. 7, the wave function density com-
puted by qLB at times 30TqLB, 32TqLB and 50TqLB is shown.

A similar experiment can be performed in two spatial dimensions. In this case the
non-linear potential is given by:

V(z,y,t)=
1

2
mω2

0[(z−z0)
2+(y−y0)

2]+Vnl|ψ(z,y,t)|2,

where we are assuming ω0≡ωz =ωy.
Using, as an initial condition the wave packet of Eq. (8.1), one can calculate the critical
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Figure 7: Wave function density computed by qLB when the BEC becomes unstable (Vnl > Vc). Parameters
are set as follows: Nz =512, z0 =256, m̃ =1/4, ∆0 =32, ω0 =1/512, vz =0.0, Vnl =0.21. The wave function
density is reported at times 30TqLB, 32TqLB and 50TqLB.

value above which the BEC becomes unstable [27].
In two dimensions, this value is given by:

Vc =2π∆4
0m̃ω2

0, (8.8)

where all the quantities are expressed in lattice units.
As above, we compare qLB with CN by setting the same discretization step h≡∆z=

∆y=∆t=0.5 and imposing Dirichlet boundary conditions for both schemes. Moreover, for
this simulation, parameters are set as follows: Nz =Ny =256, m̃=1/2, ∆0z =∆0y≡∆0 =16,
ω0 =1/256, hence, from Eq. (8.8), we obtain Vc =π.

In this case, we set Vnl =2π>Vc, and we expect to observe a cyclic behavior for a large
number of time steps and then a rapid transition from this stable, oscillating regime to
the unstable dispersion of the BEC.

Indeed, for about 100T, the wave packet contracts and expands itself cyclically, as
shown in Fig. 8. In particular, the oscillation frequencies computed by qLB and CN are
ωqLB = 3.841×10−3 and ωCN = 3.898×10−3 respectively, leading to the following values
for the periods: TqLB∼1635, TCN∼1611, while the expected value is T∼1608. In Fig. 8, the
wave function densities taken at y = y0 and computed by qLB and CN at time intervals
of a quarter of their periods are shown and they witness a satisfactory agreement.

After about 100TqLB time steps, a rapid transition occurs and the wave function starts
to break up. In Fig. 9, the unstable behavior of the wave packet is shown, in particular,
the wave function density computed by qLB at the cross section y = y0 at times 100TqLB

and 110TqLB is reported.
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Figure 8: Wave function densities computed by qLB and CN at the cross section y=y0. Parameters are set as
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is computed at times 0, TqLB/4, TqLB/2, 3TqLB/4 and TqLB, while for CN |ψ(z,y,t)|2 is computed at times 0,

TCN/4, TCN/2, 3TCN/4 and TCN.
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Figure 9: Wave function density computed by qLB when the BEC becomes unstable (Vnl > Vc). Parameters
are set as follows: Nz Ny =256, z0 =y0 =128, m̃=1/2, ∆0 =16, ω0 =1/256, vz =vy =0.0, Vnl =2π. The wave
function density is reported at times 100TqLB and 110TqLB.

8.3 Ground-state computation of the GPE

In this section, we show some numerical results obtained by applying the imaginary-time
qLB model to the computation of the ground state of the GPE. Since, qualitatively, one-
and two- dimensional results are very similar, we will focus only on two-dimensional
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Table 3: Ground state chemical potential µ and maximum value reached by the ground state wave function

φ0
g ≡φg(x0,y0) for qLB, CN and BEFD models. Numerical results are also compared with the Thomas-Fermi

chemical potential (see Eq. (8.10)). The results are computed for different values of Vnl . Parameters are set as
follows: ωz =ωy =1/128, m̃=1/8, ∆0z =∆0y =16, Nz = Ny =512.

Vnl µ qLB µ CN µ BEFD µ TF φ0
g qLB φ0

g CN φ0
g BEFD

0 0.007816 0.007812 0.007812 – 0.01723 0.01763 0.01763
10 0.009219 0.009250 0.009250 0.004928 0.01627 0.01656 0.01656
100 0.017489 0.017597 0.017597 0.015584 0.01218 0.01226 0.01225
500 0.035802 0.035949 0.035949 0.034846 0.00835 0.00837 0.00836

1000 0.049964 0.050125 0.050125 0.049280 0.00702 0.00704 0.00703
2000 0.070161 0.070338 0.070338 0.069692 0.00590 0.00591 0.00591
3000 0.085721 0.085905 0.085905 0.085355 0.00533 0.00534 0.00534
4000 0.098860 0.099050 0.099050 0.098560 0.00496 0.00497 0.00496
5000 0.110447 0.110642 0.110642 0.110193 0.00469 0.00470 0.00470

10000 0.155967 0.156176 0.156176 0.155837 0.00395 0.00395 0.00395

simulations. For details on one-dimensional numerical results, we refer the reader to the
original work [21].

In order to validate our numerical results, we compare qLB with classical Crank-
Nicholson scheme and with a backward Euler finite difference (BEFD) scheme [21,33]. We
also use, as a second term of comparison, the analytic solution obtained in the Thomas-
Fermi limit. This approximation is valid in the strong-interaction limit, in which kinetic
energy contributions can be neglected [41]. This limit is reached for large values of the
non-linearity coupling constant NUd.

By considering the time-independent GPE of Eq. (7.1) and neglecting the kinetic en-
ergy term, we obtain

µTFφ(r)=(Vext(r)+NUd|φ(r)|2)φ(r),

where we indicate µ with µTF to recall that this is the Thomas-Fermi chemical potential.
In this case the solution is trivial and the wave function density is given by

|φ(r)|2 =
1

NUd
(µTF−Vext(r))Θ(µTF−Vext(r)), (8.9)

where Θ is the Heaviside step function. The chemical potential given by this approxima-
tion, µTF, can be computed by directly imposing the normalization condition to the wave
function density of Eq. (8.9). In the two-dimensional case, we obtain

µTF =

(
NU2

mω2
0

π

)1/2

. (8.10)

Let us consider the following two-dimensional nonlinear potential

V(z,y,τ)=
1

2
mω2

0[(z−z0)
2+(y−y0)

2]+Vnl|φ(z,t,τ)|2,
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Figure 10: Deviations of qLB from CN and BEFD in the computation of the ground state wave function
for different values of Vnl. In particular, |(φg)qLB(z,y0)−(φg)CN(z,y0)| and |(φg)qLB(z,y0)−(φg)BEFD(z,y0)|
computed at the qLB nodal are plotted. Simulation parameters are set as: m̃=1/8, ∆0z=∆0y=16, ω0=1/128,
Nz = Ny =512. Space is expressed in lattice units.
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Figure 11: Ground state profiles given by the qLB model for different values of Vnl. Simulation parameters are
set as: m̃= 1/8, ∆0z = ∆0y = 16, ω0 = 1/128, Nz = Ny = 512. Vnl takes the following values: 0, 10, 100, 500,

1000, 5000 and 10000 (top to bottom). Space is expressed in lattice units.

where Vnl = NU2 and τ is the fictitious time variable introduced in Section 7. As initial
condition, the wave packet of Eq. (8.1) is again used and Dirichlet boundary conditions
are imposed for all the three schemes.

Let [0,512]×[0,512] be our numerical domain (expressed in lattice units) and the re-
maining parameters are set as follows: ∆0z = ∆0y = 16, ω0 = 1/128 and m̃ = 1/8. Dis-
cretization steps for qLB are set to unity, while for CN and BEFD we set ∆z =∆y=0.5 and
∆t=0.1. The simulation must be stopped only when a stationary state is reached, hence
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Figure 12: Ground state profile φg(z,y) taken at y=y0
for different values of Vnl and compared with the
Thomas-Fermi wave function (see Eq. (8.9)). Simu-
lation parameters are set as: m̃=1/8, ∆0z =∆0y=16,
ω0 = 1/128, Nz = Ny = 512. Solid lines: qLB model;
dashed lines: Thomas–Fermi approximation. Space is
expressed in lattice units. The tails associated with
the kinetic energy contribution are well visible.

the following stop criterion is imposed

max
i,j=0,···,Ng

|φn+1
i,j −φn

i,j|< ε,

where Ng is the number of nodal point and ε=10−9.
In Table 3, the limit value of µ and the maximum value of φ at the end of the simula-

tion, (φg(z0,y0)), are reported for the three schemes. Moreover, the Thomas-Fermi chem-
ical potential µTF given by Eq. (8.10) is also shown. In Fig. 10, we compare the ground
state wave function φg(z,y) taken at y = y0 computed by qLB with the profiles given by
CN and BEFD. In particular, in the figure we report the deviations between qLB and CN
or BEFD: |(φg)qLB(z,y0)−(φg)CN(z,y0)| and |(φg)qLB(z,y0)−(φg)BEFD(z,y0)| computed at
the qLB nodal points. In Fig. 11, φg(z,y) taken at y=y0 and computed by qLB for differ-
ent values of Vnl is reported to show the qualitative effect of an increasing nonlinearity
coefficient. Finally, in Fig. 12, we compare qLB results with the wave function given by
the Thomas-Fermi approximation of Eq. (8.9) for some values of Vnl. The tail smoothing,
well visible in the qLB results, is due to the kinetic energy contribution, hence, it is not
reproduced by the Thomas-Fermi approximation where the kinetic term is neglected.

These data witness a satisfactory agreement between qLB and the reference CN and
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BEFD solutions, while CN and BEFD are in excellent agreement with each other (this is
due to the higher resolution adopted in these reference cases).

9 Conclusions and outlook

In this work, we have reviewed the derivation of the quantum lattice Boltzmann model
and its most recent developments. In particular, we have shown the viability of the qLB
scheme for the numerical solution of the time-dependent Schrödinger equation, as well as
its non-linear extension, such as the Gross-Pitaevskii equation for Bose-Einstein conden-
sates, in multiple spatial dimensions. Moreover, the formulation of an imaginary-time
qLB model for the ground-state computation of the GPE has also been reviewed.

Being based on a unitary, first-order, relativistic formulation, at variance with most
explicit schemes for non-relativistic quantum wave equations, the qLB method offers un-
conditional stability with the size of the time-step/mesh-size. In addition, being based
on a first-order, hyperbolic formulation, stability can be preserved with a time-step scal-
ing linearly with the mesh size, rather than quadratically like most explicit schemes for
quantum wave equations [34].

However, its accuracy is subject to the condition ωc∆t = ∆x/λB ≤1, λB = c/ωc being
the De Broglie wavelength of the particle. Since the time-step scales linearly with the
mesh-spacing (a result of the relativistic formulation), qLB can be taken down to very
refined grids without suffering the time-step collapse typical of non-relativistic Courant-
Friedrichs-Lewy stability conditions, ∆t<2m∆x2/h̄, thus compensating for its low-order
accuracy. However, care must be taken to ensure that errors due to lack of adiabaticity
remain under control when ωc∆t is sent to zero.

The qLB method is also very interesting as a prospective algorithm for quantum com-
puters [8, 11, 13–15]. Indeed, as observed in [42], the stream-and-collide structure of the
quantum lattice Boltzmann equation maps naturally onto the structure of quantum net-
works, i.e. quantum computing devices consisting of quantum logic gates, whose com-
putational operation proceeds synchronously in time. In these networks, the output of
some gates are wire-connected to the input of some others (streaming step), and locally
processed by unitary operations (the collision step).

Besides this attractive, but still speculative application, qLB is an interesting scheme
that can be easily implemented in classical (electronic) computers. As an explicit nu-
merical scheme, qLB offers an appealing set of features, such as unconditioned stability,
norm-preserving (unitarity) and amenability to parallel processing.

In conclusion, the qLB method makes an excellent candidate for implementation on
classical computers as well as for prospective quantum computing applications.
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