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Abstract. There have been several recent papers on developing moving mesh methods
for solving phase-field equations. However, it is observed that some of these moving
mesh solutions are essentially different from the solutions on very fine fixed meshes.
One of the purposes of this paper is to understand the reason for the differences. We
carried out numerical sensitivity studies systematically in this paper and it can be con-
cluded that for the phase-field equations, the numerical solutions are very sensitive to
the starting mesh and the monitor function. As a separate issue, an efficient alternat-
ing Crank-Nicolson time discretization scheme is developed for solving the nonlinear
system resulting from a finite element approximation to the phase-field equations.
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1 Introduction

Numerical methods have been proposed to resolve phase change interface between the
solid and liquid regions. To avoid the calculation of the position and curvature of the
interface, an alternative is to use a so-called diffuse interface model that implicitly defines
the position of the interface, see, e.g., [3]. In this model, a phase indicator parameter p
is assumed to be smooth on the whole solution domain, which has distinctive values in
solid and liquid. With this idea and using the Ginzburg-Landau theory, the phase-field
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equations can be deduced by requiring that the temperature and phase-field evolve such
that the free energy decreases [11].

Most numerical methods to solve the phase-field equations have used stationary uni-
form meshes, see, e.g., [4, 5, 10, 26]. However, it is important that the diffused interface
is well resolved if the correct dynamics are to be reproduced. As the phase interface
moves in time it is clear that an efficient numerical approach must involve some form of
mesh adaptivity. There have been two approaches in doing this. One is to use the local
mesh refinement method, i.e. h-method, see, e.g., [2, 21–23]. The other is to use moving
mesh method which is simpler in implementation and able to resolve the structures as
the phase interface with highly anisotropic mesh grids [1, 16, 17, 24].

Recently, Beckett et al. [1] developed a moving mesh strategy for two-dimensional
phase-field equations. Their computational mesh was obtained by equidistributing a
monitor function tailored for the functional variation of the phase-field in the interfacial
region. The same problems were also computed by Tan et al. [24] using the moving mesh
finite volume methods. For the solidification of a single solid sphere which is surrounded
by uncooled liquid, although the moving mesh results of [1,24] on the radial positions are
in quite good agreement with each other, it is found that they are qualitatively different
from the (very fine) uniform mesh results given by Elliott and Gardiner [9]. In the Elliott
and Gardiner’s model, the parameter of the diffuse interface thickness ǫ is taken as 1/80=
0.0125, while in [1, 24], ε is taken as 1/(160

√
2)≈ 0.0044. The smaller value of ε has the

impact that very fine meshes have to be used in order to resolve the very small transition
interfaces. Nevertheless, it is found that the radial position is in fact quite insensitive
to the choice of the parameter ε. Therefore the differences between the solutions from
different authors should be due to some other reasons, such as the numerical methods
adopted.

In this work, we try to understand the reason why the results of [1,24] have unreason-
able differences from the results obtained on uniform meshes. From the references, one
can find that the possible factors leading to the differences among the numerical results
therein are relevant to the starting mesh, the monitor function and the time integrating
scheme. We first make a numerical convergence study to reveal the fact that the radial
position is fairly insensitive to the choice of the parameter ε by computing for both param-
eters on a sequence of refined uniform meshes. Then we keep the same parameters ε and
p± as [1, 24] and carry out a sequence of computations using different starting meshes,
monitor functions and time integrating schemes. The numerical evidences demonstrated
that among these three possible factors, the variation in time integrating scheme con-
tributes only slight differences to the numerical solutions, while the other two are on
the very contrary. It can be imagined that an inappropriate monitor function will intro-
duce additional error to the numerical solutions, but it is such a surprising fact that the
starting mesh can have a similar effect for this problem. Ideally, the moving mesh solu-
tions should not be dependent on the choice of the starting mesh, since the starting mesh
will be adapted immediately based on the initial values after the computations begin.
However, the numerical results showed that the starting mesh may affect the phase-field
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solutions essentially, in particular when the initial mesh is not fine enough to resolve the
sharp interface.

As an appendant contribution, an efficient time discretization scheme is proposed for
solving nonlinear phase-field equations. The two phase-field equations are nonlinear and
coupled. Typically, a fully implicit scheme [1] or a semi-implicit scheme [24] is used to
solve the ODE systems resulting from the spatial discretization (method of line). Then
Newton-iteration will be applied to find the solution of the resulting nonlinear system.
In this case, the Jacobian matrix is non-symmetric which adds additional difficulties in
finding solutions efficiently. To speed up the solution process, we propose in this work
an alternating Crank-Nicolson scheme to handle the phase-field equations. Applying the
alternating Crank-Nicolson scheme to the phase-field equations leads to two decoupled
algebraic subsystems, one is linear and another is nonlinear. Both have nice structures
and can be solved by efficient matrix iteration methods. Our approach is motivated by
earlier work of Mu and Huang [18, 19] who used a similar idea to solve the Ginzburg-
Landau models.

The layout of this paper is as follows. In Section 2 we describe the phase-field model
in 2D. The numerical methods consisting of the alternating Crank-Nicolson scheme and
moving mesh techniques is presented for phase-field equation. In Section 3, numerical
sensitivity studies for the solidification of a single solid sphere which is surrounded by
uncooled liquid are carried out. The dependence of the numerical solutions on the start-
ing mesh and the monitor function will be reported. Numerical results for solidification
of two spheres will be illustrated in Section 4, to show the solution quality and efficiency
of using the alternating Crank-Nicolson scheme as the time integrator. Some concluding
remarks are drawn in the final section.

2 The phase-field equations and numerical methods

Let Ω∈R
2 be a bounded domain with a Lipschitz continuous boundary ∂Ω. For each

t we will assume we have a decomposition of Ω into the subdomains Ω+(t) and Ω−(t)

so that Ω=Ω+(t)∪Ω−(t)∪Γ(t), where the interface Γ(t)=Ω+(t)∩Ω−(t) is smooth. Let
Tf >0 and set Q := Ω×(0,Tf ). We are interested in the class of sharp interface problems
that takes the form

ρcTt = k△T, x∈Ω+(t)∪Ω−(t),
ρlv= k[∇T ·n]−+ , x∈Γ(t),

T−Tm =− σ

[s]m
κ− ασ

[s]m
v, x∈Γ(t).

(2.1)

Here Tm is the equilibrium melting temperature, l is the latent per unit mass, k is the
thermal conductivity, σ is the surface tension, ρ is the density, c is the specific heat, [s]m
is the entropy difference per unit volume ([s]m = 4 in the normalization used here), v is
the normal velocity of the interface, κ is the sum of the principle curvatures, [∇T ·n]−+ is
the jump in the normal component of the temperature (from solid to liquid), and α is a
kinetic under-cooling coefficient.
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If we define a dimensionless temperature θ = c(T−Tm)/l, a diffusion parameter D =
k/ρc, and a capillary length d0 = σc/(l[s]m), then we can write the system (2.1) in the
following dimensionless form

θt = D△θ, x∈Ω+(t)∪Ω−(t),
v= D[∇θ ·n]−+ , x∈Γ(t)
θ =−d0κ−αd0v, x∈Γ(t).

(2.2)

Using a scaling introduced in [3] we consider the phase-field model

θt+
1

2
pt = D△θ,

αε2 pt = ε2△p+
1

2
(p−p3)+

ε

3d0
θ,

(2.3)

where ε is a measure of the diffuse interface thickness. The boundary conditions for the
phase-field equations are the same as the sharp interface model for θ, with compatible
conditions for p. For example, if Dirichlet conditions are imposed on θ = θ∂± , where ±
denotes the liquid and solid boundaries respectively, then the corresponding values of p
are the largest (p+) and smallest (p−) roots of

f (p,θ)=
1

2
(p±−p3

±)+
ε

3d0
θ∂± =0. (2.4)

The above requirement ensures that there is no mass flow out of the system (see, e.g.
[4, 5]). Then the two phases are characterized by p taking values close to p+ and p− in
each phase. In this work, the Neumann boundary conditions

∂p

∂n
=0,

∂θ

∂n
=0

will be imposed on ∂Ω.
We solve the phase-field equations using finite element discretization. At first, we

triangulate the domain Ω into a triangle mesh Th with N nodes. Let Vh ⊂ H1
0(Ω) be

the piecewise linear finite element space with basis functions φi, i = 1,··· ,N. Moreover,
assume that [0,Tf ] is partitioned by 0=t0

<t1
<···<tNt =Tf with a constant time stepping,

i.e., ∆t= tn+1−tn. We also denote tn+ 1
2 =(tn+1−tn)/2.

For solidification and melting problems the liquid and solid regions change continu-
ously with time. To model this situation we use finite elements that continuously move
and deform. We will assume that, local to an element, the finite element approximations
at time t can be expressed in the form

ph(x,y,t)=
N

∑
i=1

pi(t)φi(x,y), (2.5a)

θh(x,y,t)=
N

∑
i=1

θi(t)φi(x,y), (2.5b)
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where pi(t) and θi(t) denote values for p and θ at the node i. With a standard finite
element approach, the weak formulation for the phase-field equation (2.3) is given by

(

θ̇h+
1

2
ṗh,φj

)

−
(

D△θh,φj

)

=0

(

αε2 ṗh,φj

)

−
(

ε2△ph,φj

)

−
(

1

2
(ph−p3

h),φj

)

−
(

ε

3d0
θh,φj

)

=0,
(2.6)

for j=1,··· ,N, where (·,·) is the L2 inner product over Ω. Denote

P=(p1,p2,··· ,pN)T, Θ=(θ1,θ2,··· ,θN)T.

Using (2.5) and integration by parts, we can obtain from (2.6) the block system

[

M 1
2 M

0 αε2M

][

Θ̇

Ṗ

]

+

[

DK 0
− ε

3d0
M ε2K

][

Θ

P

]

+

[

0
f(P)

]

=0, (2.7)

where the N×N matrix M and K are the usual mass matrix and the stiffness matrix with
their (i, j) entries have the form like

Mij =(φi,φj), Kij =(∇φi,∇φj).

With a product approximation, the nonlinear term f in (2.7) has the form

f(P)=−1

2
(P−P3)M. (2.8)

The nonlinear ODE system (2.7) thus can be solved by a standard ODE solver. Here
we present a new ODE solver deliberately designed for this system with second-order ac-
curacy. As a temporal discretization with second-order accuracy, the alternating Crank-
Nicolson scheme presented below is a quite efficient one. To enhance the numerical effi-
ciency, it is useful to decouple Θ̇ and Ṗ. This can be done by using a backward substitu-
tion in (2.7), which gives

αε2

[

M 0
0 M

][

Θ̇

Ṗ

]

+

[

αε2D ·K+ ε
6d0

M − ε2

2 K

− ε
3d0

M ε2K

]

[

Θ

P

]

+

[

− 1
2 f(P)
f(P)

]

=0. (2.9)

With the form (2.9), we can use an alternating Crank-Nicolson scheme to obtain a second-
order discretization with improved efficiency. To demonstrate the idea clearly, suppose
we are given a system of the form

Pt =ρ11(P)+ρ12(Θ), (2.10a)

Θt =ρ21(P)+ρ22(Θ). (2.10b)
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The above ODE system is discretized as

P(n+1)−P(n)

∆t
=

ρ11(P(n+1))+ρ11(P(n))

2
+ρ12(Θ(n+ 1

2 )), (2.11a)

Θ(n+ 3
2 )−Θ(n+ 1

2 )

∆t
=ρ21(P(n+1))+

ρ22(Θ(n+ 3
2 ))+ρ22(Θ(n+ 1

2 ))

2
, (2.11b)

for n = 0,··· ,Nt. Applying the alternating Crank-Nicolson scheme (2.11) to the system
(2.9) gives

αε2M
Θ(n+ 3

2 )−Θ(n+ 1
2 )

∆t
+

(

αε2D ·K+
ε

6d0
M

)

Θ(n+ 3
2 )+Θ(n+ 1

2 )

2

=
ε2

2
KP(n+1)− M

4
[P(n+1)−(P(n+1))3], (2.12)

αε2M
P(n+1)−P(n)

∆t
+

ε2

2
K(P(n+1)+P(n))

−M

4
[P(n+1)−(P(n+1))3+P(n)−(P(n))3]− ε

3d0
MΘ(n+ 1

2 ) =0. (2.13)

Denote the left-hand side of (2.13) by H(P(n+1)). For nonlinear system (2.12)-(2.13), we
solve the nonlinear equations (2.13) first. After obtaining the updating value P(n+1), then

we can solve the linear system (2.12). The cycle leads to a solution sequence {P(n)}Nt
n=0

and {Θ(n+ 1
2 )}Nt

n=0.
The alternative approach described above solves a much smaller nonlinear system

compared with the larger system solved by Beckett et al. [1] and Tan et al. [24]. For the
small nonlinear system (2.13), we use Newton-iteration

JP(n+1,s+1) =−H(P(n+1,s)), (2.14)

where

J =
∂H

∂P(n+1)
=

αε2

∆t
M+

ε2

2
K− M

4
+

3

4
M(P(n+1))2.

As the bootstrap of the computation, we need the value of Θ( 1
2 ). This can be done by

using a second-order approximation based on Taylor expansion:

Θ( 1
2 )≈Θ(0)+

∆t

2
Θ̇(0), (2.15)

where the value of Θ̇(0) is given explicitly by using the initial conditions Θ(0) and P(0) as
well as the first equation in (2.9), i.e.,

αε2 MΘ̇(0) =−[αε2D ·K+
ε

6d0
M]Θ(0)+

ε2

2
KP(0)− M

4
[P(0)−(P(0))3]. (2.16)
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The moving mesh schemes used in this paper is following the method proposed in [8,
13, 14], including the mesh moving algorithm and the solution update algorithm. In our
moving mesh computations, we choose the commonly used [7, 25] heuristical gradient-
based monitor as

m=
√

1+β|∇p|2, (2.17)

where the parameter β is a positive constant.

3 Mesh sensitivity

To compare with [1, 9, 24], we will consider exactly the same configuration as therein,
which is a phase-field problem involving the stability of a solid sphere in equilibrium
with its undercooled liquid melt. More precisely, consider a domain Ω which has no heat
flux into it and within this domain the initial temperature is equal to a constant, θcool. Let
us introduce an initial ball of solid R0 lying inside the undercooled liquid. It is known
that there exists a steady state solution of (2.2) where the solid ball is in equilibrium with
its melt [6]. This occurs when the radius of the solid ball, Rc, is given by

Rc =− d0

θcool
. (3.1)

This equilibrium is unstable when R0 < Rc: in this case the solid sphere will melt and the
radius will decrease to zero. On the other hand if R0 > Rc then the solid will expand into
the undercooled liquid and the radius will increase.

Following [1], we take the initial temperature to be θcool =−2 and d0 = 1/2 with pa-
rameters D = 1, α = 1. It follows from (3.1) that Rc = 0.25. The initial phase function is
given by

p(x,0)= pbc tanh(
r(x)

2ε
), (3.2)

where ε is the parameter to control the thickness of the transient layer, and f (p,θ) is given
by (2.4),

pbc =







min
p

{p : f (p,θcool)=0}, closest to −1, r(x)<0,

max
p

{p : f (p,θcool)=0}, closest to 1, r(x)≥0,

and r(x) denote the signed normal distance from the point x ∈ Ω to the interface, i.e.,
r(x) is the distance to the interface if it is in the liquid region and minus the distance if
the point is in the solid region. We consider one case where the initial radius is R0 =0.24,
which corresponds to the unstable case of R0<Rc, in the domain Ω=[0,1/2]×[0,1/2]. The
codes for all the computations below are based on the adaptive finite element package
AFEPack [12].

In our numerical sensitivity studies, the time integrator for the ODE system (2.7) is
found to be an insensitive factor. We tried the backward Euler scheme, the three-step
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Figure 1: The radial positions in time computed using different parameter ε on a sequence of stationary
uniform grids, with increase of resolution from 64×64, 128×128, 256×256 to 512×512, for ε=1/80 (left) and

ε=1/(160
√

2) (right).

Runge-Kutta scheme and the alternating Crank-Nicolson scheme described in the last
section. The results show that the time integrators, with different time integrators and
time step length, provide the numerical solutions essentially the same, even when the
numerical solutions are seriously under-resolved. The accuracy order of the temporal
discretization has only small impact to the numerical solutions. The time step length of
the time integration is not an important factor, either.

As a first step to reveal the main concern of this work, we solve the above problem on
a sequence of uniform meshes and check the dependence of the limits of the numerical
solutions on the parameter ε. In Fig. 1, we plot the radial positions as a function of time
obtained using two different parameters ε on the uniform mesh sequence. It can be seen
that for both parameters, the numerical solutions converge to their own limits, while the
two limits are quite close to each other. This agrees with the theoretical results for ε going
to zero [4]. As expected, for the smaller value ε = 1/(160

√
2), the convergence rate of

the numerical solutions is slower than that for the larger value of ε =1/80. Fig. 2 shows
that our numerical solutions with ε=1/80 are in good agreement with the data in [9] on
128×128 mesh grids.

From now on, we set the parameter ε as 1/(160
√

2) and carry out a group of computa-
tions systematically. The meshes under consideration are of four types, as demonstrated
in Fig. 3, which are referred as /-type, \-type, V-type and D-type. The D-type mesh is the
Delaunay triangulation generated by the mesh generating software Easymesh [20]. The
other three types of meshes are the uniform meshes generated using varied cell patterns.
These patterns are chosen since the behavior of the solutions are found different on these
meshes. Moreover, the V-type mesh is the one used in [1].

At first, the numerical results on the fixed mesh at resolution of 512×512 are used as
the reference solutions. For all four types of mesh, the reference solutions are matched



H. Wang and R. Li / Commun. Comput. Phys., 3 (2008), pp. 357-375 365

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

time

ra
d
iu

s

uniform mesh, 512x512, ε=0.0125
uniform mesh, 512x512, ε≈0.0044
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moving mesh, 60x60, ε≈0.0044

Figure 2: The solid line and the circles are our results on 512×512 grids for ε=1/80,1/(160
√

2), respectively,
which are very close to each other. The dots are coming from [9] on 128×128 mesh grids which are agreed with
our lines on 512×512 mesh grids. The dotted line is the results presented in [1], which is reproduced in [24]
and denoted by asterisks.

Figure 3: Profile of the different mesh types used. The figures from left to right are referred as /-type, \-type,
V-type and D-type.

perfectly. The computations on the uniform meshes are calculated with time step length
∆t = 10−3. We have checked that for the uniform mesh with resolutions 512×512, the
numerical solutions matched perfectly using ∆t = 10−3 and ∆t = 10−4 with \-type and
D-type meshes.

For each mesh type, we use four mesh resolutions for the starting mesh of the mov-
ing mesh method for our numerical convergence studies. More precisely, the resolutions
of the meshes are 48×48, 64×64, 80×80 and 96×96. It can be seen clearly that for all
cases, the moving mesh results converge to the reference solutions. For the moving mesh
computation, we used ∆t =10−4. For ∆t =10−3, some cases in the computations are un-
stable based on our numerical experiments, while ∆t=10−4 can guarantee the numerical
stability in all cases.
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Figure 4: Starting mesh dependence for β=2. The solid line in each figure, from left to right: /-type, D-type,
V-type and \-type. The dotted line is the reference result on 512×512 uniform mesh.

For the starting mesh for each mesh type and on every resolution, we present the
results for the parameter β in the monitor function (2.17) at four typical values, namely,
β =2, 4, 8 and 16. These values are chosen to present richer numerical phenomena with
fewer data.

Sensitivity to the starting mesh. Using the same parameter β and resolutions, we plot
the radial position on different types of starting mesh against time. Figs. 4-7 are the results
for β=2, 4, 8 and 16, respectively. It can be seen that the \-type starting mesh is the case
with the worst solution quality. The D-type is the best one. The /-type starting mesh
provides numerical solutions with comparatively lower quality, but the improvement is
better than the \-type starting mesh. The results on the V-type starting mesh are the
intermediate ones. By a detailed observation of the local mesh structures in the transient
layer in different numerical solutions (see Fig. 8), it is found that for the starting mesh
with better numerical solutions, the spatial mesh step size perpendicular to the radial
direction is smaller, thus the curvature of the interface can be better resolved. This is
one of the possible reasons why the computations depended so seriously on the starting
mesh. In spite of the differences on the mesh types, all numerical results on the moving
mesh converge to the reference solutions obtained on the fixed 512×512 mesh, with the
increasing resolution.
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Figure 5: Same as Fig. 4, except β=4.
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Figure 6: Same as Fig. 4, except β=8.
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Figure 7: Same as Fig. 4, except β=16.

Figure 8: The local mesh structure in the transient layer with different types of starting mesh. The figures from
left to right are given by /-type, \-type, V-type and D-type starting mesh.

Sensitivity to the monitor function. It is also observed that the moving mesh solutions
are very sensitive to the constant β in the monitor function (2.17). Figs. 9-12 are the re-
sults for /-type, \-type, V-type and D-type, respectively. On the \-type starting mesh,
the solutions are substantially incorrect and the sphere can even grow instead of melting.
On the D-type starting mesh, the convergence of the numerical solutions to the reference
solution seems the best. The results for the /-type starting mesh is quite inertial to the
variation of the parameter β while there is still a big gap between its solutions and the
reference solution. It is interesting to see that the numerical solutions, though they all
converge to the reference solution with increasing resolution, behavior distinctive at dif-
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Figure 9: Monitor dependence for /-type mesh. The real line in each figure, from left to right, β=2, 4, 8 and
16. The dotted line is the reference result of 512×512 uniform mesh.
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Figure 10: Same as Fig. 9, except the starting mesh is \-type mesh.
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Figure 11: Same as Fig. 9, except the starting mesh is V-type mesh.
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Figure 12: Same as Fig. 9, except the starting mesh is D-type mesh.
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ferent β values and mesh types. Either too large or too small of β can be harmful to the
quality of the numerical solution, and the highest convergence rate can be achieved at a
certain optimal value of β. The behavior of the numerical solutions on the D-type mesh
in Fig. 12 give us a delusion that for this mesh type, a bigger β can be better. However,
for β = 32, the numerical solution will jump to the other side of the reference solutions.
Hence all the mesh types have a limited range of β values. It is observed from Figs. 9-12
that the D-type has the widest range of β among the four types of meshes.

4 Solutions for the solidification of two solid spheres

In this section, we solve the same equations with a more complex configuration, i.e., the
solidification of two solid spheres which are surrounded by undercooled liquid, using
the alternating Crank-Nicolson scheme as the time integrator. The alternating Crank-
Nicolson scheme adopted can not reduce the iteration steps in the nonlinear iteration,
but the iteration is carried out on a positive defined system with halved size. Thus in
total the alternating Crank-Nicolson scheme can save the computation time cost up to
at least 3 times. The improvement in numerical efficiency makes it possible to obtain
reference solutions on very fine uniform meshes, up to a 800×800 resolution.

Based on the initial configuration, the two spheres will grow, then meet, and then
merge into one sphere. From the numerical results, we can see that the solution is re-
solved quite well, even at the moment when the two spheres merge and the topological
changes appear. The numerical results obtained using the moving mesh method match
the results obtained on very fine fixed uniform meshes perfectly. The easy aspect of this
example is that the radii of both spheres are increasing, thus the curvature of the inter-
faces are kept well-resolved during the whole computation. This fact partially explains
the good agreement between the data on the moving mesh and the reference solutions.

The initial radius of both spheres is 0.26 and the centers are located at (0.75,1.25)
and (1.25,0.75) in the domain Ω = [0,2]×[0,2]. The numerical results presented in this
section uses the D-type mesh for computations on fixed mesh. All the other parameters
are same as the one sphere case except that the constant in the monitor function (2.17) is
β=15 for the D-type mesh and β=4 for the V-type mesh. We use the 100×100 resolution
in the moving mesh computation and 400×400, 800×800 resolutions in the fixed mesh
computation.

From Fig. 13, we can see that the adaptive grids follow the evolution of the interfaces
with good quality when the two spheres merge together. In Fig. 14, the computational
mesh at t =0.206 and 0.207 is replotted and magnified to show the local mesh structure.
Fig. 15 shows the radial position of one of the two spheres against the time t. In the
uniform mesh case, the parameter ε=1/(160

√
2)≈0.0044 implies that the mesh resolution

should be about 455×455 in order to get the resolved numerical solutions on uniform
meshes. By comparing the numerical results obtained using the moving mesh method
with resolution 100×100 and that on the fixed meshes with resolutions 400×400 and
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Figure 13: The interface and the mesh structure in two spheres case at t=0, 0.206, 0.208 and 0.25.
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Figure 14: The local mesh structure in the domain marked by a box in Fig. 13 at t = 0.206, and the more
zoomed mesh structures at t=0.208.

Figure 15: Radial position against time on the moving mesh and stationary meshes. The dots are the result
from the moving mesh method with D-type mesh, β=15, which clearly agree with the results on the 800×800
uniform mesh grids (solid line) better than those from moving mesh with V-type mesh, β=4 (circles) and the
400×400 uniform mesh grids (dashed line).
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800×800, it can be found that the moving mesh results are in good agreement with the
finest fixed mesh results. As expected, the moving mesh result with the V-type starting
mesh and β=4 has bigger error than that with the D-type mesh and β=15.

5 Conclusions

In this work, we observed that for a classical phase-field model, the efficiency of the
moving mesh methods depends on the starting mesh and the monitor function. This
phenomena brings us the reminiscences of the observation of Li [15], who considered the
finite element approximations of microstructures. It is known that the approximations
of the microstructures are strongly mesh dependent, e.g., the mesh distribution plays
an important role in the computation of the crystalline microstructure. Although the
reason for the starting mesh dependence is not clarified at this stage for the phase-field
problems, the observed phenomena provide a serious numerical challenge. The present
numerical evidence indicates that for the phase-field problems, the under-resolving of the
interface curvature maybe the source of the qualitatively error of the numerical solutions.
Moreover, we developed an alternating Crank-Nicolson time-stepping method which
solves a smaller nonlinear system at a second-order accuracy in time with a remarkable
saving in computational time.
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