SHORT NOTE

A Remark on "An Efficient Real Space Method for Orbital-Free Density-Functional Theory"

Carlos J. García-Cervera*

Mathematics Department, University of California, Santa Barbara, CA 93106, USA.

Received 14 November 2007; Accepted (in revised version) 6 December 2007

Communicated by Weinan E

Available online 31 December 2007

Abstract. In this short note we clarify some issues regarding the existence of minimizers for the Thomas-Fermi-von Weiszacker energy functional in orbital-free density functional theory, when the Wang-Teter corrections are included.

AMS subject classifications: 65M05, 74G65, 78M50

Key words: Density functional theory, Thomas-Fermi, constrained optimization.

In [1] it was claimed that there always exists a minimizer; however, the statement of Theorem 2.1 is incomplete. In this note we present the full statement, with a detailed proof.

The theorem stated in [1] holds as long as the number of electrons is below a certain critical value. The correct statement for the theorem in [1] is:

Theorem 1 (Existence of minimizers). *Given* $v \in C^{\infty}(\overline{\Omega})$, and $K_{WT} \in L^2_{loc}(\mathbb{R}^3)$, consider the problem

$$\inf_{u\in\mathcal{B}}F[u],\tag{1}$$

where F and \mathcal{B} are

$$F[u] = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{7C_{TF}N^{2/3}}{25} \int_{\Omega} u^{10/3} + \frac{4C_{TF}N^{2/3}}{5} \int_{\Omega} |u|^{5/3} \left(K_{WT} * |u|^{5/3} \right) + \frac{N}{2} \int_{\Omega} u^2 \left(\frac{1}{|\mathbf{x}|} * u^2 \right) - \frac{3}{4} \left(\frac{3N}{\pi} \right)^{1/3} \int_{\Omega} u^{8/3} + \int_{\Omega} u^2 \varepsilon (Nu^2) + \int_{\Omega} v(\mathbf{x}) u^2(\mathbf{x}) d\mathbf{x},$$
(2)

*Corresponding author. Email address: cgarcia@math.ucsb.edu (C. J. García-Cervera)

http://www.global-sci.com/

©2008 Global-Science Press

C. J. García-Cervera / Commun. Comput. Phys., 3 (2008), pp. 968-972

and

$$\mathcal{B} = \left\{ u \in H_0^1(\Omega) \middle| u \ge 0, \ \int_{\Omega} u^2 = 1 \right\}.$$
(3)

In (2), the set Ω is open and bounded, and star-shaped with respect to 0; ε is defined as

$$\varepsilon(Nu^2) = \begin{cases} \frac{\gamma}{1+\beta_1\sqrt{r_s}+\beta_2r_s}, & r_s \ge 1, \\ A\ln(r_s)+B+Cr_s\ln(r_s)+Dr_s, & r_s \le 1, \end{cases}$$
(4)

where $r_s = (4\pi Nu^2/3)^{-\frac{1}{3}}$; the parameters used are $\gamma = -0.1423$, $\beta_1 = 1.0529$, $\beta_2 = 0.3334$, A = 0.0311, B = -0.048, and $C = 2.019151940622 \times 10^{-3}$ and $D = -1.163206637891 \times 10^{-2}$ are chosen so that $\varepsilon(r)$ and $\varepsilon'(r)$ are continuous at r = 1 [6].

Then, there exists $N_0 > 0$ *such that:*

1. If $N < N_0$ then $\exists u^* \in \mathcal{B}$ such that

$$F[u^*] = \min_{u \in \mathcal{B}} F[u].$$
(5)

2. *If* $N > N_0$ *then*

$$\inf_{u\in\mathcal{B}}F[u] = -\infty.$$
(6)

Proof. The second part of the theorem was proved in [2, 3]. We outline the proof here for completeness. Since $0 \in \Omega$, $\exists \delta_0 > 0$ such that $B(0, \delta_0) \subset \Omega$. Consider a compactly supported function $u_0 \in C_0^{\infty}(B(0, 1))$, such that

$$\int_{\mathbb{R}^3} u_0^2 = 1,$$
(7)

and consider the rescaling

$$u_{\delta}(\mathbf{x}) = \frac{1}{\delta^{3/2}} u_0\left(\frac{\mathbf{x}}{\delta}\right), \quad 0 < \delta < \delta_0.$$
(8)

Then $u_{\delta} \in \mathcal{B}$, and

$$F[u_{\delta}] = \frac{1}{\delta^2} \left(\frac{1}{2} \int_{\Omega} |\nabla u_0|^2 - \frac{7C_{TF} N^{2/3}}{25} \int_{\Omega} u_0^{10/3} \right) + \mathcal{O}\left(\frac{1}{\delta}\right).$$
(9)

Define

$$A_{0} = \inf_{u \in H_{0}^{1}(\Omega), \|u\|_{2}=1} \frac{\int_{\Omega} |\nabla u|^{2}}{\int_{\Omega} u^{10/3}} > 0.$$
(10)

Then if $A_0/2 < 7C_{TF}N^{2/3}/25$, we can choose u_0 so that the leading term in (9) is negative, and when $\delta \rightarrow 0$, the desired result follows.

969

For the existence of minimizers, assume that *N* is such that $A_0/2 > 7C_{TF}N^{2/3}/25$. By Lemma 1, there exist C > 0, $\delta > 0$ such that

$$F[u] \ge \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \left(\frac{7C_{TF}N^{2/3}}{25} + \delta\right) \int_{\Omega} u^{10/3} - C$$

$$\ge \left(\frac{1}{2} - \frac{1}{A_0} \left(\frac{7C_{TF}N^{2/3}}{25} + \delta\right)\right) \int_{\Omega} |\nabla u|^2 \ge \tau \int_{\Omega} |\nabla u|^2 - C, \tag{11}$$

where $\tau > 0$. Therefore the functional is coercive, and the result follows from now from standard arguments in the Calculus of Variations [4], involving the Sobolev Embedding, and the Rellich-Kondrachov compactness theorem.

Remark 1. Note that given $\Omega \subset \mathbf{R}^3$, then

$$0 < A_0 = \inf_{u \in \mathcal{A}} \frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^{10/3}},$$
(12)

where

$$\mathcal{A} = \left\{ u \in H_0^1(\Omega) | u \ge 0, \ \int_{\Omega} u^2 = 1 \right\}.$$

$$(13)$$

By the Gagliardo-Nirenberg inequality, $\exists C_1 > 0$ such that

$$\left(\int_{\Omega} u^6\right)^{1/3} \le C_1 \int_{\Omega} |\nabla u|^2.$$
(14)

By the Riesz-Thorin theorem, since $u \in L^2(\Omega) \cap L^6(\Omega)$, and

$$\frac{3}{10} = \frac{\theta}{2} + \frac{1-\theta}{6},$$
(15)

with $\theta = 2/5$, we get

$$\left(\int_{\Omega} u^{10/3}\right)^{3/10} \le \left(\int_{\Omega} u^2\right)^{\theta/2} \left(\int_{\Omega} u^6\right)^{(1-\theta)/6},\tag{16}$$

and therefore, since $||u||_2 = 1$,

$$\int_{\Omega} u^{10/3} \le \left(\int_{\Omega} u^{6}\right)^{5(1-\theta)/9} = \left(\int_{\Omega} u^{6}\right)^{1/3} \le C_{1} \int_{\Omega} |\nabla u|^{2}.$$
(17)

Therefore,

$$\inf_{u \in \mathcal{A}} \frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^{10/3}} \ge C_1^{-1} > 0.$$
(18)

970

In [1] it was proved that $K_{WT} \in L^2(\mathbb{R}^3)$. In the following lemma we establish the necessary inequalities to prove the coercivity of energy functional (2).

Lemma 1. Assume $K_{WT} \in L^2(\mathbb{R}^3)$, $v \in L^{\infty}(\Omega)$, and ε is defined as in (4). Then, there exist constants C_i , $i=1,\cdots,5$, dependent only on the domain Ω and on N, such that for all $u \in H_0^1(\Omega)$ satisfying $||u||_2 = 1$,

$$\left| \int_{\Omega} |u|^{5/3} \left(K_{WT} * |u|^{5/3} \right) \right| \le C_1 ||u^{5/3}||_2 ||u^{5/3}||_1 ||K_{WT}||_2;$$
(19)

$$\left| \int_{\Omega} \left(u^2 * \frac{1}{|\mathbf{x}|} \right) u^2 \right| \le C_2 \| u^2 \|_{5/3}^{5/6} \| u \|_2^{7/3};$$
(20)

$$\left| \int_{\Omega} u^{8/3} \right| \le C_3 \| u^{5/3} \|_2 \| u \|_2; \tag{21}$$

$$\left| \int_{\Omega} u^2 \epsilon(Nu^2) \right| \le C_4 + C_5 \left(\int_{\Omega} |u|^{10/3} \right)^{3/4}.$$
 (22)

Proof. Since $K_{WT} \in L^2$, by the Cauchy-Schwarz inequality, followed by Young's inequality:

$$\left| \int_{\Omega} |u|^{5/3} \left(K_{WT} * |u|^{5/3} \right) \right| \leq ||u^{5/3}||_2 ||K_{WT} * |u|^{5/3} ||_2$$
$$\leq C_1 ||u^{5/3}||_2 ||K_{WT}||_2 ||u^{5/3}||_1.$$
(23)

Note that since $||u||_2 = 1$, by Hölder's inequality, $||u^{5/3}||_1 \le |\Omega|^{1/6}$. This gives (19). The inequality (20) was proved in [5] (Theorem IV.1, page 75). The estimate (21) follows from the Cauchy-Schwarz inequality:

$$\left| \int_{\Omega} u^{8/3} \right| = \left| \int_{\Omega} u^{5/3} u \right| \le C \| u^{5/3} \|_2 \| u \|_2.$$
(24)

From the definition of ϵ , we get that

$$\left| \int_{\Omega} u^{2} \epsilon(Nu^{2}) \right| \leq C_{1} + \widetilde{C}_{2} \left| \int_{|u| \geq \frac{3}{4\pi N}} u^{2} \log |u| \right|$$
$$\leq C_{1} + \widehat{C}_{2} \left| \int_{\Omega} |u|^{5/2} \right| \leq C_{1} + C_{2} \left(\int_{\Omega} |u|^{10/3} \right)^{3/4}.$$
(25)

This concludes the proof.

Acknowledgments

The author would like to thank X. Blanc and E. Cancès for pointing out their result in [2] and [3], and the anonymous referee for his/her careful reading of the original manuscript.

References

- [1] C. J. García-Cervera, An efficient real space method for orbital-free density-functional theory, Commun. Comput. Phys., 2(2) (2007), 334-357.
- [2] X. Blanc and E. Cancès, Nonlinear instability of density-independent orbital-free kineticenergy functionals, J. Chem. Phys., 122 (2005), 214106.
- [3] X. Blanc and E. Cancès, Technical report, http://www.ann.jussieu.fr/publications/2005/ R05014.pdf, 2005.
- [4] B. Dacorogna, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer-Verlag, Berlin-New York, 1989.
- [5] E. H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Adv. Math., 23(1) (1977), 22-116.
- [6] J. P. Perdew and A. Zunger, Self interaction correction to density functional approximations for many electron systems, Phys. Rev. B, 23(10) (1981), 5048-5079.