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Abstract. In this short note we clarify some issues regarding the existence of mini-
mizers for the Thomas-Fermi-von Weiszacker energy functional in orbital-free density
functional theory, when the Wang-Teter corrections are included.
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In [1] it was claimed that there always exists a minimizer; however, the statement of
Theorem 2.1 is incomplete. In this note we present the full statement, with a detailed
proof.

The theorem stated in [1] holds as long as the number of electrons is below a certain
critical value. The correct statement for the theorem in [1] is:

Theorem 1 (Existence of minimizers). Given v∈C∞(Ω), and KWT ∈ L2
loc(R

3), consider the
problem

inf
u∈B

F[u], (1)

where F and B are

F[u]=
1

2

∫

Ω

|∇u|2 − 7CTFN2/3

25

∫

Ω

u10/3 +
4CTFN2/3

5

∫

Ω

|u|5/3
(

KWT ∗ |u|5/3
)

+
N

2

∫

Ω

u2

(
1

|x| ∗ u2

)
− 3

4

(
3N

π

)1/3∫

Ω

u8/3

+
∫

Ω

u2ε(Nu2) +
∫

Ω

v(x)u2(x)dx, (2)
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and

B=

{
u∈H1

0(Ω)

∣∣∣∣u≥0,
∫

Ω

u2 =1

}
. (3)

In (2), the set Ω is open and bounded, and star-shaped with respect to 0; ε is defined as

ε(Nu2)=





γ

1 + β1
√

rs + β2rs
, rs ≥1,

Aln(rs) + B + Crs ln(rs) + Drs, rs ≤1,
(4)

where rs =
(
4πNu2/3

)− 1
3 ; the parameters used are γ = −0.1423, β1 = 1.0529, β2 = 0.3334,

A =0.0311, B =−0.048, and C =2.019151940622 × 10−3 and D =−1.163206637891 × 10−2

are chosen so that ε(r) and ε′(r) are continuous at r=1 [6].
Then, there exists N0 >0 such that:

1. If N < N0 then ∃u∗∈B such that

F[u∗]=min
u∈B

F[u]. (5)

2. If N > N0 then

inf
u∈B

F[u]=−∞. (6)

Proof. The second part of the theorem was proved in [2, 3]. We outline the proof
here for completeness. Since 0∈Ω, ∃δ0 >0 such that B(0,δ0)⊂Ω. Consider a compactly
supported function u0∈C∞

0 (B(0,1)), such that

∫

R3
u2

0 =1, (7)

and consider the rescaling

uδ(x)=
1

δ3/2
u0

(x

δ

)
, 0<δ<δ0. (8)

Then uδ∈B, and

F[uδ]=
1

δ2

(
1

2

∫

Ω

|∇u0|2 −
7CTFN2/3

25

∫

Ω

u10/3
0

)
+ O

(
1

δ

)
. (9)

Define

A0 = inf
u∈H1

0(Ω), ‖u‖2=1

∫
Ω
|∇u|2∫

Ω
u10/3

>0. (10)

Then if A0/2<7CTFN2/3/25, we can choose u0 so that the leading term in (9) is negative,
and when δ→0, the desired result follows.
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For the existence of minimizers, assume that N is such that A0/2>7CTFN2/3/25. By
Lemma 1, there exist C>0, δ>0 such that

F[u]≥ 1

2

∫

Ω

|∇u|2 −
(

7CTFN2/3

25
+ δ

)∫

Ω

u10/3 − C

≥
(

1

2
− 1

A0

(
7CTFN2/3

25
+ δ

))∫

Ω

|∇u|2 ≥τ

∫

Ω

|∇u|2 − C, (11)

where τ > 0. Therefore the functional is coercive, and the result follows from now from
standard arguments in the Calculus of Variations [4], involving the Sobolev Embedding,
and the Rellich-Kondrachov compactness theorem. �

Remark 1. Note that given Ω⊂R3, then

0< A0 = inf
u∈A

∫
Ω
|∇u|2∫

Ω
u10/3

, (12)

where

A=

{
u∈H1

0(Ω)|u≥0,
∫

Ω

u2 =1

}
. (13)

By the Gagliardo-Nirenberg inequality, ∃C1 >0 such that

(∫

Ω

u6

)1/3

≤C1

∫

Ω

|∇u|2. (14)

By the Riesz-Thorin theorem, since u∈L2(Ω) ∩ L6(Ω), and

3

10
=

θ

2
+

1 − θ

6
, (15)

with θ =2/5, we get

(∫

Ω

u10/3

)3/10

≤
(∫

Ω

u2

)θ/2(∫

Ω

u6

)(1−θ)/6

, (16)

and therefore, since ‖u‖2 =1,

∫

Ω

u10/3≤
(∫

Ω

u6

)5(1−θ)/9

=

(∫

Ω

u6

)1/3

≤C1

∫

Ω

|∇u|2. (17)

Therefore,

inf
u∈A

∫
Ω
|∇u|2∫

Ω
u10/3

≥C−1
1 >0. (18)
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In [1] it was proved that KWT ∈ L2(R
3). In the following lemma we establish the

necessary inequalities to prove the coercivity of energy functional (2).

Lemma 1. Assume KWT ∈ L2(R
3), v ∈ L∞(Ω), and ε is defined as in (4). Then, there exist

constants Ci, i=1,··· ,5, dependent only on the domain Ω and on N, such that for all u∈H1
0(Ω)

satisfying ‖u‖2 =1,
∣∣∣∣
∫

Ω

|u|5/3
(

KWT ∗ |u|5/3
)∣∣∣∣≤C1‖u5/3‖2‖u5/3‖1‖KWT‖2; (19)

∣∣∣∣
∫

Ω

(
u2 ∗ 1

|x|

)
u2

∣∣∣∣≤C2‖u2‖5/6
5/3‖u‖7/3

2 ; (20)

∣∣∣∣
∫

Ω

u8/3

∣∣∣∣≤C3‖u5/3‖2‖u‖2; (21)

∣∣∣∣
∫

Ω

u2ǫ(Nu2)

∣∣∣∣≤C4 + C5

(∫

Ω

|u|10/3

)3/4

. (22)

Proof. Since KWT ∈ L2, by the Cauchy-Schwarz inequality, followed by Young’s in-
equality:

∣∣∣∣
∫

Ω

|u|5/3
(

KWT ∗ |u|5/3
)∣∣∣∣ ≤ ‖u5/3‖2‖KWT ∗ |u|5/3‖2

≤ C1‖u5/3‖2‖KWT‖2‖u5/3‖1. (23)

Note that since ‖u‖2 = 1, by Hölder’s inequality, ‖u5/3‖1 ≤ |Ω|1/6. This gives (19). The
inequality (20) was proved in [5] (Theorem IV.1, page 75). The estimate (21) follows from
the Cauchy-Schwarz inequality:

∣∣∣∣
∫

Ω

u8/3

∣∣∣∣=
∣∣∣∣
∫

Ω

u5/3u

∣∣∣∣≤C‖u5/3‖2‖u‖2. (24)

From the definition of ǫ, we get that
∣∣∣∣
∫

Ω

u2ǫ(Nu2)

∣∣∣∣≤C1 + C̃2

∣∣∣∣
∫

|u|≥ 3
4πN

u2 log|u|
∣∣∣∣

≤C1 + Ĉ2

∣∣∣∣
∫

Ω

|u|5/2

∣∣∣∣≤C1 + C2

(∫

Ω

|u|10/3

)3/4

. (25)

This concludes the proof. �
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