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Abstract. A high order multidomain spectral difference method has been developed
for the three dimensional Navier-Stokes equations on unstructured hexahedral grids.
The method is easy to implement since it involves one-dimensional operations only,
and does not involve surface or volume integrals. Universal reconstructions are ob-
tained by distributing solution and flux points in a geometrically similar manner in a
unit cube. The concepts of the Riemann solver and high-order local representations
are applied to achieve conservation and high order accuracy. In this paper, accuracy
studies are performed to numerically verify the order of accuracy using flow prob-
lems with analytical solutions. High order of accuracy and spectral convergence are
obtained for the propagation of an isotropic vortex and Couette flow. The capability
of the method for both inviscid and viscous flow problems with curved boundaries is
also demonstrated.

AMS subject classfications: 65M70, 76M20, 76M22

Key words: High order, unstructured grids, spectral difference, Navier-Stokes.

1 Introduction

It is well known that the computation of the aerodynamic flow field around a helicopter is
a considerable challenge [10] because of the following difficulties: the strong interaction
between the moving blades, vortices and wakes; the disparate length scales in the flow
turbulence under flight conditions; the complex and moving geometries. Although low
order (first and second order) finite volume methods have become the main choice of
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many commercial Computational Fluid Dynamics (CFD) codes, and proven successful
in tackling a wide variety of flow problems [5, 11, 24] in engineering design, many in the
CFD community believe vortex-dominated flows require high-order methods. This is
mainly because lower order methods usually dissipate propagating vortices too quickly.
For example, to study the classical blade-vortex interaction problem, it is estimated that
the blade vortex should be well preserved for several revolutions. However, low order
methods may completely “consume” the vortex after one or two revolutions, therefore
making the computation results very inaccurate.

Many high-order methods (order > 2) have been developed in CFD for a wide range
of applications, such as large eddy simulation, direct numerical simulation, computa-
tional aeroacoustics, etc. Most high-order methods were developed for structured grids,
e.g., ENO/WENO methods [29], compact methods [18, 34, 35], optimized methods [32].
In particular, high-order compact methods have been successfully employed to tackle
vortex dominated problems, including vortex breakdown over a delta wing [35]. For
complex configurations, it is often very time-consuming to generate smooth structured
grids required by these high-order methods. Our focus in this study is therefore on high-
order methods for unstructured grids, and in particular unstructured hexahedral grids.

There have been intensive research efforts on high-order methods for flow simulation
on unstructured grids in the last two decades. An incomplete list of notable examples
includes the spectral element method [25], multi-domain spectral method [16,17], k-exact
finite volume method [3], WENO methods [13], discontinuous Galerkin method [4, 7, 8],
high-order residual distribution methods [1], spectral volume (SV) [21, 31, 36, 37] and
spectral difference (SD) methods [14,19,20,23,38]. Among those methods, some are based
on the weighted residual form of the governing equations, for instance the discontinuous
Galerkin (DG) method. Some are based on the integral form of the governing equations,
e.g., the k-exact finite volume method and the SV methods. Others, such as staggered
grid multi-domain spectral method and SD method are based on the differential form.

When selecting a method to implement for three-dimensional problems, the cost and
the complexity of the method is often an important factor. It is obvious that methods
based on the differential form are the easiest to implement since they do not involve
surface or volume integrals. This is particularly true when high-order curved boundaries
need to be dealt with. Based on our experiences with the DG, SV and SD methods on 2D
triangular meshes, the SD method seems the easiest to implement and most efficient for
the 2D Euler equations. Therefore in the present study, the SD method is selected to solve
the 3D Navier-Stokes equations on unstructured hexahedral grids. The use of hexahedral
grids is again a compromise between flexibility and efficiency. Although tetrahedral grids
are easier to generate for complex 3D configurations, hexahedral grids have been shown
to possess higher efficiency and accuracy for viscous boundary layers [22].

The SD method and the staggered-grid multi-domain spectral method on hexahe-
dral grids actually converge to the same method. The solution unknowns or degrees-of-
freedom (DOFs) are the conserved variables at the Gauss points, while fluxes are evalu-
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ated at Lobatto points to generate the flux derivatives to update the DOFs. On a hexahe-
dral element, all the operations can be performed in a one-dimensional manner, resulting
in higher efficiency and less implementation cost. As in the Godunov-type finite volume
method [12], Riemann solvers [26, 27] are used at element interfaces to couple the dis-
continuous elements together, and provide the necessary numerical dissipation, which
makes the method conservative and stable.

The paper is organized as follows. In the next section, the formulation of the 3D
SD method is described for a hexahedral element. Numerical results including accuracy
studies for both inviscid and viscous flows are presented in Section 3, together with re-
sults for several often used demonstration cases. Conclusions and possible future work
are outlined in Section 4.

2 Formulation of the 3D spectral difference method on hexahe-

dral grids

2.1 Governing equation

Consider the unsteady compressible 3D Navier-Stokes equations in conservative form
written as

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
=0 (2.1)

where Q is the vector of conserved variables, and F, G, H are the total fluxes including
both the inviscid and viscous flux vectors, i.e., F=Fi−Fv, G=Gi−Gv, H=Hi−Hv, which
take the following form
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Fv =



























0
τxx

τyx

τzx

uτxx+vτyx+wτzx+
µCp

Pr
Tx



























,

Gv =



























0
τxy

τyy

τzy

uτxy+vτyy+wτzy+
µCp

Pr
Ty



























,

Hv =



























0
τxz

τyz

τzz

uτxz+vτyz+wτzz+
µCp

Pr
Tz



























.

(2.3)

In (2.1)-(2.3), ρ is the density, u, v and w are the velocity components in x, y and z di-
rections, p is the pressure, and E is the total energy, µ is dynamic viscosity, Cp is the
specific heat at constant pressure, Pr is the Prandle number, and T is the temperature. For
a perfect gas, the pressure is related to the total energy by

E=
p

γ−1
+

1

2
ρ(u2+v2+w2), (2.4)

with a constant ratio of specific heats γ, which is taken to be 1.4 for air. The stress tensor
in (2.3) takes the following form

τxx =2µ

(

ux−
ux+vy+wz

3

)

, τyy =2µ

(

vy−
ux+vy+wz

3

)

,

τzz =2µ

(

wz−
ux+vy+wz

3

)

, τxy =τyx =µ(vx +uy), (2.5)

τyz =τzy =µ(wy+vz), τzx =τxz =µ(uz+wx).

2.2 Coordinate transformation

We employ non-overlapping unstructured hexahedral cells or elements to fill the com-
putational domain. The use of hexahedral cells for viscous boundary layers is preferred
over tetrahedral cells because of the efficiency and accuracy. In order to handle curved
boundaries, both linear and quadratic isoparametric elements are employed, with lin-
ear elements used in the interior domain and quadratic elements near high-order curved
boundaries. To achieve an efficient implementation, all elements are transformed from
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Figure 1: Transformation from a physical element to a standard element.

the physical domain (x,y,z) into a standard cubic element (ξ,η,ς)∈ [0,1]×[0,1]×[0,1] as
shown in Fig. 1. The transformation can be written as





x
y
z



=
K

∑
i=1

Mi(ξ,η,ς)





xi

yi

zi



, (2.6)

where K is the number of points used to define the physical element, (xi,yi,zi) are the
Cartesian coordinates of those points, and Mi(ξ,η,ς) are the shape functions. For the
transformation given in (2.6), the Jacobian matrix J takes the following form

J =
∂(x,y,z)

∂(ξ,η,ζ)
=





xξ xη xζ

yξ yη yζ

zξ zη zζ



.

For a non-singular transformation, its inverse transformation must also exist, and the
Jocobian matrices are related to each other according to
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



ξx ξy ξz

ηx ηy ηz

ζx ζy ζz
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Therefore the metrics can be computed according to

ξx =(yηzζ−yζzη)/|J| , ξy =(xζzη−xηzζ)/|J|, ξz =(xηyζ−xζyη)/|J| ,

ηx =(yζzξ−yξ zζ)/|J| , ηy =(xξzζ−xζzξ)/|J| , ηz =(xζyξ−xξyζ)/|J| ,

ζx =(yξzη−yηzξ)/|J| , ζy =(xηzξ−xξzη)/|J|, ζz =(xξyη−xηyξ)/|J| .

The governing equations in the physical domain are then transformed into the compu-
tational domain (standard element), and the transformed equations take the following
form

∂Q̃

∂t
+

∂F̃

∂ξ
+

∂G̃

∂η
+

∂H̃

∂ς
=0, (2.7)
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Figure 2: Distribution of solution points (circles) and flux points (squares) in a standard element for a third-order
SD scheme.

where

Q̃= |J| ·Q, F̃= F̃i− F̃v,

G̃= G̃i−G̃v, H̃ = H̃i−H̃v,
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Let ~Sξ=|J|(ξx ,ξy,ξz),~Sη=|J|(ηx ,ηy,ηz), ~Sζ=|J|(ζx ,ζy,ζz). Then we have F̃=~f •~Sξ , G̃=~f •~Sη ,

H̃ = ~f •~Sζ , with ~f =(F,G,H). In our implementation, |J| is stored at the solution points,

while ~Sξ , ~Sη, ~Sζ are stored at flux points to minimize memory usage.

2.3 Space discretization

In the standard element, two sets of points are defined, namely the solution points and
the flux points, illustrated in Fig. 2 for a 2D element. The solution unknowns or degrees-
of-freedom (DOFs) are the conserved variables at the solution points, while fluxes are
computed at the flux points. In order to construct a degree (N−1) polynomial in each
coordinate direction, solutions at N points are required. The solution points in 1D are
chosen to be the Gauss points defined by

Xs =
1

2

[

1−cos

(

2s−1

2N
·π

)]

, s=1,2,··· ,N. (2.8)

The flux points are selected to be the Gauss-Lobatto points given by

Xs+1/2 =
1

2

[

1−cos
( s

N
·π

)]

, s=0,1,··· ,N. (2.9)
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Using the N solutions at the solution points, a degree N−1 polynomial can be built
using the following Lagrange basis defined as

hi(X)=
N

∏
s=1,s 6=i

(

X−Xs

Xi−Xs

)

. (2.10)

Similarly, using the N+1 fluxes at the flux points, a degree N polynomial can be built for
the flux using a similar Lagrange basis defined as

li+1/2(X)=
N

∏
s=0,s 6=i

(

X−Xs+1/2

Xi+1/2−Xs+1/2

)

. (2.11)

The reconstructed solution for the conserved variables in the standard element is just the
tensor products of the three one-dimensional polynomials, i.e.,

Q(ξ,η,ς)=
N

∑
k=1

N

∑
j=1

N

∑
i=1

Q̃i,j,k
∣

∣Ji,j,k

∣

∣

hi(ξ)·hj(η)·hk(ς). (2.12)

Similarly, the reconstructed flux polynomials take the following form:

F̃(ξ,η,ς)=
N

∑
k=1

N

∑
j=1

N

∑
i=0

F̃i+1/2,j,kli+1/2(ξ)·hj(η)·hk(ς),

G̃(ξ,η,ς)=
N

∑
k=1

N

∑
j=0

N

∑
i=1

G̃i,j+1/2,khi(ξ)·l j+1/2(η)·hk(ς), (2.13)

H̃(ξ,η,ς)=
N

∑
k=0

N

∑
j=1

N

∑
i=1

H̃i,j,k+1/2hi(ξ)·hj(η)·lk+1/2(ς).

The reconstructed fluxes are only element-wise continuous, but discontinuous across
cell interfaces. For the inviscid flux, a Riemann solver, such as the Rusanov [27] or Roe
flux [26], is employed to compute a common flux at interfaces to ensure conservation and
stability. In summary, the algorithm to compute the inviscid flux derivatives consists of
the following steps:

1. Given the conserved variables at the solution points {Q̃i,j,k}, compute the conserved

variables at the flux points {Qi+1/2,j,k, Qi,j+1/2,k, Qi,j,k+1/2} using (2.12) (Note that

hm(Xn)=δmn);

2. Compute the inviscid fluxes at the interior flux points using the solutions computed
at Step 1, i.e., {F̃i

i+1/2,j,k, i = 1,··· ,N−1}, {G̃i
i,j+1/2,k, j = 1,··· ,N−1}, {H̃i

i,j,k+1/2, k =

1,··· ,N−1};
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Figure 3: The interface between two elements and the locations of solution (circles) and flux (solid squares)
points.

3. Compute the inviscid flux at element interfaces using a Riemann solver, such as the
Rusanov solver, in terms of the left and right conserved variables of the interface
(as shown in Fig. 3). Given the normal direction of the interface~n, and the averaged
normal velocity component V̄n and sound speed c̄, the Rusanov flux on the interface
is computed with

F̃i =
1

2
(F̃i

L+ F̃i
R−(|V̄n|+ c̄)·(QR−QL)·

∣

∣

∣
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∣

∣

∣
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)

,
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2
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∣

∣

∣
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∣

∣

∣
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(
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)

,
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1

2
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∣

∣

∣

~Sζ

∣

∣

∣
·sign

(
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)

;

4. Compute the derivatives of the fluxes at all the solution points according to

(

∂F̃

∂ξ

)

i,j,k

=
N

∑
r=0

F̃r+1/2,j,k ·l
′
r+1/2(ξi),

(

∂G̃

∂η

)

i,j,k

=
N

∑
r=0

G̃i,r+1/2,k ·l
′
r+1/2(ηj), (2.14)

(

∂H̃

∂ς

)

i,j,k

=
N

∑
r=0

H̃i,j,r+1/2 ·l
′
r+1/2(ςk).

The viscous flux is a function of both the conserved variables and their gradients, i.e.,
F̃v

i+1/2,j,k
= F̃v(Qi+1/2,j,k,∇Qi+1/2,j,k). Therefore the key is how to compute the solution gra-

dients at the flux points. One approach is given in [17], and is named the average ap-
proach, and the other approach is a local DG-like approach [9, 40]. Both approaches are
employed and tested in the present study. The gradient of the conserved variables in the
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physical domain can be easily computed using

∇Q=
∂Q

∂ξ
∇ξ+

∂Q

∂η
∇η+

∂Q

∂ζ
∇ζ =

1

|J|





∂
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)

∂ξ
+

∂
(
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)

∂η
+

∂
(

Q~Sζ

)

∂ζ



. (2.15)

In deriving (2.15), we have used the following identity

∂~Sξ

∂ξ
+

∂~Sη

∂η
+

∂~Sζ

∂ζ
=0.

The derivatives along each coordinate direction are computed using





∂
(

Q~Sξ

)

∂ξ





j,k

=
N

∑
r=0

(

Q~Sξ

)

r+1/2,j,k
·l′r+1/2(ξ),





∂
(

Q~Sη

)

∂η





i,k

=
N

∑
r=0

(

Q~Sη

)

i,r+1/2,k
·l′r+1/2(η), (2.16)





∂
(

Q~Sς

)

∂ζ





i,j

=
N

∑
r=0

(

Q~Sς

)

i,j,r+1/2
·l′r+1/2(ζ).

In the average approach, the following steps are taken to compute the viscous fluxes:

1. Same as Step 1 for the inviscid flux computations;

2. When computing the derivatives using (2.16), the solution Q at the cell interface is
not uniquely defined. The solution at the interface is simply the average of the left
and right solutions,

Q̂=
QL+QR

2
.

3. Compute the gradients of the solution at the solution points using the solutions at
the flux points with (2.15) and (2.16). Then the gradients are interpolated from the
solution points to the flux points using the same Lagrangian interpolation approach
given in (2.12).

4. Compute the viscous flux at the flux points using the solutions and their gradients
at the flux points. Again at cell interfaces, the gradients have two values, one from
the left and one from the right. The gradients used in the viscous fluxes at the cell
interface are simply the averaged ones, i.e.,

F̃v = F̃v

(

QL+QR

2
,
∇QL+∇QL

2

)

.
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The local-DG like algorithm to compute the viscous flux takes the following steps:

1. Same as Step 1 for the inviscid flux computations;

2. When computing the derivatives using (2.16), the solution Q at the cell interface is
not uniquely defined. Following the local-DG approach, a numerical “flux” for Q
at the interface can be determined based on its local orientation. For example, we
could use

Q̂=QR

to compute the gradients using (2.16), where Q̂ is the “numerical flux”.

3. Compute the gradients of the solution at the solution points using the solutions at
the flux points with (2.15) and (2.16). Then the gradients are interpolated from the
solution points to the flux points using the same Lagrangian interpolation approach
given in (2.12).

4. Compute the viscous flux at the flux points using the solutions and their gradients
at the flux points. Again at cell interfaces, the solution and their gradients have two
values, one from the left and one from the right. The solutions at the interface are
obtained by averaging the left and right solutions on the face. Based on the LDG
approach, the viscous flux uses the gradients from the left, i.e.,

F̃v = F̃v

(

QL+QR

2
,∇QL

)

.

Once all fluxes are computed at the flux points, the flux polynomials are built according
to (2.13), and the derivatives of the fluxes are then evaluated at each solution point to
update the DOFs, i.e.,

∂Q̃i,j,k

∂t
=−

(

∂F̃

∂ξ
+

∂G̃

∂η
+

∂H̃

∂ς

)

i,j,k

. (2.17)

For time integration, we employ a multistage TVD [28] or SSP (strong-stability-preservation)
[30] scheme.

3 Numerical results

3.1 Accuracy study using an isotropic vortex propagating problem

In order to quantify the numerical order of accuracy of the SD method for the Euler
equations with both grid-refinement (h-refinement) and order refinement (p-refinement),
an isotropic vortex propagation problem is chosen since it has an analytical solution. This
is an idealized problem for the Euler equations, which was used by Shu [29].
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The mean flow is {ρ,u,v,w,p}= {1,1,1,0,1}. An isotropic vortex is then added to the
mean flow, i.e., with perturbations in u, v, and temperature T= p/ρ, and no perturbation
in velocity w and entropy S= p/ργ:

(δu,δv,δw)=
ε

2π
e0.5(1−r2)(−y,x,0),

δT =−
(γ−1)ε2

8γπ2
e1−r2

, δS=0,

where r2 = x2+y2, and the vortex strength ε = 5. In the numerical simulation, the com-
putational domain is taken to be [−5,5]×[−5,5]×[−5,5], with characteristic inflow and
outflow boundary conditions imposed on the boundaries in x and y directions, and ex-
trapolation in the z direction. It can be readily verified that the Euler equations with the
above initial conditions admit an exact solution that moves with the speed (1,1,0) in the
diagonal direction on the x-y plane.

For the h-refinement study, the order of accuracy N was set to 6. Four meshes were
employed. Fig. 4 shows the time-independent errors between the numerical solution and
the analytical solution in L∞, L1 and L2 norms at t = 0.1. The three-stage Runge-Kutta
scheme was employed for the time integration. Note that the average slope is about 6,
indicating that the numerical order of accuracy is 6th order.

For the p-refinement study, a coarse grid with 100 (10×10×1) elements was used.
Then the order of the polynomial basis was increased. The numerical errors are computed
at t = 0.1, and displayed in Fig. 5. Note that the exponential decay of error with respect
to the order of accuracy is achieved.

Lastly, the time integration accuracy was also studied on a fine mesh (25 elements,
N = 25). The numerical errors with different time-step sizes are displayed at t = 0.1 in
Fig. 6. Note that the order of accuracy of the time integration scheme is indeed 3rd order.

3.2 Accuracy study using Couette flow

Couette flow is an analytical solution for the Navier-Stokes equations, and was selected to
study the accuracy of the 3D Navier-Stokes solver. This problem models the viscous flow
in the positive x direction between two parallel plates locate at y=0, and y=H. The plate
at y=0 is stationary with a fixed temperature T0, while the plate at y= H has a different
temperature T1, and moves at speed of U. This problem has an exact solution under the
simplification that the viscosity coefficient µ is a constant, which can be expressed as

u=
U

H
y, v=0, w=0,

T =T0+
y

H
(T1−T0)+

µU2

2k
·

y

H

(

1−
y

H

)

,

p= const, ρ=
p

R·T
,
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Figure 4: Solution errors with h-refinement for the vortex propagation problem.
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Figure 5: Solution errors with p-refinement for the vortex propagation problem.

where k is the thermal conductivity, and R is the gas constant. In the present compu-
tations, we have chosen U = 1.0, H = 2, T0 = 0.8, T1 = 0.85, µ = 0.01. The computational
domain is [0,4]×[0,2]×[0,4].

In the grid refinement study, four different grids were employed with several SD
schemes of various accuracy, and the results are presented in Tables 1 and 2 using the
average approach and the LDG approach for the viscous fluxes, respectively. Note that
the expected accuracy was achieved with both approaches, and the average approach
gave slightly more accurate results. Therefore, it is used in the rest of the computations. A
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Figure 6: Solution errors with temporal refinement for the vortex propagation problem.
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Figure 7: Solution errors with p-refinement for Couette flow problem.

p-refinement study was performed on a coarse grid with 16 (4x4x1) elements. The order
of the polynomial basis was increased up to 9, and the 3-stage Runge-Kutta scheme was
employed for time integration. The exponential decay of numerical errors in L∞, L1, and
L2 norms was again observed in Fig. 7.

3.3 Flow over a sphere

To test the capability of the SD method for handling curved boundaries, both inviscid
and viscous flows over a sphere were computed. In order to perform a grid refinement
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Table 1: Grid refinement study for Couette flow using the LDG approach for viscous flux computation.

Order of

Accuracy Grid L∞ error L∞ order L1 error L1 order L2 error L2 order

2x2x1 3.26E-04 — 8.48E-05 — 1.29E-04 —
4x4x1 4.94E-05 2.72 1.03E-05 3.04 1.55E-05 3.06

3 8x8x1 7.97E-06 2.63 1.45E-06 2.83 1.98E-06 2.96
16x16x1 1.36E-06 2.55 2.32E-07 2.64 2.97E-07 2.74

2x2x1 6.78E-05 — 2.35E-05 — 3.33E-05 —
4x4x1 5.24E-06 3.70 1.72E-06 3.77 2.34E-06 3.83

4 8x8x1 4.41E-07 3.57 1.43E-07 3.59 1.75E-07 3.74
16x16x1 4.04E-08 3.45 1.24E-08 3.52 1.40E-08 3.64

2x2x1 2.43E-06 — 4.71E-07 — 7.90E-07 —
4x4x1 1.17E-07 4.38 1.52E-08 4.95 2.76E-08 4.84

5 8x8x1 5.53E-09 4.40 4.52E-10 5.07 9.33E-10 4.89
16x16x1 2.89E-10 4.26 2.03E-11 4.48 3.69E-11 4.66

Table 2: Grid refinement study for Couette flow using the average approach for viscous flux computation.

Order of

Accuracy Grid L∞ error L∞ order L1 error L1 order L2 error L2 order

2x2x1 3.06E-04 — 8.72E-05 — 1.26E-04 —
4x4x1 3.96E-05 2.95 9.34E-06 3.22 1.37E-05 3.20

3 8x8x1 5.10E-06 2.96 1.14E-06 3.03 1.56E-06 3.13
16x16x1 7.05E-07 2.86 2.08E-07 2.46 2.44E-07 2.68

2x2x1 6.49E-05 — 2.35E-05 — 3.29E-05 —
4x4x1 4.79E-06 3.76 1.84E-06 3.68 2.40E-06 3.78

4 8x8x1 3.80E-07 3.66 1.70E-07 3.43 1.98E-07 3.60
16x16x1 3.73E-08 3.35 1.77E-08 3.26 1.90E-08 3.38

2x2x1 2.00E-06 — 4.69E-07 — 7.19E-07 —
4x4x1 7.35E-08 4.77 1.29E-08 5.19 2.03E-08 5.14

5 8x8x1 2.44E-09 4.91 3.28E-10 5.30 5.10E-10 5.32
16x16x1 8.30E-11 4.88 1.28E-11 4.68 1.63E-11 4.97

study, a coarse and a fine grid were employed in the simulations. Figs. 8a and 8b show
both the coarse and fine computational grids. The coarse grid has 768 total cells with
96 surface quadrilaterals, and there are 8 cells between the sphere surface and the far-
field outer boundary, which is 10 diameters away from the center of the sphere. The
fine grid is generated from the coarse grid through global refinement in all directions,
resulting in a grid with 8 times the number of cells (6,144 cells). At these grid resolution, a
linear facet representation of the sphere geometry is very crude, and large solution errors
are expected. To remedy this problem, the surface is approximated with a quadratic
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(a) (b)

Figure 8: Coarse and fine grids for a sphere with quadratic boundary.

representation, as shown in Fig. 8.

In order to show the importance of high-order geometry representation, linear and
quadratic boundaries were used in an inviscid flow simulation using the 3rd order SD
scheme. The inflow Mach number was 0.2535. With a linear boundary representation,
a steady solution was not possible to obtain, and the flow field is not stable because
of the sharp corners present in the surface grid. The instantaneous Mach number con-
tours are displayed in Fig. 9a, which clearly shows that the flow is not stable. With the
quadratic boundary representation, the simulation converged to machine-zero, and the
Mach contours are presented in Fig. 9b. Obviously the flow is very symmetric, indicating
the isotropic nature of the flow. For here on, quadratic boundaries were used in all the
rest of the simulations.

Next, p-refinement studies were performed on both the coarse and fine grids. The 2nd

to 4th order SD schemes were employed in these studies. The computed Mach contours
on the coarse grids are displayed in Fig. 10, while the corresponding fine grid results are
presented in Fig. 11. In these contours, the Mach number is discontinuous across cell
interfaces, and the solution quality can be visibly judged from the magnitude of the dis-
continuities across cell interfaces, since the flow is theoretically continuous. Obviously
the 2nd order solution is very crude on the coarse grid. Large entropy generation is ev-
ident from the non-symmetric Mach contours. The higher-order results show marked
improvements. The 4th order results on the coarse mesh are very smooth and symmetric.
The computed Mach contours on the fine mesh are much smoother than the correspond-
ing ones on the coarse mesh. It appears p-refinement is more effective than h-refinement
(grid-refinement), since it is obvious that the 3rd and 4th order solutions on the coarse
mesh are visibly smoother and more symmetric than the 2nd and 3rd order solutions on
the fine mesh respectively.

For the viscous flow simulation, the Reynolds number based on the diameter was
chosen to be 118 since an experimental streamline picture is available for comparison [33].
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(a) Linear boundary (b) Quadratic boundary

Figure 9: Computed Mach contours for subsonic flow around a sphere with linear and quadratic boundaries
using a 3rd order SD scheme on the fine mesh. Mach contours start at Mach = 1/30 with a 1/30 interval.

This viscous flow computation was performed on the fine grid using the 4th and 6th order
SD schemes to assess the numerical error. The computed Mach number contours using
both schemes are shown in Fig. 12. Note that the contours are nearly on top of each other,
indicating an excellent agreement. The computational streamlines are compared with the
experimental streamlines in Fig. 13. In both plots the steady separation bubble is readily
observed, and the size of the separation region in the computation agrees very well with
that of the experiment, at least in the “eye ball” norm. The skin friction coefficients at
the wall computed with both schemes are plotted in Fig. 14, and they are right on top of
each other. In fact, the skin friction coefficients differ less than 0.1% between the 4th and
6th order results. The predicted separation angle from both schemes is 123.6 degrees (the
wind side stagnation point has an angle of 0), and the length of the separation region is
1.04D.

3.4 Unsteady viscous flow over a cylinder

Finally, unsteady viscous flow over a circular cylinder was selected to demonstrate the
SD method for time-accurate flow computations. The computational grid has 590 cells,
and is shown in Fig. 15. The outer boundaries are at least ten diameters away from the
center of the cylinder (the origin). Since this is a two-dimensional problem, only one cell
was used in the z-direction.

Many experimental and computational studies have been carried out to study the
unsteady flow around a cylinder at various Reynolds numbers [2,6,15,39]. In the present
study, the Reynolds number was chosen to be 160, and both the 3rd and 4th order SD
schemes were employed in the simulation. The unsteady von Karman vortex street was
predicted by both the 3rd and 4th order schemes. By monitoring the pressure histories
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(a) 2nd order

(b) 3rd order

(c) 4th order

Figure 10: Computed Mach contours for flow around a sphere with quadratic boundaries using 2nd-4th order
SD schemes on the coarse mesh (768 cells). Mach contours start at Mach = 1/30 with a 1/30 interval.
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(a) 2nd order

(b) 3rd order

(c) 4th order

Figure 11: Computed Mach contours for flow around a sphere with quadratic boundary using 2nd-4th order SD
schemes on the fine mesh (6,144 cells). Mach contours start at Mach = 1/30 with a 1/30 interval.
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Figure 12: Computed pressure (on the sphere) and Mach number (on z = 0 plane) distributions using the 4th

and 6th order SD schemes. Mach contours start at Mach = 1/40 with a 1/40 interval.

(a) Computation

(b) Experiment

Figure 13: Comparison of streamlines of the flow field from computation (a) and experiment (b).
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Figure 14: Predicted skin friction coefficient profiles with the 4th and 6th order SD schemes.

Figure 15: Computational grid for unsteady flow over a circular cylinder.
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Figure 16: Pressure history at (10, 1) for flow over a cylinder at Re = 160.
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Figure 17: Mach number contours for flow over a cylinder.

Figure 18: Vorticity magnitude contours for flow over a cylinder.

at selected locations in the flow field, we observed that the flow reached a periodic state
after about 40 non-dimensional time units (scaled by diameter and incoming velocity).
For example, the Cp history at point (10D, 1D) is shown in Fig. 16. From the Cp histories,
we can easily identify the vortex shedding frequency, and then compute the Strouhal
number. The computed Strouhal number is 0.194 using the 3rd order SD scheme, and
0.192 using the 4th order SD scheme, indicating a very close agreement between the two
simulations. In comparison, the experimentally measured Strouhal number is 0.186 [39].
Two computations using a spectral element method [15] and a finite difference method
[39] gave a Strouhal number of 0.198 and 0.175 respectively. The present computation
appears to have the closest agreement with the experiment data, and is between the two
other computed results. The computed Mach and vorticity magnitude using the 4th order
scheme are displayed in Figs. 17 and 18. The von Karman vortex street can be clearly
observed.
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4 Conclusions and future work

In this paper, the multidomain spectral difference method has been successfully extended
to 3D for solving the full Navier-Stokes equations on unstructured hexahedral grids. Be-
cause the SD method is based on the differential form of the governing equations, the
implementation is straightforward even for high-order curved boundaries. All the oper-
ations are basically one-dimensional in each coordinate direction, resulting in improved
efficiency. The high order accuracy of the SD method is numerically verified in both space
and time, and the exponential decay of the numerical error with respect to p-refinement
has been achieved for the vortex propagation problem and Couette flow. Numerical ex-
periments for flow over a cylinder and a sphere have demonstrated the capability of the
SD method in obtaining high quality results with high order curved boundaries. We are
currently demonstrating the SD method for more complex flow problems, and working
on efficient implicit and multigrid solution algorithms.
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