COMMUNICATIONS IN COMPUTATIONAL PHYSICS Commun. Comput. Phys.
Vol. 2, No. 4, pp. 611-639 August 2007

Modeling of the Frozen Mode Phenomenon and its
Sensitivity Using Discontinuous Galerkin Methods

S. Chun and J. S. Hesthaven*
Division of Applied Mathematics, Brown University, Providence, R 02912, USA.

Received 19 September 2006; Accepted (in revised version) 28 November 2006
Communicated by Wei Cai
Available online 8 January 2007

Abstract. We investigate the behavior and sensitivity of the frozen mode phenomenon
in finite structures with anisotropic materials, including both magnetic materials and
non-normal incidence. The studies are done by using a high-order accurate discontin-
uous Galerkin method for solving Maxwells equations in the time domain. We confirm
the existence of the phenomenon also in the time-domain and study carefully the im-
pact of the finite crystal on the frozen mode. This sets the stage for a thorough study
of the robustness of the frozen mode phenomenon, resulting in guidelines for which
design parameters are most sensitive and acceptable tolerances.

AMS subject classifications: 65M60, 78 A48, 78M10, 93M25
Key words: Discontinuous Galerkin method, Maxwell equation, photonic crystals, frozen mode.

1 Introduction

The use of complex metamaterials for controlling the propagation and manipulation of
electromagnetic energy continues to attract significant interest among engineers. Re-
cently, there has been a flurry of activity in the study and development of periodic struc-
tures comprising of several different anisotropic materials after it was shown that such
structures could support highly unusual electromagnetic phenomena [18-20] such as a
non-reciprocal propagation, very low transmission loss into the crystal and perhaps a
most interesting phenomenon known as the frozen mode.
The frozen mode is a distinctive phenomenon related to stationary inflection points

of the dispersion relations w(k) such as,
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Figure 1: Dispersion relations for two different types of layer. Left: gyrotropic photonic crystals
(wp = 0.690320778, wqy = 0.607676756, w, = 0.502044368) and right: oblique anisotropic layers (wj =
9.3160209805, wy=9.164450223, w,=9.0569705995). w and k are expressed in units of c¢/L and 1/L.

When a monochromatic wave with frequency wy propagates into a periodic array of unit
cells with this dispersion relation, the wave shows the following striking features due
to the significantly large transmittance rate at inflection points contrary to the negligible
transmittance rate at band edges [18],

e dramatic slow-down of the waves

e enormously increased field amplitude

e cup-like singularity of the transmittance rate
e unidirectionality of monochromatic waves.

Let us briefly explain these features in the following. Fig. 1 shows two different types
of dispersion relation for two different layers, but both of them contain the same kind of
inflection point wy. At each wy in Fig. 1, we have two eigenmodes ko and k; such that
%—‘;{’ lk=k, =0, %—‘;{’ lk=k, <0 and only the eigenmode at k; transfers the energy. Since we have
no eigenmode with a positive group velocity, the transmitted wave does not transfer
the energy in the direction of the propagation. Physically, it means that the incident
electromagnetic wave slows down with infinitesimal group velocity within the periodic
layers. However, if a wave propagates in the opposite direction, we have %—‘,:’\ k=k, >0
and the eigenmode k; transfers the energy and consequently the abnormal slow-down
vanishes. Thus, the crystal behaves differently depending on the vector of propagation,
a phenomenon known as electromagnetic unidirectionality.

When the frequency of the wave is close to wy, a transmitted wave consists of propa-
gation components and evanescent components. The latter decays as the wave proceeds
along the propagation direction, but the former remains to propagate. Both components
initially increase dramatically, but their magnitudes remain almost equal with opposite
sign. Thus, the field amplitude at the interface of the layer and vacuum remain almost
the same, but once the wave precedes into the slab, the evanescent components die out
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and only the dramatically amplified propagation components remain and contribute to
the increase of the field amplitude. This propagation of amplified extended mode also
explains the abnormal cup-like singularity of transmittance coefficients depending on the
incident wave polarization.

These unique features of the frozen mode have been attractive for numerous practical
applications, but the existence of frozen mode itself was theoretically based on at least
two impractical assumptions: infinity and periodicity. Furthermore, all parameters for the
above dispersion relations should be exact up to at least 3 ~ 4 digits with an infinite
number of unit cells stacked up along z direction to yield the desired phenomena.

However, in real applications a layer cannot be infinitely long and every unit cell
cannot be exactly the same due to practical limitations in the fabrication. These issues
could prohibit the realization of frozen mode, although Figotin and Vitebsky suggested
in [19] that the phenomena would be robust, since the density of modes of inflection
points is abnormally stronger than that of band edges.

Hence, it is natural to study the impact of finiteness of the crystals as well as the
sensitivity of the phenomenon to variations in some of the parameters, e.g., material pa-
rameters, degree of anisotropy etc, to gain an improved understanding of the practicality
of utilizing the frozen mode phenomena.

For this investigation, we use a discontinuous Galerkin method (DG) with a multi-
element formulation for the modeling of the frozen mode in the time domain [1,2]. We
have adopted the scattered formulation for Maxwell equation to ease the boundary con-
ditions concerning scattered objects and we put Absorbing boundary condition (ABC) at
the end of the z-direction to prevent unnecessary reflected waves.

The remaining part of the paper is organized as follows. In Section 2, we briefly dis-
cuss Maxwell’s equations in the time domain. In Section 3, the details of the schemes in-
cluding discontinuous Galerkin Methods, time stepping, filtering and absorbing bound-
ary condition are described and also several numerical tests with their results are shown.
Section 4 discusses the modeling of the frozen mode with a large number of unit cells
and assess the effect of a finite number of unit cells. In Section 5, we study the sensitiv-
ity of the frozen mode phenomena to variations in critical parameters while concluding
remarks are given in Section 6.

2 Formulation

We model two different types of layers. The one array is referred to as a gyrotropic
photonic crystal and it consists of two anisotropic materials with different in-plane mis-
alignments (A1,Az) and one strong magnetic material (F) (see the left of Fig. 2). When
it is in a certain special combination, it shows the strong Faraday rotation (circular bire-
fringence) of light polarization in the absence of magnetic field, which results in spectral
nonreciprocity (w(k) #w(—k)) [11-13,18,19].

The other configuration is a nonmagnetic periodic stack with oblique anisotropy di-
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Figure 2: Periodic structure of gyrotropic photonic crystals consisting of two different anisotropic materials
with one magnetic layer (left) and oblique anisotropic layers consisting of one anisotropic material with vacuum
(right). A: anisotropic layer, F: magnetic layer, Air: air-filled gap.

electric materials with (ey, # 0) and air-filled gap between them [12,13,21] (see the right
of Fig. 2). If an incident wave is propagating into the layer at an oblique angle, then the
axial spectral asymmetry is obtained, i.e., w(Ex,ﬁy,Ez) #+ w(ﬁx,ﬁy,—ﬁz).

In the remaining part of this section, we describe the discrete formulations of Maxwell’s
equations for these two different layers. For simplicity, we call the former case as the
magnetic frozen mode and the latter as the oblique frozen mode.

21 The magnetic frozen mode

We consider the following Maxwell’s equations

_ dB ~ dD
VxE——E, VxH—E,
where E and H are the electric field and the magnetic field, respectively while D and B
the displacement field and the induction field. If the direction of the wave propagation z
is normal to the layers, these fields are related by linear constitutive relations as follows.

D(z)=2(2)E(z), B(z)=p(2)H(2),

where, hat indicates the corresponding quantity is a matrix. These relations yield the
following Maxwell’s equations in the time domain.

VxE=—(z) — —wf'(z)H, VxH=¢(z)= +wé(z)E. (2.1)

The superscript r,i denotes the real part and the imaginary part of the components, re-
spectively and w is the center frequency for which these material parameters are given.
To simplify the above equations, we introduce the normalized quantities using

Anati
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where, L is a reference length and ¢y=(&ofio) 2 is the dimensional speed of light in vacuum
when & and ji refer to the vacuum permittivity and permeability respectively. Also, E

and H are normalized as
- /00 E g H
to Hy Hy

where Hy is a dimensional reference magnetic field strength. By substituting these nor-
malized quantities into Eq. (2.1), we obtain the following non-dimensionalized equations

VxE=—f"(z) aa—l;l —2rfi'(z)H, VxH=#(z) aa—f +2718'(2)E, (2.2)

which is the most general model for what we shall consider. For the magnetic frozen
mode, we consider the following material constant of ¢, fi.

r i
N AF 1 Al A Exx € Al 0 €
g=¢g"1-i¢, sr:[ xy ], gl:[ ‘ ol

eﬁcy Eyy —e’xy 0
~ AT c Al AT Auxx Au;y:| AT 0 V;Cy
= —|—1 , e ’ = i .
p=p +ip, fi [y;y gy |7 [—ny 0

Then, we obtain the explicit Maxwell’s equations for the modeling of the magnetic frozen
mode on the form

oE oE oH .
Sxxa—tx +€§‘ya_ty - a—zy —2me'y, Ey,
9E,  OE, 3H, .
E};yw +€yy¥ = g +271,'€lxyEx,
oH oH, OE .
.uxxa—tx +.u;ya—ty = a—zy _ZﬂlugcyHy/
oH oH oE :
V;ya—tx‘i‘yyya—ty = —a—zx+27ry;ny.

Note that eicy and y;y are not loss, but responsible for the Faraday rotation of the electro-
magnetic waves. Thus, the above equations preserve energy and can be easily shown to
be stable in the sense that % =0 when the energy E® is defined as E®= [ ETéE+HTpH.

When the materials are given as follows [19], we recover the dispersion relation as
shown in Fig. 1 (left).

For A layer: &= [ 13.61+12.40cos (2¢) 12.40sin(2¢) }’ f— [ 1 0 };

12.40sin(2¢) 13.61—12.40cos(2¢) 01

5.0 0.0] A:{ 60.0 i37.0]

For F layer: 8:[0.0 5.0 —i37.0  60.0
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where, ¢ is the misalignment angle of the two anisotropic layers and we let ¢y =0 for
the first anisotropic layer and ¢» = 71/4 for the second anisotropic layer. Also, we take
the thickness of the F layer as 0.0047454 (L) and the frequency of incident wave w =
0.607676756 (c/L), where L is the thickness of unit cell and c is the speed of light in
vacuum.

2.2 The oblique frozen mode

The structure of this crystal seems to be much simpler than the gyrotropic photonic crys-
tal, but in order to achieve the axial spectral asymmetry (w(Ex,Ey,%z) # w(ﬁx,ﬁy,—fz)),
the following two conditions should be satisfied: the oblique anisotropy should not be
in-plane or axial and the Bloch wave k has to be oblique to the layers, i.e.,

1) ex; #0 and/or &, #0, 2) ky#0 and/or k, #0.

Assume that their tangential components kx,ky are all the same for the incident, reflected,
and transmitted waves and let only k; be different. In other words, we seek a solution of
the following form

E(x,y,z)= ei(k«*”kyy)E(z), H(x,y,z)= ei(k«*”kyy)H(z).

When this form of the solution is substituted, we have six equations, but considering only
k. components, the last row of each equation in Eq. (2.1) can be used to complement the
other equations. Thus, similar to the magnetic frozen mode, we have only four equations.
The explicit equations for the oblique frozen mode modeling are expressed as

g Ez0E 1 90Hy (5,1 \0Hy OE

Ye,, Ot e, ot Y, ot o9z’
ngﬁaEx 1—1’12i @ nniaﬂ—aﬂ

Ve,, ot Ve,, | ot e, ot 0z’

OE dE, oH

2 X 2 Yy _ X
o Tl ) 5=

2

2 o GO OBy | ecOHy | e OHy oH,

(”y E“Jrezz) ot M T o Tl ot a2

where n, =cky/w, n,=ck,/w.
With the following materials specified as in [21], we obtain the dispersion relation as
shown in Fig. 1 (right).

4.62cos0>+3.78sin6> 0 0.84cosfsind
£4= 0 4.62 0 ,
0.84cosfsinb 0  3.78cos0?+4.62sinh? o/
1 00
t5=| 0 1 0|, pa=pg=L
0 01
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We let the thickness of A layer be the same as that of vacuum. Also, the tangential com-
ponents of the incident wave vector are n, =n, = —0.493489 and the frequency of the
wave is 9.164450223 (c¢/L).

3 Numerical scheme

Let q = [Ex E, Hy Hy|. Then, the two equations with different material coefficients are
reduced to the general problem of the form

0 d
a—‘;‘+ an—l—qB 0. (3.1)
For the magnetic frozen mode,
A=AQ7!, B=
Qu 0 Exx € Mxx My
o-| } ={ AaC
0 vy Eyy S T
| 0 1 _ -1 | 0 1
A= a o] R A Iy
_ 11 0 o 0 _Eicy _ 0 _.uﬁcy
B—[ Bzz}' Bll_leicy 0 ], Bzz—[yiy 0 ,

and for the oblique frozen mode,

A=Q!, B=0,

_ | Qu OQn
Q_[ Q2 Q2 }'
_ nx(gxz/ezz) 0 | —nxn (1/822) ni(l/ezz)_l
Qu= I: ny<€xz/€zz) 0 :|’ Q12_|: _n§y<1/€zz) nxny(l/ezz) ]’

2
21 — 22 = .
Q I: ni_gxx"i‘siz /€22 —Nyhy » Q _ny(exz/gzz) nx(exz /EZZ)

Suppose that the domain () can be segmented into K non-overlapping layers. In each
elements, we assume that the approximated solution q¥;(z,t) can be represented as an
N’th order polynomial, i.e.,

N
=Y iz =Y qf ()", (3.2)
i=0 ;

where, z¥ is in the element [z* ,zX | which is linearly mapped satisfying z(—1)=z* , z5(1)=

z5 . Also note that ¢f is Lagrange polynomial based on grid points z§. There are many
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ways in choosing ¢, and segmentation of the domain (), but for easy implementation
with high accuracy and efficiency, we use Legendre polynomials P,(z) [10] for ¢(z). Then
¢ and /; have the following relation

N

VIE() =¢(2F),  V=[Vj]=[Pi(z))], (3.3)
where
= [ef -0k, =10k ¢F k).

The semi-discrete scheme is derived by requiring that
/ 9N 9N R | o B K (z)dz=0, 0<i<N.
& ot 0z

Executing two integrations by parts, we have the following form,

) ) 2 o .
/ ) (—;‘tN + 2N A+qn B> (z)dz= / Ca[(avA) " —(quA) ) (2)dz,  (B4)
zZ —
where 7 is an outward normal vector. Here, we use a numerical flux (qyA)* such that

[avA]* = (qy.qx)A,

where q~ is a local solution and q* a solution in the neighboring element. The reason
we need a flux in the above equation is that there are two different solutions on the same
interface, since z& = z"*!. Among many possible fluxes, upwind flux [6] or a simpler
central flux [1] are often preferred. We shall use the central flux for our semi-discrete

scheme as following

(an9a)A=5(q5+aqy)A. (3.5)

I\)lP—‘

Let us define the following mass matrix and stiff matrix (hk = zﬁ —zF)

Then, using Eq. (3.3) we obtain the following relation

M:(V_l)TV_l, S:(VT)_lWV_l/ 1]—/ ¢i(r (P]
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With the definition of the above matrix and the central flux, Eq. (3.5), we have the follow-
ing local semi-discrete scheme:

W odqn s . B
5 MW + Sq NA + ?
where ¢; is a N+1 long zero vector with 1 only for its i-th component and [ |, refers
to the evaluation of [ ] at x =a. We see that the inverse of M exists and can be easily
computed because it is only a local matrix, thus by multiplying M~!, we finally obtain
our semi-discrete scheme

qu 2 €0

N —lA A A o A —l — I eN 9 —1 - A
7+ﬁ(M S)qNA—I-qNB—W[M <_QN+‘]1J\F])A]Z;1+W{M (qN_qIJ\r])A]

~ A €o _ A eN _ A
ManB=7 [(—ay+tay)AL + 5 [(av—ay)AL,  G6)

k/
Z3

which reads in the scattered field formulation,

d scat . . . . . d inc o
I 2 (8)qi"A - i B+ (0 -1 TN gien

e [n _ " EN [wrr— — A
o M=)+ (@) DAL +5F MO (@) - () DAL, 69)
o +

where q*° represents the incident field and q*** the scattered field. Note that for the
scattered field formulation, only the scattered field is computed in the problem space
and the incident field is specified analytically throughout the problem space.

The consistency of this scheme can be easily proved from the general polynomial
approximation theorems. Furthermore, stability can be shown using energy methods as
discussed in detail in [3].

3.1 Time stepping

For the time marching, we can use the classical 4th order Runge-Kutta scheme. However,
for explicit time-integration schemes the stable time step will scale as

At %

with N being the order of approximation and & being the length of the smallest interval.
In the particular applications being considered the very thin magnetic F layers will prove
that the explicit time-integration prohibitive.

To overcome the long time integration due to an excessively small time step, we use
a Diagonally Implicit-Runge-Kutta (DIRK) 3rd order method [9]. The L-stability of this
DIRK 3rd order method enables us to choose At independent of the size of the elements
to the extend of acceptable accuracy. Considering the linearity of the equations, we can
rewrite (3.7) as following by introducing matrices T°,T7,

scat

B — T gy (1) + T (1),
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Then, applying the DIRK 3rd order yields
(I—yAtT)YS = q§™ (1) + At [y T QR (t+c1At)],
(1= AFTS) Y™ = @35 () + At [ag (T5Y, +TqC (b4 AL)) + T g (t4-coAt)],
(I—yAFTS) Y™ = @35 (£) + At [az (T5Y, +T'qC (t+c1At))
-|-a32(T Yz—i-qumC(t-l—czAt))+’yT'q’”C(t—|—c3At)],
qscat qscat+At [bl (TSY]+qumC(t+C]At))
+ba(T5Y o+ T/ qi (t4-coAt)) + b3 (TSY5 + T/ qi (t4-c3AL)) .

The Butcher tableau for the considered DIRK scheme is given as

cil v 0 0 | 04358665215 | 0.4358665215 0 0

¢l an v 0 | 07179332608 | 0.2820667392 0.4358665215 0

G| an am v 1 1.208496649  -0.644363171  0.4358665215
o b, by | | 1208496649  -0.644363171 0.4358665215

For the 3rd order DIRK method, the most critical issue is to invert (I—yAtT*) efficiently.
However, for the one dimensional DG method, (I—yAtT?) is very sparse and well dis-
tributed along the diagonal elements. Therefore, it is easily solved by simple LU decom-
position without deteriorating the speed or accuracy of the scheme.

3.2 Filtering

Usually DG schemes using central flux with sufficient resolutions are accurate and stable
for linear problems. However, due to the vastly separate scales in this problem with very
small domains or some domains with high material coefficients, we observe that the use
of a weak exponential filter can be beneficial at moderate resolution points to improve the
stability. The detailed discussion on this filtering of spectral method is shown earlier by
Hesthaven and Kirby [4]. Here, we briefly present the formulation of a weak exponential
filter used in our scheme.

Let Fy be the filter operator for the polynomial of order N. Then, it can be written as

FNG (x,1) Z(TE< ) t)P;(x),

where
oe(n) =exp(—an?), a=—In(ep), €pm=machine precision, p>16.
Now we define the following matrix.

Vij:Pj(xi), OSI,]SN

F:[m:{@(i&ﬂ, 0<i<N,
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where x; is the Legendre-Gauss-Lobatto quadrature point. Then, by substitution, we
obtain
Fud =VFa=VEV - of,

]T ~k ak ]T.

where qlf\[: [‘7]6/"',5]’1(\; and q’l‘\,: (a5, 8%

3.3 Absorbing boundary conditions

To attenuate the scattering waves at outer boundaries, we use an absorbing boundary
condition (ABC) at each end of the whole domain to suppress reflections of the waves to
an acceptable level. This permits the solution to remain valid even for long time intervals
[15]. The ABC is to introduce a simple sponge layer with loss in both the magnetic and
electromagnetic tensors such as,

V xH(r)=~i"2(2) [ b SO } E(r).

Substituting s, =1+ $%£"!(z), we have
VxH(r)= —i%é(z)E(r) +0,E(r),

where 0;(z) = (z2/d)" Opax, m=2, 3, 4, Opax =1/ At.

3.4 Numerical tests

To verify the convergence and the accuracy of the scheme, we now discuss a couple of
numerical convergence tests. The first test concerns the convergence to an analytically
known solution and the second one the convergence of transmission/reflection coeffi-
cients for simple isotropic materials.

3.4.1 Convergence test: isotropic/anisotropic materials

This first test can be found in [5]. Here we extend it to a slightly more general case
including anisotropic materials. Let us consider the following Maxwell’s equations

Sxx 8xy 3 Ex — O _1 i Hx
€xy &y |0t | Ey 1 0 Joz| Hy |’
O[H] [0 —170[E
il =15 0 zle ] 69

and a one-dimensional electromagnetic resonator with perfectly conducting walls located
at z() = —1 and z(®) = 1. The interior of the resonator is filled with two dielectric media
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When t=0 Spectral convergence of DG scheme

L2 error

0.5 1 10° 10' ) 10°
Number of subdomain

NOF s

Figure 3: The solution Ey, Ey, H,, Hy of the numerical test 1 at + =0 for case 2 (left) and its spectral
convergence (right).

with the material interface at z=0. We impose the following boundary conditions at z==+1
and z=0

i) E=0 or %—I::O, at z=4=+1,

i) EV=g®, HW=H®, at z=0.

The solution of Maxwell’s equations (3.8) satisfying the above boundary conditions can
be expressed as

Ey=[ABeinVwz_ pk) p=inewz]

7

Ey — [A(k)ein(k>wz _ B(k)e—in(k)wZ],
H,= n(k) [A(k)ei”(k>WZ +B(k)e—in(k)w2]

7

where
A _1Peos(nPw) o) i sn)
nWcos(nMw)’ ’
B = A1) p—i2nMw B2 — A(2),i2nPw
nt) = \/ & +€£(ky) = \/8(yky) +€£(ky), where ¢/ zs(yky) is required.
Here n0) = v/e(® is the index of refraction in k' material and w is the solution of the
equation

—n@tan(nVw)=nWMtan(nPw),
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and we consider the following two cases.

Casel : exn=¢eyy =10, &y=0, —1<z<0,
Exx =€y =225, ex,=0, 0<z<],
Case?2 : exx=¢&y=10, ey,=0, —-1<z<0,
sxx:syy:4.0, sxy:1.5, 0<z<1.

Using a very small time step, we show the spectral convergence as in the right in
Fig. 3. Also, with At=CFL%(2/N), CFL<1, we can see the third order temporal conver-
gence of the scheme in the following two tables:

1. N is the number of grid points

| [ N=8 | N=16 | N=32 | N=64 | N=128 |
LError || 2.1088¢-002 | 2.8870e-003 | 3.7544e-004 | 4.7073¢-005 | 5.9164e-006
Ratio - 7.3045 7.6896 7.9757 7.9564
Order - 2.8688 2.9429 2.9956 2.9921

2. N is the number of grid points

| [ N=8 | N=16 | N=32 | N=64 | N=128 |
L,Error || 3.9821e-001 | 4.3088¢-003 | 6.3444e-004 | 7.8858¢-005 | 1.0164e-005
Ratio - 92.4178 6.7915 8.0453 7.7586
Order - 6.5301 2.7637 3.0082 2.9558

3.4.2 Transmission test

Given the seminal importance of correct transmission and reflection behavior at mate-
rial interfaces, it is important to confirm this behaviour correctly. Moreover, it is also
of significance in DG schemes, since the behavior of electromagnetic waves on the in-
terfaces is mainly dealt through the flux terms in DG schemes. In other words, if the
transmission rate or the reflection rate does not converge to the known value, it is very
likely to reflect an improper use of the flux and violation of necessary boundary condi-
tions (n1-e1E1 =mn2-e2Ep, nx Hy =n x Hp) on the interfaces. Let us consider the following

Maxwell’s equations
0 n* Jot|E, ] |1 0 Joz[Hy ]
Jd[Hy|_ [0 =1]9]E
ot | H, | 1 0 Joz| Ey |

The following results confirm the convergence of transmission/reflection rates
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1. Whenn1=1.0,n,=15
| [N [ N

Exact value(T/R) 0.96 / 0.04 0.96 / 0.04
By computation(T/R) || 0.9593 / 0.0398 | 0.9599 / 0.04

2. When n;=1.5,1,=1.0
| [ N6 [ N1

Exact value(T/R) 0.8889 / 0.1111 | 0.8889 / 0.1111
By computation(T/R) || 0.8908 / 0.1092 | 0.8888 / 0.1112

4 Modeling of the frozen mode

In the following, we discuss a number of computational studies to confirm the predicted
behavior and the appearance of the frozen mode. We focus on a direct validation of the
theory as well as an attempt to understand the limitations of the phenomenon in crystals
of finite extent.

41 Modeling with a large number of unit cells

In this section, we model two different types of the frozen modes with as large number
of unit cells as possible to observe distinctive features of the phenomena. 200 unit cells
for gyrotropic photonic crystals and 100 unit cells for oblique anisotropic layers are used
in each modelings. This can be viewed an an attempt to directly validate the theories as
laid out in [18-20].

4.1.1 The magnetic frozen mode

The infinite gyrotropic material is modeled with 200 unit cells of the type as shown in
Fig. 2. As soon as the electromagnetic plane wave enters the slab, the wave gets ampli-
fied, it slows down and the field amplitude (|¥|*>= ]E,%—i—E;—i—H%—i—H; |?) increases dramat-
ically inside the slab as shown in Figs. 4 and 5. If we consider the maximum peak of the
field amplitude as the forefront of the energy density, the average group velocity of the
wave, which approximately coincides with the velocity of energy density transfer [17],
is around 0.0015¢c and the average signal velocity, which is defined from the position of
half-maximum intensity of the wave [17], is around 0.01c, with ¢ being the speed of light
in vacuum. Also, from the right of Fig. 5, we observe that the maximum height of field
amplitude increases almost linearly and is proportional to the amount of the transmitted
wave into the layer. This is in accordance with the predictions [18-20].

Generally, the energy density flux can be expressed as <S >=<u > v, where <u >
is the energy density and v is the group velocity. While the energy density flux remains
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Figure 4: Electric field at the frozen mode frequency. Ncell: Number of unit cell=200, N: Number of grid
points per each cell=8. At=0.02. T=200 (left), T=500 (right). The incident field is E||x polarized. The
dotted lines indicate the outer boundaries of the crystal.

approximately constant, the energy density inside the slab grows enormously in propor-
tion to the amount of the transmitted wave. The group velocity is inversely proportional
to the energy density, so the wave gets slowed down accordingly (Fig. 6).

Also note that energy density flux is almost the same for these two materials, but the
energy density in the magnetic material is much higher than that in anisotropic material.
Consequently, the group velocity of the wave is much slower in the magnetic materials.
This is why we see two lines in group velocity and energy density in Fig. 6.

If an electromagnetic wave at the frozen mode frequency propagates in the opposite
direction, we clearly see that abnormality of the frozen mode has disappeared (left in
Fig. 7). The electromagnetic wave reaches the other end with normal speed and there
is no amplification of the field amplitude. Similarly, if the thickness ratio of F or the
frequency of the incident wave is changed a little bit, none of the distinctive features of
the frozen mode is observed, as also illustrated in Fig. 7.

4.1.2 The oblique frozen mode

We repeat the computational experiment for the purely dielectric case using 100 unit cells
of the type shown in Fig. 2. We display the electromagnetic wave in Fig. 8 and the field
amplitude in Fig. 9 inside the oblique anisotropic layers along the z-direction.

The features of the oblique frozen mode are similar to those of the magnetic frozen
mode, although the shape of the wave and value of the field amplitude are quite different.
At T=500.0, the highest amplification of the field amplitude is around 5.9 which is much
smaller than that of the magnetic frozen mode where it was exceeding 90. The average
group velocity inside the layer is approximately 0.03c, which is significantly faster than
the magnetic case (0.0015¢). Different from the magnetic frozen mode, the average signal
velocity is 0.03c, which is the same as the average group velocity for the oblique frozen
mode.

The energy density flux is similar to that of the magnetic froze mode. However, since
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the larger energy density flux leaves the layer, the energy density is much smaller, e.g.,
the energy density flux out of the last cell of gyrotropic photonic crystal is around 1073,
but that of oblique anisotropic layer is around 102, 10 times larger. Thus, the group
velocity of the wave is much faster than that of the wave in the gyrotropic photonic
crystals. Similar to the magnetic crystal, changes in direction of propagation or frequency
dramatically alter the behavior of the frozen mode as illustrated in Fig. 11.

4.2 Modeling with small number of unit cells

The existence of the frozen mode is theoretically based on the assumption that the layer
is semi-infinite, but less is known about the phenomena for crystals with a finite small
number of unit cells. In this section, we first determine the smallest number of unit cells
required for the frozen mode, then study how the finiteness of layer changes the features
of the frozen mode.

4.2.1 Compressibility condition

If we take a careful look at the phenomena, we note that the phenomena can be charac-
terized by the compressibility of the electromagnetic waves. In other words, the energy
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of cell=100. TM polarization. The dotted lines indicate the outer boundaries of the slab.

density flux (es) should satisfy the following compressibility condition for the occurrence
of the frozen mode

-d:/V 4V >0.
/Sefns Vef

If the above integral is zero, no energy density stacks up inside the layer as what enters
the crystal also leaves it. However, if the integral is positive, the amount of the influx
wave is larger than that of outflow wave and consequently energy stacks up inside the
layer and gets compressed, reflecting a slow-down of the wave and sharp increase of the
field amplitude. This compressibility condition is thus a measure of the energy density
flux for the frozen mode. If a layer is finite, the compressibility condition holds only for
a finite time T¢, but it is significantly longer than time Ty when a wave propagates and
reaches the same distance in the similar material without showing the frozen mode.
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In a one-dimensional finite case, we have only two fluxes, inflow and outflow in z
direction. Thus, the compressibility condition can be simply expressed as

ef\zin—eflzwt>0, while t<T,, T.>Ty.

If we refer to the left quantity as Energy Density Flux difference (EDFD), it is clear that as
this EDFD gets larger, this reflects more distinctive features of the frozen mode inside the
layer.

4.2.2 How many cells are needed for the phenomena?

Fig. 12 shows EDFD of the magnetic frozen mode for various numbers of unit cells. With
8 unit cells, we hardly see any significant values of EDFD, reflecting an inability to sus-
tain the frozen mode. However, with only 16 unit cells, the EDFD reaches around 0.5
and linearly decreases to zero up to T=300.0. For 32, 50, or 64 unit cells, we observe a
relatively high EDFD, although all eventually approaches to zero after a long time inte-
gration. Thus, it appears that approximately 16 unit cells are sufficient for the magnetic
frozen mode. The field amplitude, energy density flux, and group velocity with 16 unit
cells at T=150 are shown in Fig. 13 where we recognize the characteristics of the phenom-
ena, although the intensity is rather small.

In Fig. 14, we show the field amplitude, energy density flux, and group velocity with
32 unit cells in the oblique anisotropic layers at T=150. Also, EDFDs for various num-
bers of unit cells are shown in Fig. 15. We notice that at least 32 cells are required for a
distinctive frozen mode, i.e., twice as many as the number of the magnetic frozen mode.

4.2.3 Transmittance rate

Even with a small number of unit cells, we observe that there are still amplifications of
the field amplitude and slow-down of waves. What happens, however, with the trans-
mittance rate?
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In the paper [19], it is shown that the transmittance rate displays its cup-like singular-
ity at the frozen mode frequency wy when the layer is infinite. On the other hand, when
the layer consists of finite number of unit cells, the singularity shifts a little bit from wy,
but as the number of unit cells increases, the singularity approaches to wy as shown in
Fig. 16.

Fig. 17 shows the computed values of the transmittance rate in the time domain for
two different polarization E||x and E||y of the magnetic crystal with 16 unit cells. As
predicted, there are shifts of the peak of the transmittance rate curve by the difference of
0.0912 and 0.0304 for E||x, E||y respectively. However, we also observe highly oscillatory
transmittance rates for both polarizations due to the finiteness of the slab and recognize
them as the Fabry-Pérot peaks.
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For the oblique frozen mode with 32 unit cells, there are also shifts of the peak by
0.0458, 0.0367 for TM and TE polarization, as illustrated in Fig. 18, but no Fabry-Pérot
peaks are observed.

5 Sensitivity of frozen mode

As we have seen in the previous section, the frozen mode phenomenon, predicted under
ideal and impractical assumptions, appears to also exist under more realistic conditions
such as finite length crystals. However, the results also emphasize that changes in the
various parameters such as frequency or layer length could destroy the phenomenon.
In fact, the material properties of layers (thickness of each layer, misalignment angle for
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anisotropic layer, material constants) and characteristics of wave propagation(incident
angle, frequency) should be exact up to 3~4 digits to generate a stationary inflection point
obtained by analytic methods. However, even with current state-of-the-art technology,
it seems to be very hard to meet such standards. Thus, it is very likely one faces some
errors in the fabrication of the crystal layers and in propagating an electromagnetic wave
with the exact frequency.

In this section, we study how such errors in the parameters of the layers or illumi-
nating wave will impact the frozen mode with the goal of providing guidelines on how
much error is allowable without destroying the frozen mode. For this purpose, we per-
form two different tests: One is to observe EDFD for the same amount of errors in each
parameters and the other is to observe the independently randomized errors on each pa-
rameters within a certain range. The former represents a systematic error while the latter
reflects randomized errors during fabrication or operation. The thickness of the magnetic
layer F and the misalignment of the anisotropic A layers are considered in the magnetic
frozen mode, while the thickness of the anisotropic A layer and the incident angle of the
wave are used for the oblique frozen mode, see Fig. 2.

5.1 Correlated uncertainty

In Fig. 19, we show EDFD for variations in the thickness of F layer or different misalign-
ment angle of A layer for each polarization E||x (left) and E||y (right). We observe that
the maximum of EDFD is shifted from 100 % to a value around 98% ~99% of the frozen
mode frequency due to the finiteness of the layer. If we set 25% of the maximum of EDFD
as the limit of EDFD for the frozen mode, then an allowable error is [95.5, 101.0] for the
thickness of the F layer and [96.5, 100.5] for the misalignment angle. This analysis indi-
cates that the misalignment angle of A layer is a little more sensitive than the thickness
of F layer.

For the oblique frozen mode, EDFD for TE polarization is similar to that of the mag-
netic frozen mode, but EDFD for TM seems to be unexpected as shown in Fig. 20. As
mentioned in the previous section, the energy density in the oblique anisotropic layer is
not sufficiently large since the energy density flux leaving out of the slab remains sig-
nificant even at the frozen mode frequency. For TE polarization, as the frequency of the
incident wave approaches to the frozen mode frequency, the transmittance rate increases
and the energy density flux leaving out of the layer decreases. Consequently, EDFD in-
creases as we see on the right of Fig. 20. On the other hand, for TM polarization, as we
approach to the frozen mode, the energy flux leaving out of the layer decreases, but the
transmittance rate also decreases. Thus, EDFD doesn’t drop sharply even though it is not
in the frozen mode. However, it is still true that energy flux density leaving out of the
layer is the smallest at the frozen mode frequency for both polarizations. For this reason,
let’s only consider TE polarization for the analysis.

Similar to the magnetic frozen mode, there are shifts of the maximum of the EDFD
and the allowable error with the same cutoff as for the magnetic frozen mode is [99.0,
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100.5] for the incident angle of the wave and [99.5, 101.5] for the thickness of A layer,
which is significantly smaller than that of the magnetic frozen mode which appears as a
much more robust phenomenon.

5.2 Uncorrelated uncertainty

In this section, we assume that each parameter in the crystal can vary independently and
has own i.i.d. random variable within a given uncertainty associated, which implies we
shall study the expectation and what amount of uncertainty will be sufficient to destroy
the frozen mode.

First, we let the parameter be the incident angle of the wave. We have one input (inci-
dent angle) and one output (EDFD). Using Gauss quadrature, we obtain the expectation
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as follows:

. M
E(n)= /EDFD(n,z)p(z)dz = k; EDFD(n,z ) wy,

assuming that the random variables are uniformly distributed. Here, z is the Legendre-
Gauss-Lobatto point and wy the weight. But, for other parameters, we need different
ways of estimation. Let the number of cells for the magnetic frozen mode and the oblique
frozen mode be 16 and 32, respectively. Then, we have 32 input parameters for the thick-
ness of A layer for the oblique frozen mode and 16 input parameters for the thickness of
F layer and the misalignment of A layer for the magnetic frozen mode. Several numerical
methods can be applied to these problems, such as Monte Carlo Method and Stochastic
Galerkin Method, but we use Stochastic collocation method which combines the accuracy
of the Stochastic Galerkin Method and easy implementation of Monte Carlo Method [8].
We use Stroud’s cubature points of degree 2 as collocation points which provide high
efficiency with minimal (Ncell+1) number of nodal point sets [7]. The brief procedure
takes the following steps:

1. Generate i.i.d. random variables according to Stroud-2 method

2 2rkm 2 2rkm
2r—1 < 2r > o
Y, —\/;COS—N 1’ Y; —\/;sm—N 1 r=12,---,[N/2],

where [N/2] is the greatest integer not exceeding N/2, and if N is odd Y} =

(=1)k/V/3.
2. Solve for each k=0,---,Ncell with {Y},-- ,Y,i\keu} and obtain each EDFD.

3. Post-process the result to evaluate the expectation

1 Necell

For the magnetic frozen mode, Fig. 21 shows that if we allow one standard deviation
of uncertainty, then approximately 5 % uncertainty in the misalignment angle of A lay-
ers and as much as 15 % uncertainty of thickness of F layer are allowable without the
EDFD being reduced below 25 % maximum value. These numbers are 2 ~ 5 times larger
than those for the correlated uncertainty, reflecting significant robustness of the magnetic
crystal to randomized small uncertainties.

Similarly, for the oblique frozen mode, as shown in Fig. 22, the thickness of the A layer
can vary with about 2% and the incident angle up to 5% to maintain the frozen mode
characteristics within one standard deviation. Although these numbers are considerably
smaller than those for the magnetic crystal, the numbers are still 2 ~ 10 times larger than
those found in the correlated case.
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Figure 21: The magnetic frozen mode: Expectation for uncorrelated uncertainties of misalignment angle of A
layer (MA), E||x(1st)/E|ly(2nd) and thickness of F layer (FW), E|x(3rd)/E||y(4th). The above dotted line is
E(x)+¢ and the below one is E(x)—d. E(x): expectation, J: one standard deviation. The horizontal dashed line
is a cutoff amount of EDFD for the frozen mode.

6 Concluding remarks

In this work, we addressed a number of central questions regarding the recently pro-
posed periodic structures, utilizing anisotropic materials [18-20] and expected to display
a number of highly unusual and interesting phenomena such as very low propagation
velocity, very high localized field intensity and also perfect transmission into crystals
comprising of high-index materials.

Our first task has been to develop an accurate and efficient means, by which to model
these new crystals in the time-domain with the aim of confirming the predicted behavior
and further understanding the nature and limits of the theoretical predictions. We de-
veloped and validated a discontinuous Galerkin method for this purpose. As we have
seen before, we are able to qualitatively and quantitatively confirm all essential predic-
tions and further show that many of these effects can be reproduced in crystals with even
moderate length.

As predicted by the theory, the finiteness of the crystal implies a slight shift in the
frozen mode frequency. Furthermore, we have compared the behavior of crystals with
magnetic layers as well as purely dielectric crystals with the incident wave entering at
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Figure 22: The oblique frozen mode: Expectation for uncorrelated uncertainties of the incident angle of the
wave (lA), TM(1st)/TE(2nd) and the thickness of A layer (AW), TM(3rd)/TE(4th). The above dotted line is
E(x)+d and the below one is E(x)—J. E(x): expectation, J: standard deviation. The horizontal dashed line is
a cutoff amount of EDFD for the frozen mode.

an oblique angle. While the behaviors of the two crystals are qualitatively comparable,
the details are very different and the magnetic material leads to much stronger effects.
Indeed, the computational results show that the amplification of the oblique frozen mode
is more than 20 times lower than that of the magnetic frozen mode and the velocity of
energy transfer of the oblique frozen mode is also approximately 20 times faster than
that of the magnetic frozen mode. Hence, the purely dielectric crystal has to be longer to
achieve similar effects. Unfortunately, even the very thin magnetic layers are problematic
from a production perspective as magnetic materials with sufficient Faraday rotation and
low enough loss is difficult to manufacture in the right frequency regime (microwaves).

By studying the sensitivity of the frozen mode phenomenon, we have been able to
establish bounds for how large uncertainties can be without impacting the essential be-
havior of the crystals. These studies also confirm that the magnetic crystals are consid-
erably more stable to variations in the crystal parameters as compared to the oblique
crystal. Surprisingly, we find in both cases that systematic variations are considerably
worse than uncorrelated variations in the parameters, confirming that the frozen mode
phenomenon is a robust phenomenon with excellent chances of being verified experi-
mentally, provided appropriate materials can be identified.
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