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Abstract. A new numerical scheme to solve the Boltzmann equation in phase space
for rarefied gas is described on the basis of the Cubic Interpolated Propagation (CIP)
method. The CIP procedure is extended to adaptive unstructured grid system by
the Soroban grid. The grid points in velocity space can move dynamically following
the spread of velocity space in a spatially localized manner. Such adaptively moving
points in velocity space are similar to the particle codes but can provide higher-order-
accurate solutions. Numerical solutions obtained by the Soroban-grid CIP are exam-
ined and the validity is discussed.

PACS (2006): 02.70.-c, 47.11.-j, 47.45.-n

Key words: CIP, Boltzmann equation, Soroban grid.

1 Introduction

Various kinds of numerical methods have been used for the Boltzmann equation in ap-
plication to plasma physics, hydrodynamics including rarefied gas, free molecules flow
and so on. There are some characteristic phenomena in rarefied gas such as Knudsen
layer [1], shock wave [2,3], Rayleigh problem [4]. Numerical methods for the Boltzmann
equation can be roughly divided into two classes. One is called the Lagrangian methods.
Among these Lagrangian schemes, one of the most popular particle methods is the Par-
ticle in cell (PIC) method [5]. This method has been considered to be quite stable even
if only a few computational particles per one grid cell are used. However, this scheme
essentially involves some disadvantages stemming from statistical numerical noise.

Another Lagrangian approach is the Monte Carlo method (DSMC:Direct Simulation
with Monte-Calro method) [3,6]. It has been used for rarefied gas dynamics described by
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the Boltzmann equation. These Lagrange-based schemes are stable even with the small
number of particles and they have been used for some simulations of hyper-dimensional
Boltzmann-Vlasov equation. However, there is still a disadvantage that the computation
cost in the Monte-Calro method is quite large for some flows like near continuum flows
even though the drastic improvement of computer technology is making the computation
much faster than ever before.

An alternative to the particle method or the Monte-Calro method is the Eulerian
method that uses a hyper-dimensional computational mesh in phase space. There have
been some simulations of the standard Boltzmann equations performed by finite dif-
ference method [7]. We here propose to use the Cubic Interpolated Propagation (CIP)
method that was proposed by Yabe [8–10]. In the CIP scheme, first spatial derivatives are
introduced as free parameters on each grid point and we do not have to solve matrix to
make cubic-interpolation function even in multi-dimensional cases. Therefore, the time
evolution of the derivatives as well as the function values are calculated from a model
equation that is consistent with the master equation and the scheme becomes the third-
order accuracy in time and space. One of the biggest advantages of the CIP method is
that the phase error and amplification factor are better than those of the other conven-
tional schemes with less number of grid points [11]. This implies that the CIP method
has possibility to overcome some problems that are intrinsic in the particle method or the
Monte-Calro method.

The CIP method has been successfully applied to various complex fluid flow prob-
lems of both compressible and incompressible flow, such as laser-induced evaporation,
skimmer [12], bubble collapse, magnetohydrodynamics [13] and so on [14]. Furthermore,
we have already succeeded in applying the CIP method to the Fokker Planck equation
for plasma physics [15]. Nakamura and Yabe established the hyper-dimensional Vlasov-
Poisson equation solver based on the CIP method, and Kondoh studied interaction be-
tween femtosecond-laser and matter both in microscopic and macroscopic levels using
the CIP method [16].

During the development of the CIP method, the Soroban grid was proposed to achieve
local mesh refinement (LMR) keeping higher-order accuracy by Yabe et. al [17]. The
Soroban grid consists of lines and grid points in two dimensions, but the extension of
Soroban grid to multidimensions such as six-dimensional Boltzmann equation is straight-
forward.

There are several merits to use the Soroban grid in the Boltzmann equation. (1) The
range of velocity space can vary in time and space in accordance with the velocity space
spread by the heating or acceleration. The particle code has great advantage in this re-
spect since the particle can have its own velocity without velocity grid. Since the Soroban
grid points in the velocity space can move independently from spatial grid points, the
flexibility to trace such change in velocity space will be attained like in the particle code.
(2) The local refinement is inevitable to treat the shock wave and other discontinuities.
The Soroban grid can concentrate the grid to such discontinuities independently from
the velocity space. (3) Even with such arbitrary grid points, higher order accuracy is well
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preserved. (4) Since the computation of grid movement and subsequent extra computa-
tion are very effective, dynamical grid adjustment in time is economical. (5) Large CFL
computation is possible and hence the time step limitation by large-velocity particle is
removed. Usually the distribution at large velocity is negligibly small and it is a waste of
time if the time step is determined from this part.

We have already applied the Soroban-grid CIP to a simple example, free-streaming in
one-(space) dimensional Vlasov equation whose collision term is zero. It was shown that
the recurrence phenomena intrinsic in the finite difference method can be avoided by the
Soroban grid [19].

This paper presents the applications of the Soroban-grid CIP to rarefied gas dynam-
ics. In Section 2, we briefly review the CIP method and the Soroban grid. Section 3 is
devoted to the application of the Soroban-grid CIP to the Bhatnagar-Gross-Krook (BGK)
equation [20]. The gas is assumed to be one dimension, i.e., the velocity distribution
function depends on the x direction, three velocity components and time. Two typical
calculations including shock tube problem and wall heating in two-dimensional phase
space are examined and discussed. Section 4 is devoted to the conclusion and the future
plans.

2 Numerical technique

2.1 The principle of the CIP method

Let us briefly describe the numerical technique of the CIP method. The one-dimensional
advection equation is given by

∂ f

∂t
+u

∂ f

∂x
=0, (2.1)

and the Boltzmann equation is merely the six-dimensional extension of this equation.

Before proceeding further, let us explain the one-dimensional CIP scheme. When ve-
locity u is constant and the initial condition of f (x,t = 0) is F(x), the analytical solution
of f in Eq. (2.1) can be readily described as f (x,t) = F(x−ut), which means a simple
translational motion of a wave. Even if u depends on x and t, this solution is approx-
imately correct in a very short time ∆t, that is, f (x,t+∆t) ≈ f (x−u∆t,t). All kinds of
semi-Lagrangian methods such as linear, quadratic Lagrange, cubic Lagrange, and so on
employ such Lagrangian invariant solution. Therefore, the CIP method is recognized to
be a family of semi-Lagrangian scheme.

Unlike conventional semi-Lagrangian schemes, the CIP method uses the spatial deriva-
tive of f as well and such interpolation belongs to the Hermite spline interpolation. Let
us differentiate Eq. (2.1) with spatial variable x, then we get

∂g

∂t
+u

∂g

∂x
=−∂u

∂x
g, (2.2)
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where g stands for the spatial derivative of f (=∂ f /∂x). In the simplest case that the
velocity u is constant, Eq. (2.2) coincides with Eq. (2.1) and represents the propagation of
spatial derivative with a velocity u. In this way, we can trace the time evolution of f and
g on the basis of Eqs. (2.1) and (2.2).

If two values of f and g are given at two grid points, the profile between these points
can be interpolated by cubic polynomial F(x) = ax3+bx2+cx+d. Thus, the profile at
n+1 step can be obtained transporting the profile by u∆t like f n+1 = F(x−u∆t), gn+1 =
dF(x−u∆t)/dx. Let

ai =
gi+giup

D2
+

2( fi− fiup)

D3
, bi =

3( fiup− fi)

D2
− 2gi+giup

D
. (2.3)

Then

f n+1
i = aiX

3+biX
2+gn

i X+ f n
i ,

gn+1
i =3aiX

2+2biX+gn
i ,

(2.4)

where X = −u∆t and the supersubscript “n” indicates the time step. Here, iup(= i−
sgn(ui)), sgn (ui)=1(ui≥0), −1(ui <0), D=−∆x· sgn(ui). Thus the function value and
its spatial derivative at the next time step n+1 are explicitly given.

It is possible to extend the scheme to more than one dimension with a directional-
splitting or non-directional-splitting technique. Let us first consider a two-dimensional
hyperbolic equation in the Cartesian coordinates (x,y):

L( f )≡ ∂ f

∂t
+(u·∇) f =G, (2.5)

where the velocity u = (u,v), ∇= (∂/∂x,∂/∂y). Eq. (2.5) is the same as the Boltzmann
equation in two-dimensional phase space, that is, y and G are equivalent to velocity space
coordinate and collision term, respectively. The following discussion can be applied to
more than two dimensions in the same way.

First, we consider the case of G = 0. The CIP method uses the first spatial deriva-
tives ∂ f /∂x and ∂ f /∂y to make cubic-interpolation, and these equations are derived
from Eq. (2.5) by ∂xL( f ) = 0 and ∂yL( f )= 0. In other words, the first spatial derivatives
must also be determined consistently with the master equation like one-dimensional case.
However, it is not practical and economical to straightforwardly extend non-directional-
splitting technique to six dimensions because of complexity of the six-dimensional cubic
polynomial.

Nakamura and Yabe [15] proposed a simple scheme to extend the CIP to six dimen-
sions by a directional splitting technique in the Cartesian grid. Such splitting technique
was used in Boltzmann and BGK equations by Desvillettes et. al [23]. This scheme has a
very good property in extending it to unstructured grid like the Soroban grid.
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Figure 1: (Left) Soroban grid arrangement. (Right) Close view on a two-dimensional plane. Closed circles
represent grid points.

2.2 The principle of Soroban grid

When the CIP scheme is applied to curvilinear system, the third-order accuracy that was
achieved in uniform mesh is severely deteriorated and is degraded to the first-order in the
deformed mesh [17]. Therefore the degradation of accuracy by introducing curvilinear
coordinate would cancel the advantage of the CIP method that has originally the third
order accuracy in time and space.

In order to resolve such difficulty, the CIP method has recently been upgraded to
include the adaptive grid that guarantees the high-order accuracy as well as robustness.
The new grid is named Soroban grid [17].

The schematic of the Soroban grid is shown in Fig. 1. The grid system consists of the
straight lines and grid points moving along these lines like abacus- Soroban in Japanese.
Planes also move in parallel in three-dimension. The length of each line and the number
of grid points in each line can be different.

In order to understand how to solve the advection equations with the Soroban grid,
let us consider a part of the Soroban grid shown in Fig. 1 (right) on a two dimensional
plane for simplicity, where the vertical mesh (y-direction) is the straight line, while the
grid points move along each line. Let (xi,yj) be the grid point which is to be updated. If
the upstream departure point T is given as (ξ,η)= (xi−u∆t,yj−v∆t), at first one pair of
lines satisfying xi1 < ξ < xi1+1 is searched. We should remind that xi can be far from xi1

and xi1+1 so that large CFL(u∆t/∆x,v∆t/∆y) computation is possible.

Next, two pairs of points satisfying yj1<η<yj1+1 and yj2<η<yj2+1 are searched along
two lines at x= xi1 and x= xi1+1, respectively. The interpolation in this configuration can
be performed as follows. At first, one-dimensional CIP is applied to the vertical straight
line(y-direction) giving Ai1,η and Ai1+1,η, and then T is given by one-dimensional CIP
along the straight line connecting Ai1,η and Ai1+1,η in the x-direction. We have to pay
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attention to spatial derivatives ∂ f /∂x(≡ gx) and ∂ f /∂y
(

≡ gy

)

. As for y-direction, since f
and gy are transported along lines, A and only ∂A/∂y

(

=∂y A
)

are readily obtained by the
CIP. In getting T by using cubic interpolation function along the straight line connecting
Ai1,η and Ai1+1,η in the x-direction, we need some method to estimate ∂A/∂x(=∂x A) at
the location of Ai1,η and Ai1+1,η.

The previous paper [21] proposed to use the linear interpolation in getting ∂A/∂x
from the gradients at two neighboring points along the line because the derivative in
the direction perpendicular to the propagating direction is not sensitive and hence can
be estimated roughly by the linear interpolation. Such a splitting scheme is called the
“Type-M” scheme.

Although the Type-M scheme is sufficient for many applications, a little more accurate
scheme is possible at the price of memory requirement. This scheme was proposed by
Aoki [22] and we call it “Type-C” scheme. In this scheme, independent variables are f ,
∂x f , ∂y f and ∂xy f

(

=∂x∂y f =∂y∂x f
)

in two dimensions. For example, instead of using
linear interpolation for ∂x f in y-direction, the one-dimensional CIP scheme is applied
to the advection of (∂x f ) and ∂y(∂x f ). The same can be said of x-direction, that is, the
one-dimensional CIP scheme is applied to the advection of

(

∂y f
)

and ∂x

(

∂y f
)

.

It is very important to note that the number of grid points along each j line can be
different. Corresponding 4 points j1, j1+1, j2, j2+1 including (ξ,η) point can be numeri-
cally searched. Most efficient method for finding the grid points in nonuniform mesh was
proposed in [18]. By this method, the grid belonging to the upstream departure point is
readily found with only one indexing procedure.

Since this scheme uses only the one-dimensional CIP method without coordinate
transformation, it is able to keep the third order accuracy in time and space even in a
deformed mesh [17]. The advantage of Type-M appears in the improved adaptive grid
movement and local mesh-refinement.

As for the application of the Soroban grid to non-advection phase that include colli-
sion term in the BGK equations, we will not discuss it in this paper because it has been
described in previous papers [9, 17].

2.3 Soroban grid and accuracy

For the benchmark test, we adopted a mesh system shown in Fig. 2 (the same test as
[17]). This mesh is symmetrical at the center in the x-direction. The leftmost region is
rectangular and its size is 40×96 and ∆x=∆y=∆x0. The length of the second trapezoidal
region is 56 in x-direction and the mesh size ∆x in x-direction is the same as that in the
first region. The mesh size in y-direction changes linearly reaching ∆y = RATE×∆x0 at
the center. The benchmark test was done for three cases RATE=0.5, 1.0, 1.5 by changing
the mesh size as ∆x0 = 8, 4, 2, 1 for measuring accuracy. RATE = 1.0 corresponds to the
uniform region and RATE=0.5 gives a shape like Fig. 2.

Let us summarize the mesh arrangement denoting the mesh size as ∆x0 =8/k (k =1,
2, 4, 8 is used to change the mesh size) and setting the grid point be (i, j), where i =
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Dy=Dx0 RATE

Dx=Dy=8/k

R

(xc, yc)

Figure 2: Grid arrangement and initial profile for benchmark test.

0,1,··· ,24k, j=0,1,··· ,12k. Then

∆y=∆x0, i=0,··· ,5k,

∆y=∆x0×(1+(RATE−1)×(i−5k)/7k), i=5k,··· ,12k,

∆y=∆x0×(1+(RATE−1)×(19k−i)/7k)), i=12k,··· ,19k,

∆y=∆x0, i=19k,··· ,24k,

(2.6)

where ∆x=∆x0 is a fixed constant and ∆y is a constant along each vertical line, (i, j)=(0,0)
is the origin and (i, j)=(96,48) is the center.

We calculate the propagation of a profile

f (x,y)=







1+cos
(

π
√

(x−xc)2+(y−yc)2/R
)

2
, (x−xc)2+(y−yc)2

< R2,

0, otherwise,
(2.7)

and R=15, (xc,yc)=(16,80), u=0.1, v=−0.04, ∆t/∆x0 =2 are used for the test run. The
initial values for the derivatives are estimated by analytically differentiating Eq. (2.7). At
t=1600, the initial profile moves to the opposite side of Fig. 2 and the numerical error is
estimated by Eq. (2.8)

ǫ≡

√

∑

(

fNum− fexact

)2

∑ fexact
, (2.8)

where fNum is the numerical result and fexact is the exact solution, and ǫ in each scheme
is shown in Fig. 3. Both Type-M and Type-C have approximately the 3rd-order accuracy.
The 3rd-order accuracy of the Type-C is as is expected because it uses the CIP procedure
all through the process. Although the Type-M uses the first-order scheme (linear interpo-
lation) in estimating the derivative in perpendicular direction, it gives the accuracy better
than 2nd-order.
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Figure 3: The numerical error ǫ for different grid shape with Type-M and Type-C.

2.4 Moving adaptive Soroban grid

Here, we shall discuss the possibility to use the Soroban grid as for the adaptive grid to
the moving body. We remind that all the discussion can be straightforwardly applied to
multi-dimensions. At first, let us consider one-dimensional case. For the simplest choice
of the monitoring function to the variation, we can use the following quantity:

M(x,t)≡
√

1+α
(∂ f

∂x

)2
+β
( ∂2 f

∂x2

)2
, (2.9)

where the two parameters α and β can be chosen depending on problems of concern. The
monitoring function M given by Eq. (2.9) becomes large for larger gradient region. Since
the Soroban grid is straight in one-direction, it is much easier to generate the adaptive
grid points along the line.

The reorganization of the grid point is easily performed by accumulated monitoring
function I(x) as shown in Fig. 4. If we divide the accumulated function into equal pieces,
the x-coordinate of boundary for each piece gives the grid points. It is easy to observe
that the size of grid ∆x becomes small where monitoring function M is large. Therefore,
grid points are concentrated on the region where spatial gradient is large (like boundary
layer), and this procedure is repeated in every time step.

In the two-dimensional mesh shown in Fig. 5, mesh moving is performed as follows.

1. Calculate M(y,t) along each line

2. Generate the points along each line.

3. Calculate the average M(x,t) from all the points along each line.

4. Move the lines.
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M(x) I(x)

x x

Integrate

Figure 4: Accumulated monitoring function I (x) is divided into equal pieces. The x boundary of each piece
gives the grid point.

move by line

m
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e b
y p
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nt

Figure 5: The straight lines can move in horizontal direction and grid points move along the straight lines.

The monitoring functions have been used in several preceding studies for generation
of adaptive mesh [24–27], not only in Finite-Difference method but also Finite-Element or
Finite-Volume Method [28, 29]. In addition, there are some robust unstructured adaptive
grid schemes applied to the BGK equation [31].

In the sense that we adopt the monitoring function, the Soroban-grid CIP method has
a similarity in mesh generation to the other conventional adaptive mesh methods. How-
ever, distinct difference between the Soroban grid and the preceding methods is that the
Soroban grid does not use the coordinate mapping between the physical domain Ωp and
the computational domain Ωc so that the third-order accuracy can be obtained even with
unstructured Soroban-grid as mentioned in Section 2.3. The Soroban grid is a kind of
unstructured grid but simultaneously it has a regular structure like the Cartesian grid.
Therefore, only one-dimensional monitoring function like Eq. (2.9) is sufficient for any
multi-dimensional calculations with directional splitting. In addition, the combination
of the Soroban grid and the semi-Lagrangian approach becomes very efficient because
finding the upstream points for large CFL is easily performed in such semi-regular grid
arrangement. It is also important to note that the grid movement and advection proce-
dure can be performed by only one procedure [32, 33]. Suppose that we set a new grid
point, the updated value at this point after advection can be found by searching an up-
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(a) (b) (c)

Figure 6: Solid body revolution. Density contour and grid points. (a) t=0, (b) t=133, (c) t=800.

stream point of this new grid, interpolating the value from neighbouring old grid points,
and transporting the value to the new grid point. Thus grid movement and advection
procedure are performed by one procedure. However, some sophistications proposed in
previous papers [25, 26, 30] would improve the generation of the Soroban grid.

This moving grid scheme is applied to the solid body revolution proposed by Zalesak
[34]. The mesh of 101×101 is used and the rotation center is located at (xc,yc)=(50,50).
The initial profile is

f (x,y)=

{

1, R≤17 and (|x−26|>3 or y>60),
0, otherwise,

(2.10)

where R =
√

(x−26)2+(y−51)2. The mesh size is initially ∆x = ∆y = 1.0. The time step
is fixed to ∆t = 1, and the parameters α and β in (2.9) are chosen as α = 1 and β = 0.3.
Revolution speed is set so that the revolution is completed after 800 steps, namely,

u=−2π(y−yc)/800, v=2π(x−xc)/800. (2.11)

Fig. 6 shows the contour where increment is 0.1 and the corresponding grid points are
depicted. It is important to note that the time step is fixed to ∆t =1, thus as the mesh is
moving as shown in the figure, the mesh can be very small and the CFL value can easily
exceed 1. In this simulation, we do not need the information of the connectivity between
two points in different lines. The upstream departure point is searched along the line and
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can be separated by several mesh size from the terminal point. Actually, the maximum
CFL was 22 at the locally refined mesh.

The extension of the Soroban grid to more than two dimensions was described in [32,
33]. Note that selection of a quantity f for monitoring function Eq. (2.9) can be different
in each M(x,t) or M(y,t).

The possibility to use the Soroban grid as the adaptive grid to the moving body has
already been discussed in [17]. It is based upon the monitoring function to the variation,
and local mesh refinement can be achieved. The drawback was that the Soroban grid thus
generated would not be smooth because the grid size would be automatically determined
by the monitoring function and thus the ratio of grid size would become extremely large.

One way to avoid such drawback is to set the maximum value of monitoring function.
For example, we do not use Eq. (2.9) M(x,t), but

M(x,t)used =min{r≡∆xmax/∆xmin,M(x,t)} (2.12)

is used, where r≡∆xmax/∆xmin means the ratio between the maximum and minimum
grid sizes. After predicting the magnitude of spatial derivatives, we can choose the two
parameters α and β in Eq. (2.9) so that the monitor function stays in the range of r. An-
other way is to smooth the spatial derivatives in the monitoring function [32, 33]. This
method may be more effective for the Soroban grid and is now under development.

The CIP method is suitable for this mesh system because it uses only two stencils to
make up cubic-interpolation function, and the calculation of large CFL(>10) at locally
refined mesh is easily performed. Mesh generation and searching of upstream departure
point are very simple and almost mesh-free treatment is possible.

3 Soroban-grid CIP for BGK equation

3.1 Formulation of the problem : Notations and basic equations

The standard Boltzmann equation for velocity distribution function f (x,v,t) in phase
space x=(x1,x2,x3) and velocity v=(v1,v2,v3) is written as

∂ f

∂t
+(v·∇x) f +

(

F

m
·∇v

)

f =

(

∂ f

∂t

)

coll

, (3.1)

where ∇x ≡ (∂/∂x1,∂/∂x2,∂/∂x3), ∇v ≡ (∂/∂v1,∂/∂v2,∂/∂v3), F is the force and m is the
mass of particle, and (∂ f /∂t)coll is the collision term. Since the CIP can accurately de-
scribe the advection process even with coarse grid, it is possible to solve six-dimensional
phase space in the Eulerian grid system. In plasma simulation, Landau damping was cor-
rectly described even with ten grids in the whole velocity space by the CIP method and
six-dimensional computation has been performed only with one personal computer [15].

As for applications of the standard Boltzmann equation to rarefied gas, the Bhatnagar-
Gross-Krook (BGK for short) has been frequently used in a number of recent literatures.
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Attempts to derive it or justify the model have been made in a number of previous papers
and the BGK equation is recognized to be an essential model of the standard Boltzmann
equation. In this paper, we focus on the one-(space) dimensional BGK equation because
it is sufficient to show the effectiveness and possibility of the Soroban-grid CIP method
and general establishments to the standard Boltzmann equations will appear in future
papers.

The BGK equation in one dimension (∂/∂x2 =∂/∂x3 =0) with free force (F=0) is

∂ f

∂t
+v1

∂ f

∂x1
= Acρ( fe− f ) (=ν( fe− f )), (3.2)

where Ac is a constant parameter, ρ is the density, and the collision frequency is given by
ν = Acρ. fe is the local Maxwellian distribution and the collision term on the right-hand
side of Eq. (3.1) is replaced by a term proportional to the difference between the current
distribution function and the local Maxwellian distribution function.

fe =
ρ

(2πRT)3/2
exp

(

− c2

2RT

)

. (3.3)

Here, ρ and T, respectively, denote the density and temperature of gas flow, R is the
specific gas constant. c represents the magnitude of the thermal velocity, that is, c2 =
c2

1+c2
2+c2

3, where ci =vi−ui (i=1,2,3) and ui is the mean velocity along i-direction.
The BGK equation (3.2) is an idealized model of the full Boltzmann equation and it

is well-known that the following hydrodynamics equations for continuum flow can be
easily derived by taking the moment of distribution function:

∂a

∂t
+u·∇a=S, (3.4)

where a=(ρ,u,p), S=(−ρ∇·u,−∇p/ρ,−γp∇·u), p is the pressure and γ is the specific
heat ratio.

However, in the Chapman-Enskog expansion, the BGK model corresponds to the
Prandtl number Pr=µCp/K of unity, where µ is the viscosity coefficient and K is the heat
conduction. The modified BGK equation (BGK-ES(ellipsoidal statistical) model equation,
for short) has been proposed [35], and the local Maxwellian Eq. (3.3) has to be replaced
by Eq. (3) in [37] in order to deal with any Prandtl numbers. Although this paper does
not employ the BGK-ES model, the application of the Soroban-grid CIP to this model is
straightforward as well.

In one space dimension (x1), the distribution function f is in general a function of
five variables: x1, t, and three velocity components v1, v2, v3. In this case, however, a
simplification is possible [2] so that the procedure can be reduced to the solution of the
following two functions of the x1 and v1 components:

g(x1,v1,t)≡
∫ −∞

−∞

∫ −∞

−∞
f dv2dv3, h(x1,v1,t)≡

∫ −∞

−∞

∫ −∞

−∞

(

v2
2+v2

3

)

f dv2dv3. (3.5)
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Integrating with respect to v2 and v3 and using Eq. (3.5), Eq. (3.2) can be reduced to the
following equivalent system:

∂

∂t

(

g
h

)

+v1
∂

∂x1

(

g
h

)

= Acρ

(

ge−g
he−h

)

, (3.6)

where the density ρ, the mean velocity u1 in the x1-direction and the temperature T are
obtained as

ρ=
∫ ∞

−∞
gdv1, u1 =

1

ρ

∫ ∞

−∞
v1gdv1, 3RT =

1

ρ

∫ ∞

−∞

(

(v1−u1)
2 g+h

)

dv1, (3.7)

and the pressure p=ρRT.
Eq. (3.6) is put into nondimensional form by introducing the normalizing quantities

such as the reference density ρ0 and the temperature T0, the initial mean thermal velocity√
2RT0 as the reference velocity, the reference length l0 which is set to the mean free path

of the gas molecules in equilibrium state at rest with T0. The distribution functions g and
h are also normalized by

√
2πRT0. Therefore, nondimensionalized BGK equation can be

represented as

Sh
∂

∂t

(

g
h

)

+v1
∂

∂x1

(

g
h

)

= kρ

(

ge−g
he−h

)

, (3.8)

where

ρ=
1√
π

∫ ∞

−∞
gdv1, u1 =

1

ρ
√

π

∫ ∞

−∞
v1gdv1, T =

2

3
√

πρ

∫ ∞

−∞

(

(v1−u1)
2 g+h

)

dv1, (3.9)

and pressure p=ρT/2. ge and he that correspond to the local Maxwellian distribution are

ge (x1,v1,t)=
ρ√
T

exp

(

− (v1−u1)
2

T

)

, he (x1,v1,t)=ρ
√

Texp

(

− (v1−u1)
2

T

)

. (3.10)

Note that we employ the same notation both for the un-normalized and normalized val-
ues but it should not cause confusion. Sh= l0/

(

t0

√
2RT0

)

is called the Strauhal number,
in which t0 is the reference time. k≡Acρl0/

√
2RT0 is the inverse of Knudsen number and

is given by the ratio between mean free path and reference length. Here, Sh=1.0 and k is
chosen depending on problems of concern in this paper.

The initial value problems of two simultaneous BGK equations (3.8) to (3.10) are
solved by the CIP method.

Solving BGK equation, some difficulty appears from the collision term because the
analytical form of the local Maxwellian fe is not necessarily the correct approximation to
the conservative properties Eq. (3.7) owing to the numerical discretization error. In this
paper, the discrete-velocity model (DVM) [36], which solves a discrete approximation of
the local equilibrium Eq. (3.3) defined by a minimum entropy principle, is employed for
the collision operator. Although the DVM was used for the original BGK equation (3.2),
it can be easily applied to (ge,he) in two simultaneous BGK equations (3.8).
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3.2 One-dimensional SOD shock-tube problem

We here apply the Soroban-grid CIP method to the one-dimensional examples of the BGK
equation tha have been used as benchmark tests by preceding papers. The first example
is a SOD shock tube problem [2]. It is well known as the Riemann problem and the initial
discontinuity generates some discontinuities like shock front, contact discontinuity and
rarefaction wave. Especially, the structure of normal shock waves has been studied as
one of the most fundamental nonlinear problems in rarefied gas dynamics with theories,
experiments and numerical simulations [2, 7, 37].

Consider a system with a uniform-temperature region initially with a high-density
layer ρL placed on the left and a low-density layer ρR on the right. The density (or pres-
sure) ratio is 10:1, that is, ρL/ρR =10.0

(

≡αρ

)

. Therefore, there is a discontinuity in distri-
bution function g and h initially at x1 = xc(= L/2), where the system size L is 60l0 in the
x1-direction. The number of lines in the x1-direction is 150 and ∆xini≡L/150=0.4. The 60
grid points move along each line in velocity space v1 from −12(−vmax) to +12(+vmax).
The time interval ∆t is fixed to 0.01∆xini. The calculation is performed up to t(/t0)=15.0.

The initial condition in normalized form is set to the Maxwellian in each region, hav-
ing uniform temperature, and they are described as

g(x1,v1,t=0)=h(x1,v1,t=0)=

{

exp
(

−v2
1

)

(x1≥ xc),
αρexp

(

−v2
1

)

(x1≤ xc),
(3.11)

∂g

∂v1
(x1,v1,t=0)=

∂h

∂v1
(x1,v1,t=0)=

{

−2v1 exp
(

−v2
1

)

(x1≥ xc),
−2αρv1exp

(

−v2
1

)

(x1≤ xc),
(3.12)

∂g

∂x1
(x1,v1,t=0)=

∂h

∂x1
(x1,v1,t=0)=0. (3.13)

The function value and its derivatives at the boundaries x1 =0 and x1 =∞(= L) are fixed
to the initial condition Eqs. (3.11) to (3.13).

In the applications of the Soroban grid, efficient moving of the Soroban grid is the
key issue. In the present example, we had better choose different strategy in the x and
v directions by selecting monitoring function Mx (x1,t) and Mv(x1,v1,t) independently.
Mv(x1,v1,t) should be made with the velocity distribution function g(x1,v1,t) because
the number of grid points near the velocity boundary v1 =±vmax can be reduced because
of very small value of distribution function. In the x direction, however, it is better to
make Mx (x1,t) with density ρ(x1,t) since some discontinuities in variables such as den-
sity ρ(x1,t)=

∫ ∞

−∞
gdv1 will appear in space after integration of distribution function along

v1, so that we can trace not only shock front but also contact discontinuity.
Therefore, the following monitoring function Mx(x1,t) and Mv(x1,v1,t) are proposed:

Mx (x1,t)=1+ax

∣

∣

∣

∣

∂ρ(x1,t)

∂x1

∣

∣

∣

∣

+bx

∣

∣

∣

∣

∂2ρ(x1,t)

∂x2
1

∣

∣

∣

∣

,

Mv(x1,v1,t)=1+av

∣

∣

∣

∣

∂g(x1,v1,t)

∂v1

∣

∣

∣

∣

+bv

∣

∣

∣

∣

∂2g(x1,v1,t)

∂v2
1

∣

∣

∣

∣

, (3.14)
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Figure 7: The time variation of density, temperature, velocity and pressure with Soroban-grid CIP in the case
of k=2/

√
π.

where coefficients (ax,bx) = (30.0,60.0) and (av,bv) = (0.1,0.0) are used. The maximum
ratio of the grid size r in Eq. (2.12) is set to be 5.0 in both x1 and v1 directions.

Figs. 7 and 8 show the time evolution of the density ρ, mean velocity u1, pressure p
and temperature T profiles at various instants of time for two cases of k=2/

√
π (rarefied

flow) and k = 200/
√

π (continuum flow) in Eq. (3.8), respectively. Fig. 9 shows com-
parison of all macroscopic variables among analytical solution, Soroban-grid CIP and
uniform-grid CIP in the case of k = 200/

√
π. The solid line denotes the analytical solu-

tion of the shock-tube problem obtained using the Euler equations of gas dynamics of
continuum flow [8, 38]. As clearly observed in Figs. 7 and 8, shock front, contact dis-
continuity and rarefaction wave become steep and approach to the analytical solution as
the Knudsen number decreases from 1/k =

√
π/2 to 1/k =

√
π/200 as observed in [37],

and therefore the Soroban-grid CIP method is proven to be valid for both continuum and
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Figure 8: The time variation of density, temperature, velocity and pressure with Soroban-grid CIP in the case
of k=200/

√
π.

rarefied flows.

Fig. 10 shows the time evolution of the distribution function g and the Soroban grid
points in the case of k =200/

√
π. At t =0, ∂g/∂v1 in (x1≥ xc) is much smaller than that

in (x1≤ xc), and therefore the concentration of the Soroban grid towards the center along
the velocity space becomes prominent in x1 ≤ xc. As the time proceeds, the concentrated
Soroban grid moves following the movement of distribution function g, but still keeping
a few grid points near the velocity space boundary v1 ∼±vmax.

Fig. 11 depicts the comparison of the distribution function g(x1,v1) between uniform
grid and Soroban grid at t=15 in the case of k=200/

√
π. The Soroban-grid CIP describes

the distribution function g(x1,v1) more clearly than by uniform grid around v1 =0 axis.

Since monitoring function Mx(x1,t) is made with ρ, the resolution near shock front
and contact discontinuity is better than that in the other part. Especially, in the case of
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Figure 9: The comparison among analytical solution, Soroban-grid CIP and uniform-grid CIP in the case of
k=200/

√
π.

continuum flow with small Knudsen number shown in Fig. 9, the numerical solution
by the Soroban grid is improved significantly than that by the uniform grid. When the
number of grid points in uniform grid increases, such difference should be reduced.

Actually, the result with the finer uniform grid with the number of lines 750 for x =
[0,60] in the x1-direction and the number of grid points 150 for v = [−6,6] in each line
(v1-direction) becomes very closer to the Soroban grid as shown in Fig. 12.

3.3 One-dimensional heating by wall

Next application is rarefied gas heated by a wall with higher temperature [39]. The region
(0< x1≤ L) is filled with static (u1 =0) rarefied gas (k = 2/

√
π) with reference density

ρ0 and temperature T0 at t = 0, respectively. Therefore, the initial condition is simply
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Figure 10: The distribution function g(x1,v1) and Soroban grid at t=0,7.5,15 in the case of k=200/
√

π. Only
the velocity range v=[−6,6] is plotted while the calculation was performed in the range v=[−12,12].
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calculation was performed in the range v=[−12,12].
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at t=15: (left) whole view and (right) enlarged local view near two discontinuities.

described by the Maxwell distribution:

g(x1,v1,t=0)=h(x1,v1,t=0)=exp
(

−v2
1

)

, (3.15)

∂g

∂v1
(x1,v1,t=0)=

∂h

∂v1
(x1,v1,t=0)=−2v1 exp

(

−v2
1

)

, (x1≥0) . (3.16)

The boundary condition at x1 = 0 is assumed to be the wall that is the diffuse reflection
boundary with the temperature T1(=αTT0) like heat source

g(0,v1,t)=
ρw√
αT

exp
(

−v2
1

)

, h(0,v1,t)=ρw
√

αT exp
(

−v2
1

)

, (v1 >0) , (3.17)
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Figure 13: The distribution function g(x1,v1) and Soroban grid near the wall t=10.0.

where ρw is the density that is determined by the distribution function of incident fluid
to the wall,

ρw =−
√

2

αT

∫ 0

−∞
v1g(0,v1,t)dv1, (3.18)

where αT =2.0.

The system size is 100l0 and the velocity space is ranging from −6(−vmax) to
+6(+vmax). The number of lines in the x1-direction is 300 and the 30 grid points move
along each line. The time interval ∆t is fixed to 0.001. The parameters used for monitor-
ing function in Eq. (3.14) are (ax,bx)= (0.0,0.0) and (av,bv)= (3.0,0.4). The calculation is
performed up to t=80.0.

Fig. 13 shows the distribution function g(x1,v1,t) near the wall in phase space at t =
10.0. The Soroban grid points are concentrated following the change of the distribution
function.

Fig. 14 shows the time variations of the density, temperature, velocity and pressure.
Heating on the wall increases pressure near the wall and the generated weak shock prop-
agates as time goes on. However, since no flow comes from the wall, the density near the
wall begins to decrease. Decreased density and no energy flow decrease peak pressure
of the shock front as well, and rarefaction wave begins to follow the proceeding shock
front.

4 Conclusion

Sone et. al [40] carried out accurate numerical analysis of evaporation and condensation
on a plane condensed phase on the basis of the linearized Boltzmann equation for hard-
sphere molecules with the finite difference method. They devised an efficient way to
calculate the linearized collision integral by the matrix product of a universal collision
kernel. This procedure can be directly employed in our scheme as well, and can be ex-
tended to describe the asymptotic behavior of a rarefied gas for small Knudsen numbers
in evaporation and condensation problem.

The ultimate purpose is to establish the universal solver for the six-dimensional stan-
dard Bolztmann equation using the CIP method with the Soroban grid. Since the Soroban
grid is capable of treatment like mesh-free schemes, it will be possible to set accurate
boundary condition by the Soroban grid for arbitrarily shaped complex boundaries. Even
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Figure 14: The time variation of density, temperature, velocity and pressure.

if such technical issues can be resolved by the Soroban grid and the number of grids in
both coordinate space and velocity space could be reduced, however, there would be still
some challenging issues. For example, physical modeling of real boundary condition is
not yet established since the boundary condition in molecular level is unknown.
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