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Abstract. The annihilation of a hedgehog-antihedgehog pair in hydrodynamics of (elas-
tically isotropic) nematic liquid crystal materials is modeled using the Erickson-Leslie
theory which results in a nonlinear system for the flow velocity field and liquid crystal
director field coupled through the transport of the directional order parameter and the
induced elastic stress. An efficient and accurate numerical scheme is presented and im-
plemented for this coupled nonlinear system in an axi-symmetric domain. Numerical
simulations of annihilation of a hedgehog-antihedgehog pair with different types of
transport are presented. In particular, it is shown that the stretching parameter in the
transport equation contributes to the symmetry breaking of the pair’s moving speed
during the dynamics of annihilation.

AMS subject classifications: 76T99, 76D05, 65N35
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1 Introduction

Liquid crystal is often viewed as the fourth state of the matter besides the gas, liquid
and solid, or as an intermediate state between liquid and solid. It possesses no or partial
positional order, while at the same time, displays an orientational order. To illustrate
this special orientational ordering, a (nematic) liquid crystal molecule is often pictured
as a rod whose orientation is depicted by the director field d. This nematic phase is the
simplest of liquid crystal phases and is close to the liquid phase. The molecules float
around as in a liquid phase, but have the tendency of aligning along a preferred direction
due to their orientation.
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In order to capture the coupling between the flow field and the dynamics of the di-
rector field, we will start with the following simplified system modeling the motion of
nematic phase of liquid crystal flows (cf. [1, 2]):



















∂u

∂t
+(u·∇)u−µ∇·D(u)+∇p+λ∇·(∇d⊗∇d)=0,

∇·u=0,

∂d

∂t
+(u·∇)d−γ(∆d− f (d))=0,

(1.1)

in a domain Ω∈R3 filled with liquid crystals, along with initial conditions

u(x,0)=u0; d(x,0)=d0, (1.2)

and suitable boundary conditions for u and d. In the above, u=(u,v,w)T is the flow veloc-
ity and p is the pressure; d=(d1,d2,d3)T represents the director of the molecules; µ,λ,γ are
positive constants representing, respectively, the viscosity of the flow, the coupling coef-
ficient representing the competition parameter between the kinetic energy and the elastic
energy, and the parameter of elastic relaxation time; ∇d is the Jacobian matrix with the

(j,k)-th entry to be ∂d(j)/∂xk, and ∇d⊗∇d is the Erickson stress tensor whose (j,k)-th
entry is ∂d/∂xj ·∂d/∂xk; D(u)= (∇u+(∇u)T)/2 is the symmetric part of the strain rate
tensor; σ =−pI+2µD(u) is the Newtonian part of the stress tensor. Finally, f (d)= F′(d)
where F(d) is the bulk part of the elastic energy. The choice of F(d) holds the information
on the extensibility of the molecules.

With a set of suitable boundary conditions, the solution (u,d) of the above system
satisfies the following energy identity:

d

dt

∫

Ω

1

2
|u|2+

λ

2
|∇d|2+λF(d)dx=

∫

Ω

µ|∇u|2+λγ|∆d− f (d)|2 dx. (1.3)

The elastic energy in the above system can be viewed as the relaxation as the following
Oseen-Franck energy functional for the equilibrium configuration of a unit director field
d:

E(d)=
k1

2
(∇·d)2+

k2

2
|d×(∇×d)|2+

k3

2
(d·(∇×d))2. (1.4)

In the elastically isotropic situation, i.e., k1 =k2 =k3 =k, this energy can be reduced to the
Dirichlet functional k

2 |∇d|2 plus the null-Lagrangian term which is determined by the
boundary anchoring of the director [3]. Furthermore, if we allow the director to stretch at
the expense of the bulk energy F(d), then we can take F(d) to be of the Ginzburg-Landau
type, i.e.,

F(d)=
1

4ǫ2
(|d|2−1)2

where ǫ≪1 is a penalization parameter.
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The above simplified system was first proposed by Lin [1,2]. It was motivated by the
Erickson-Leslie system describing the flow of nematic liquid crystals. The well-posedness
of the system when Ω is bounded was studied in [2]. The method was generalized to
the whole Erickson-Leslie system in [4]. The study showed that the simplified system
carried most of the mathematical difficulties of the original system, except the kinematic
transport of the director field.

In the above system, the transport of the director field due to the flow field is repre-
sented by the first two terms of the evolution equation for d. It represents the fact that
d(x,t)= d0(X) is purely transported by the flow trajectory x(X,t), where d0 is the initial
value of d, and

xt(X,t)=u(x,t), x(X,0)=X.

Here, X is the initial labeling coordinate of the particle, i.e., the Lagrangian coordinate,
while x is the Eulerian coordinate of the particle. Hence the total derivative of the director
field is given by

D

Dt
d=

d

dt
d(x(X,t),t)=dt+u·∇d.

Since d is a vector, we have to take into account its tendency to respond to the stretch-
ing in the flow field. Thus, it is natural to look at the deformation tensor F associated
with the flow field,

Fij =
∂xi

∂Xj
.

A simple application of the chain rule leads to the following transport properties for
F [5, 6]:

Ft+u·∇F =∇uF,

F−T
t +u·∇F−T =−∇TuF−T.

(1.5)

Consider first that the liquid crystal molecules are of rod-like shape with infinite aspect
ratio. Then, the transport of the direction of the rod, d, can be expressed as

d(x(X,t),t)= Fd0(X), (1.6)

where the stretching of the director besides the transport along the trajectory is clearly
taken into account. Taking the derivative with respect to t in the above and using (1.5-
1.6), we arrive at

dt+u·∇d= Ftd0+u·∇Fd0 =∇uFd0 =d·∇u.

Hence the total derivative of the director in this case becomes

D

Dt
d=dt+u·∇d−d·∇u. (1.7)

On the other hand, for molecules of ellipsoid shape with finite aspect ratio, the transport
in the main axial direction can be represented by

d(x(X,t),t)=Ed0(X),
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where E satisfies the following transport equation:

Et+u·∇E=(α∇u+(1−α)(−∇Tu))F,

where α is a positive constant between 0 and 1. In this case, we will have

D

Dt
d=dt+u·∇d−αd·∇u+(1−α)∇Tud

=dt+u·∇d−Σd−(2α−1)Ad. (1.8)

In the above, A is the symmetric part of the tensor ∇u and Σ is the skew part. The above
description of the transport of the director d is related to the Jeffery orbit of the molecules
in the surrounding flow fields, and the Johnson-Segalman transport in viscoelasticity
[3, 7]. The constant α is associated with the aspect ratio r of the ellipsoid particles (by the

formula 2α−1= r2−1
r2+1

or the slippery constant between the flow and the particle. It is clear
that when α is near 1, which corresponding to r close to infinity, the rod like particles,
then the transport is a purely covariant stretching (parallel transport in the language
of differential geometry). When α is close to 0, r is close to 0, the disc like particles,
the transport is anti-stretching. And finally, when α is close to 1/2, then r is close to 1,
the particles take the spherical shape and the transport is just the rigid rotation and the
transport of the center of the mass. In the literature of liquid crystals, it is also associated
with the alignment angle of the molecules in the shear flow situations (however in that
case, the constant α will be out of the region [0,1]) [3, 8].

Taking into account these more general transport of the liquid crystal molecules, the
system (1.1) should be modified as follows:



































∂u

∂t
+(u·∇)u−µ∇·D(u)+∇p+λ∇·(∇d⊗∇d)

−λ∇·(β(∆d− f (d))dT +(1+β)d(∆d− f (d))T)=0,

∇·u=0,

∂d

∂t
+(u·∇)d+β(∇u)d+(1+β)(∇u)Td−γ(∆d− f (d))=0,

(1.9)

where we have β =−α. This model possesses exactly the same energy dissipation law
(1.3) as the original system (1.1). However, the different kinematic transport embedded
in the system (1.9) will lead to essentially different dynamical phenomena as we will
demonstrate with numerical simulations.

More precisely, we study in this paper the annihilation of a hedgehog-antihedgehog
pair in both models (1.1) and (1.9). Such phenomena were first carefully observed by
Cladis and Brandt in [9]. It is well-known that the point defects are physically different
from line defects. In a three-dimensional domain, there is no separation of the scales of
the interaction energy between the point defects to the other bulk energy in the regular
domain. This is in contrast to the line defects cases, where there is an (logarithmical) in-
finite concentration of the elastic energy associated with these line defects.The induced
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(finite) renormalized energy can then determine the location and the motion of the line
defects. The latter phenomena have been both physically verified and mathematically
justified rigorously [10]. As to the former case, there are only heuristical/formal ar-
gument, using the formal derivation of the interaction energy [3]. However, it is still
accepted that the point defects can evolve and annihilate when the orientational configu-
ration is pushed out of equilibrium. Moreover, the relative speed between the two point
defect of opposite degree of singularities will be constant, vs the logarithmic acceleration
in the two-dimensional (or three-dimensional line defects) cases.

The experiment in [9] was conducted in a cylindrical glass capillary filled with oil. A
sufficiently large external perturbation was exerted by varying the temperature. It was
observed that when a “thick” capillary was relatively far from the characteristic tempera-
ture TNA of the smectic A phase, the hedgehog moved approximately twice as fast as the
antihedgehog; while for a “thinner” capillary close to the characteristic temperature TNA,
the antihedgehog was almost stationary even with a large initial perturbation. How-
ever, such properties are not easy to explain from the theory of harmonic map/heat flow
equations [4]. More recently, some numerical simulations on the dynamics of the direc-
tor, in the absence of the flow field and with anisotropic elastic energy, is reported in [11].
More specifically, they also observed that the hedgehog moves faster than antihedgehog.
It should be noted that the effects of elastic forces between the point defects were also
studied recently in [12, 13].

In this paper, we study the liquid crystal flow with an isotropic elastic energy. Our
main objective is to investigate the effects of the kinematic transport by the flow field
on the motion of the point defects. Such transport reflects the geometric nature of the
molecules as well as the interaction between the flow field and the liquid crystals. Al-
though the globally averaged flow velocity field is usually small, the local velocity field
can still be large due to the presence of the defect singularities, so the effects of transport
by the flow field could play a significant role in the dynamics of defect motion.

The paper is organized as follows. In Section 2, we provide the numerical algorithm
to simulation the systems. The detailed simulation results will be presented in Section 3.
Some concluding remarks are presented in Section 4.

2 Description of the numerical method

We consider a cylinder filled with liquid crystal molecules and assume that the motion
and the configuration of the liquid crystals remain to be axial-symmetric so the effective
computational domain, in the cylindrical coordinates (r,z), is D={(r,z) :0<r<R, 0<z<

H}.

Let u = (u,v,w)T, d = (d1,d2,d3)T, where u, v, w are respectively the velocity compo-
nents in the axial (r), azimuthal (θ) and vertical (z) directions and d1, d2, d3 are the director
fields with respect to (r,θ,z), respectively. In the axial-symmetric cylindrical coordinates,
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the gradient and Laplace operators for a scalar function φ(r,z) are defined by

∇̃φ=(∂rφ,0,∂zφ)T, ∇̃2φ=∂2
r φ+

1

r
∂rφ+∂2

zφ, (2.1)

while the divergence and gradient operators for a vector function u are defined by

∇̃·u := ∇̃·(u,v,w)=
1

r
(ru)r +wz, (2.2)

and

(∇̃u)T =







ur vr wr

−
v

r

u

r
0

uz vz wz






.

Thus, the Laplace operator of a vector function u is

∆̃u= ∆̃(u,v,w)T =











∇̃2u−
1

r2
u 0 0

0 ∇̃2v−
1

r2
v 0

0 0 ∇̃2w











.

Let [ f ]r, [ f ]θ and [ f ]z denote the component of f in the r, θ and z direction. On can verify
that:

∇̃·(∇̃d⊗∇̃d)=(∇̃d)T
∆̃d+ 1

2∇̃(|∇̃d|2). (2.3)

Absorbing the gradient term in the above into the pressure term by defining p̃ = p+
1
2 |∇̃d|2, we can rewrite the system (1.1) in the axial-symmetric cylindrical coordinates as:











































ut+uur−
1

r
v2+wuz =− p̃r +µ

(

∇̃2u−
1

r2
u

)

−λ[(∇̃d)T
∆̃d]r,

vt+uvr +
1

r
uv+wvz =µ

(

∇̃2v−
1

r2
v

)

−λ[(∇̃d)T
∆̃d]θ ,

wt+uwr+wwz =− p̃z+µ∇̃2w−λ[(∇̃d)T
∆̃d]z,

∇̃·u=
1

r
(ru)r +wz =0,

(2.4)

and



























d1t+ud1r−
1

r
vd2+wd1z =γ

(

∇̃2d1−
1

r2
d1−[ f (d)]r

)

,

d2t+ud2r +
1

r
vd1+wd2z =γ

(

∇̃2d2−
1

r2
d2−[ f (d)]θ

)

,

d3t+ud3r +wd3z =γ(∇̃2d3−[ f (d)]z).

(2.5)
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In order to minimize the effect of the boundary conditions on the defect motion, we
choose to use the free-slip boundary condition at both ends of the cylinder, i.e.,











u·n|z=0,H =0,

∂(u ·τ)

∂n

∣

∣

∣

∣

z=0,H

=0.
(2.6)

The mathematical analysis for liquid crystal flows with the free-slip boundary condition
can be found in [14]. We set the no-slip boundary condition at r = R for the velocity
and the homogeneous Neumann boundary condition for the director at both ends of the
cylinder and at r= R. More precisely,

u|Γ1∪Γ3
=0, ∂nu|Γ2

=0, v|∂D =0, w|Γ2∪Γ3
=0, (2.7)

d1|Γ1
=0, ∂nd1|∂D\Γ1

=0, d2|Γ1
=0, ∂nd2|∂D\Γ1

=0, ∂nd3|∂D\Γ1
=0, (2.8)

where Γ1 = {(r,z) : r = 0,0< z < H}, Γ2 = {(r,z) : 0< r < R,z = 0 or z = H}, Γ3 = {(r,z) : r =
R,0< z< H}.

We now describe our numerical approach. The time discretization is based on a semi-
implicit second-order rotational pressure-correction scheme for (2.4) (cf. [15]) and a sta-
bilized semi-implicit scheme for (2.5). To simplify the presentation, we introduce the
following notations for the nonlinear terms:

N1(u)=−

(

uur−
1

r
v2+wuz,uvr +

1

r
uv+wvz,uwr+wwz

)T

,

N2(d)=−λ((∇̃d)T
∆̃d),

N3(u,d)=−(u·∇̃)d,

N4(d)=λ∇·
(

β(∆d− f (d))dT +(1+β)d(∆d− f (d))T
)

,

N5(u,d)=−β(∇u)d−(1+β)(∇u)d.

Assuming φk is the numerical solution of φ at t=kδt when δt is the time step, (uk,pk;dk)

and (uk−1,pk−1;dk−1) are known, our time discretization scheme for (2.4) can be described
as follows:

• Find an intermediate velocity ũk+1 such that































3ũk+1−4uk+uk−1

2δt
−ν∆̃ũk+1+∇̃pk

=(2N1(uk)−N1(uk−1))+(2N2(dk)−N2(dk−1)),

ũk+1|Γ1∪Γ3
=0, ∂nũk+1|Γ2

=0, ṽk+1|∂D =0,

w̃k+1|Γ2∪Γ3
=0.

(2.10)
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• Find an auxiliary function ψk+1 such that






−∇̃2ψk+1 =
3

2δt
∇̃·ũk+1,

∂nψk+1|∂D =0,
(2.11)

• Update (pk+1,uk+1) by setting






pk+1 = pk +ψk+1−ν∇̃·ũk+1,

uk+1 = ũk+1−
2δt

3
∇̃ψk+1.

(2.12)

• Find dk+1 from


































3dk+1−4dk+dk−1

2δt
−γ∆̃dk+1 =−γ(2 f (dk)− f (dk−1)

+
s

ε2
(dk+1−2dk+dk−1))+(2N3(uk,dk)−N3(uk−1,dk−1)),

dk+1
1 |Γ1

=0, ∂ndk+1
1 |∂D\Γ1

=0,

dk+1
2 |Γ1

=0, ∂ndk+1
2 |∂D\Γ1

=0, ∂ndk+1
3 |∂D\Γ1

=0.

(2.13)

For the modified model (1.9), the only difference is that the equation (2.10) and (2.13)
should be modified as follows:







3ũk+1−4uk+uk−1

2δt
−ν∆̃ũk+1+∇̃pk

=(2N1(uk)−N1(uk−1))+(2N2(dk)−N2(dk−1))+(2N4(dk)−N4(dk−1)),

(2.14)























3dk+1−4dk+dk−1

2δt
−γ∆̃dk+1

=−γ(2 f (dk)− f (dk−1)+
s

ε2
(dk+1−2dk+dk−1))

+(2N3(uk,dk)−N3(uk−1,dk−1))+(2N5(uk,dk)−N5(uk−1,dk−1)).

(2.15)

Several remarks are in order:

• We recall that f (d) = (|d|2−1)d/ε2, so the explicit treatment of this term usually
lead to restrictions on the size of time step δt. We introduced in (2.13) an extra

dissipative term s(dk+1−2dk+dk−1)/ε2, which is of order sδt2/ε2, to improve the
stability while preserving the simplicity. The “shift parameter” s is proportional
to the amount of artificial dissipation added in the numerical scheme. Larger s will
lead to a more stable but less accurate scheme. Numerical experiments indicate that
s=2 in the Cartesian coordinates and s=5 in the cylindrical coordinates provide a
good balance between stability and accuracy.

• At each time step, one only needs to solve a sequence of Poisson-type equations.
This is to be accomplished by using the Legendre-Galerkin method (cf. [16–18]).
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3 Numerical simulation

In this section, we describe our numerical simulations using the numerical method de-
scribed in the previous section for the time variable and the Legendre-Galerkin Method
(cf. [16, 18, 19]) for the space variable. We consider a cylinder of radius R =1 and height
H = 4 filled with liquid crystals. The initial velocity u0(r,z) is set to be 0 and the initial
phase of the director field d0(r,z)=(d0

1(r,z),d0
2(r,z),d0

3(r,z)) is set to be

d0
1(r,z)= d̃1(r,z)

/

√

d̃2
1+ d̃2

3+ε2, d0
2(r,z)=0,

d0
3(r,z)= d̃3(r,z)

/

√

d̃2
1+ d̃2

3+ε2,

where














d̃1(r,z)=−
1

1+e10(2z/H−1)

2r

R
−

(

1−
1

e10(2z/H−1)

)

2r

R
,

d̃3(r,z)=−
1

1+e10(2z/H−1)
(2z/H−2c1/H)+

(

1−
1

1+e10(2z/H−1)

)

(2z/H−2c2/H),

where c1 and c2 are the initial positions (in the z directions) of the hedgehog and anti-
hedgehog.

In all numerical experiments below, we set c1 = 1.5 and c2 = 2.5 so that initially the
hedgehog and antihedgehog are placed at (r,z)=(0,1.5) and (0,2.5) respectively. We also
set ε = 0.02, ν = 1, γ = 1, s = 5. The number of grid points in the r direction ranges from
M = 128 to M = 188, while that in the z directions ranges from N = 256 to N = 332; the
time step δt ranges from 10−3 to 10−6. The values of λ and β are specified in the figure
captions.

The initial director field is shown in Fig. 1(a), and the initial contours of |d|2 is shown
in Fig. 1(b) where the two singularities are at the lowest energy points.

We are interested in the dynamics of the motion of the hedgehog-antihedgehog pair
governed by the system (1.1), and in the effects of coupling coefficient λ and shape pa-
rameter β on the annihilation speed of the defects.

(a) We start with the no-flow case, i.e., u(x,t)=0 or λ=0, In Fig. 2 is shown the snapshots
of the contours of |d|2 at different times. Fig. 3(a) shows the trajectory of the two defect
locations in time. We observe first that the speeds of two defects are exactly the same.
Furthermore, we observe from the dotted straight lines in Fig. 3(a) (see also the speeds
of the two defects in Fig. 3(b) in th time interval (2,6)) that after an initial transient time
and before the final stage where the annihilation speed is significantly accelerated, the
speeds of the two defects are essentially constant. This phenomenon is consistent with
the heuristical argument in [3] that the relative annihilation speed in three-dimensional
cases should be essentially constant.

(b) Next, we take a small coupling coefficient λ=0.01 and examine the effect of the shape
parameter β on the annihilation speed. It is observed that, for this small coupling coeffi-
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Figure 1: (a) Initial director field (b) Initial contours of |d|2.

cient λ=0.01, the speeds of the two defects are the same for all β considered, as in the no
flow case.

(c) For the last set of numerical experiments, we take a larger coupling coefficient λ=0.03
and probe the effect of shape parameter β on the annihilation speed.

• We start with β=−0.1 which represents disc like molecules and decrease gradually
to β =−0.5 which represents spherical shaped molecules. The defect locations for
two representative values β =−0.1 and β =−0.5 are shown in Fig. 4. We observed
that for this range of β, the speeds of the two defects are always the same, while the
speed decreases as β decreases.

• We gradually decrease β from −0.5 (spherical shaped molecules) to −0.9 (rod like
molecules) and observe that as soon as β <−0.5 (i.e., the shapes of the molecules
become elongated in the axial direction), the speed of the hedgehog becomes faster
than that of the antihedgehog, and that as β decreases, the ratio of the hedgehog
speed vs. the antihedgehog speed increases. In Fig. 5, we plot the speed ratio of
the hedgehog vs. the antihedgehog for β∈ [−0.9,−0.1] at half of the annihilation
time. These results indicate that the combined effects of the flow field (through
the coupling coefficient λ) and the shape parameter β can significantly impact the
defect dynamics.

• We now provide more details for the case β=−0.9 which represents rod like mole-
cules. Plotted in Fig. 6 are the snapshots of contours of |d|2 and in Fig. 7(a) are
the locations of the two defects. In Fig. 7(b), we plot the speeds of the hedgehog
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Figure 2: Snapshots of the contours of |d|2 in the no-flow case, i.e., λ=0.
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Figure 3: No-flow case: (a) locations of the two defects, (b) annihilation speed of the two defects.
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Figure 4: Locations of the hedgehog-antihedgehog defects with λ=0.03, and (Case 1) β=−0.5 and (Case 2)
β=−0.1.
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Figure 5: The ratio of the speed of the hedgehog vs. the antihedgehog at the half time of the annihilation,
vs. different β values.

and antihedgehog in the time interval (2, 5.5) which excludes the initial transient
time interval and the fast moving interval before annihilation. We observe that the
moving speed of hedgehog is roughly twice as fast as that of the antihedgehog in
the time interval (2, 5.5). We recall that it was reported in [9] that the hedgehog
moved twice as fast as the antihedgehog in an elastically anisotropic liquid crystals
without flow. In order to show the robustness of this observation with respect to
perturbations of β, we plot in Fig. 8 the defect locations with three different values
β=−0.85,−0.9,−0,95.
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Figure 6: Snapshots of the energy contours with β=−0.9, λ=0.03.
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Figure 7: β=−0.9, λ=0.03: (a) locations of the two defects, (b) moving speeds of the two defects.
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Case 3: β=−0.95.

4 Concluding remarks

We presented an energetic variational method for modeling and simulating the dynam-
ics of point defects in liquid crystal flows. The stabilized semi-implicit second-order
time-marching scheme coupled with the Legendre-Galerkin approximation in space has
proved to be efficient and accurate for this class of problems. We presented ample numer-
ical experiments to demonstrate the effects of coupling coefficient λ and the parameter β
(which is related to the molecule shape) on the dynamics of annihilation of a hedgehog-
antihedgehog pair. Our numerical experiments indicate that despite the fact that the
globally averaged flow velocity field is usually small, the flow field can dramatically af-
fect the defect dynamics, since the local field can still be large due to the presence of the
defect singularities.

More precisely, our numerical results reveal that for a smaller coupling coefficient
(i.e., negligible flow effect), the trajectories of the hedgehog and antihedgehog defects are
symmetric while for a larger coupling coefficient (i.e., significant flow effect), this symme-
try is broken. Note that this symmetry breaking was observed in [11] for liquid crystals
with anisotropic elastic energy in the absence of flow field. Our numerical simulation in-
dicates that this symmetry breaking will also occur with an isotropic elastic energy when
the flow is part of the system.

It is observed that the parameter β (which is related to the molecule shape) has a sig-
nificant impact on the relative moving speed of the two defects: for β in the range of
[−0.5,−0.1], the moving speed of the two defects remained to be essentially the same; for
β in the range of [−0.9,−0.5) (i.e., the shapes of the molecules are elongated in the axial
direction), the moving speed of the hedgehog became faster than that of the antihedge-
hog, and as β decreases, the speed ratio of the hedgehog vs. the antihedgehog increases.
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