
INTERNATIONAL JOURNAL OF c© 2008 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 5, Number 1, Pages 24–39

A UNIFORMLY CONVERGENT METHOD ON ARBITRARY
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Abstract. This paper deals with a uniform (in a perturbation parameter)

convergent difference scheme for solving a nonlinear singularly perturbed two-

point boundary value problem with discontinuous data of a convection-diffusion

type. Construction of the difference scheme is based on locally exact schemes

or on local Green’s functions. Uniform convergence with first order of the pro-

posed difference scheme on arbitrary meshes is proven. A monotone iterative

method, which is based on the method of upper and lower solutions, is ap-

plied to computing the nonlinear difference scheme. Numerical experiments

are presented.
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1. Introduction

We are interested in the semilinear two-point boundary-value problem with a
convective dominated term and discontinuous data

(1) −εu
′′

+ b(x)u
′
+ c(x, u) + f(x) = 0, x ∈ ω = (0, 1),

u(0) = 0, u(1) = 0, b(x) ≥ b∗ = const > 0, cu ≥ 0, (cu ≡ ∂c/∂u),
where ε is a small positive parameter. Suppose that the function c is sufficiently
smooth and b, f are piecewise smooth functions, i.e.

b(x), f(x) ∈ Qn
p (ω), n ≥ 0.

We say that v(x) ∈ Qn
p (ω) if it is defined on ω and has derivatives up to order n, the

function itself and its derivatives may only have jump discontinuities at a finite set
of points p = {p1, . . . , pJ}, 0 < pj < pj+1, j = 1, . . . , J − 1, i.e. Qn

p (ω) = Cn(ω\p).
The solution to (1) is a function with a continuous first derivative, which satisfies

the boundary conditions and the equation everywhere, with the exception of the
points in p. The problem (1) has a unique solution [9]

u(x) ∈ C1(ω) ∩Qn+2
p (ω).

Linear versions of problem (1) with discontinuous data are investigated in [2], [5].
The solution of the linear problem possesses a strong boundary layer at x = 1 and
weak interior layers at the points of discontinuity p. The boundary layer is strong
in the sense that the solution is bounded, but the magnitude of its first derivative
at x = 1, grows unboundedly as ε → 0. The interior layers at p are weak: i.e.
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the solution and the first derivative are bounded but the magnitude of the second
derivative grows unboundedly as ε → 0. We show (see Lemma 1) that problem (1)
possesses a strong boundary layer at x = 1 and the solution and the first derivative
are bounded at the points of discontinuity p.

Our goal is to construct an ε-uniform numerical method for solving problem
(1), that is, a numerical method which generates ε-uniformly convergent numerical
approximations to the solution. In [2], [5], for solving the linear version of problem
(1), the uniform numerical methods are constructed by using the integral-difference
method (or the method of locally exact schemes) on arbitrary nonuniform meshes
[2], and by using the standard upwind finite difference method on the piecewise
uniform mesh, which is fitted to boundary and interior layers [5].

In the next section, we establish some a priori estimates of the solution and its
first derivative. In Section 3 we construct a numerical method by applying the
integral-difference approach. Note that in the constructed numerical method, a
difference operator corresponding to the linear differential operator −εd2/dx2 +
bd/dx is equivalent to the upwind finite volume method from [6], [10]. In Section 4
we prove uniform convergence of the numerical method on arbitrary nonuniform
meshes by extending in a natural way the proof of the main theoretical result from
[3] (the difference scheme in the case of problem (1) with smooth data converges
ε-uniformly). In Section 5 we construct a monotone iterative method for solving
the nonlinear difference scheme and prove that the iterates converge ε-uniformly
to the solution of problem (1). In the last section numerical results are presented,
which are in agreement with the theoretical results.

2. Properties of the continuous problem

The following lemma contains a priori estimates of the solution to problem (1).

Lemma 1. If b(x), f(x) ∈ Qn
p (ω), n ≥ 0, then a unique solution to (1) exists and

u(x) ∈ C1(ω) ∩Qn+2
p (ω). The solution u(x) satisfies the following estimates:

∣∣∣∣
dku(x)

dxk

∣∣∣∣ ≤ C

[
1 + ε−k exp

(
−b∗(1− x)

ε

)]
, x ∈ ω, k = 0, 1,

here and throughout the paper, C denotes a generic positive constant independent
of ε.

Proof. The result that problem (1) with the piecewise smooth functions b and f
has a unique solution can be found in [9].

Firstly, we estimate the solution u(x) to (1). The transformation u(x) = eγxw(x)
with a positive constant γ yields the equation and the boundary conditions

−εw
′′

+ b̃(x)w
′
+ c̃(x,w) + e−γxf = 0, w(0) = w(1) = 0,

b̃ = b− 2εγ, c̃(x,w) = e−γxc(x, eγxw) + (bγ − εγ2)w.

If we choose γ = b∗/4 and assume that ε ≤ 1, then

b̃(x) ≥ b̃∗ = b∗/2, c̃w ≥ c̃∗ = (3/16)b2
∗.

If w(x) is the exact solution of the above problem, then by the mean-value theorem,
we can represent c̃(x,w) in the form

c̃(x,w) = c̃(x, 0) + c̃w(x)w(x),

where c̃w(x) = c̃w (x, θ(x)w(x)) , 0 < θ(x) < 1. Assuming that c̃w(x) is given as a
function of x, then the solution w(x) may be considered as a solution of the linear
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problem

(2) L̃εw ≡ −εw
′′

+ b̃(x)w
′
+ c̃w(x)w = −f̃(x), x ∈ ω = (0, 1),

w(0) = w(1) = 0, f̃ = c̃(x, 0) + e−γxf, b̃ ≥ b̃∗ > 0, c̃w ≥ c̃∗ > 0.

We now prove that the maximum principle for the differential operator L̃ε with
the piecewise smooth coefficients holds true: if w(x) ∈ C1(ω)∩Qn+2

p (ω) and satisfies
L̃εw(x) ≥ 0, x ∈ ω, w(0), w(1) ≥ 0, then w(x) ≥ 0, x ∈ ω. Suppose to the contrary
that there is a point x∗ where w(x∗) < 0. If x∗ /∈ p, where p is the set of the points
of discontinuity then from w

′
(x∗) = 0 and w

′′
(x∗) ≥ 0, it follows that L̃εw(x∗) < 0,

so we get the contradiction with our assumption. Now suppose that x∗ ∈ p. Since
w
′
(x) is a continuous function then w

′
(x∗) = 0 and w

′
(x) ≤ 0 in some small vicinity

[x∗ − δ, x∗], δ > 0. In general, w
′′
(x) has a jump point at x∗, but on the interval

[x∗−δ, x∗), it is a continuous function. Now, if δ is small enough, then b̃, c̃w and f̃ are
continuous functions and w

′′
(x) does not change a sign in this interval. Representing

w
′
(x) in the form w

′
(x) = − ∫ x∗−0

x
w
′′
(s)ds, we conclude that w′′(x) ≤ 0, x ∈

[x∗ − δ, x∗). Hence, L̃εw(x) < 0, x ∈ [x∗ − δ, x∗), that contradicts our assumption.
The uniform estimate on the solution w(x) of problem (2) is derived by applying
the maximum principle to the functions −maxx∈ω |f̃(x)|/c̃∗ ± w(x). Taking into
account that u(x) = exp(γx)w(x), we prove the uniform estimate on u(x).

We now prove the estimate on u
′
(x). Representing the differential equation from

(1) in the linear form (2)

−εu
′′

+ b(x)u
′
+ cu(x)u + f̂(x) = 0, f̂(x) = c(x, 0) + f(x),

we can prove the estimate on u
′
(x) in the same way as in [2]. ¤

Consider the problem

(3) −εv
′′
(x) + b̄(x)v

′
(x) + c(x, v) + f̄(x) = 0, x ∈ ω = (0, 1),

v(0) = 0, v(1) = 0, b̄(x) ≥ b∗,
where c and b∗ are defined in (1).

Lemma 2. In (1), (3), let b(x), b̄(x), f(x), f̄(x) ∈ Qn
p (ω), n ≥ 0. Then for z(x) =

u(x)− v(x) the following estimate holds:

max
x∈ω

|z(x)| ≤ C

(
sup
x∈ω

|b(x)− b̄(x)|+ sup
x∈ω

|f(x)− f̄(x)|
)

,

where u(x), v(x) are the solutions to (1) and (3), respectively, a constant C is
independent of ε.

Proof. Introduce Green’s function of the differential operator Lb
ε = −εd2/dx2 +

bd/dx:

G(x, s) =
1

−εw(s)

{
ϕII(x)ϕI(s), 0 ≤ x ≤ s ≤ 1,
ϕII(s)ϕI(x), 0 ≤ s ≤ x ≤ 1,

ϕI(x) = l(x)/l(0), ϕII(x) = 1− ϕI(x), l(x) =
∫ 1

x

e(s)ds,

e(s) = exp
(
−ε−1

∫ 1

s

b(τ)dτ

)
, w(s) = −e(s)/l(0).

The functions ϕI(x), ϕII(x) are the solutions of the problems

Lb
εϕ

I,II = 0, x ∈ ω, ϕI(0) = ϕII(1) = 1, ϕI(1) = ϕII(0) = 0.

From the definition of G(x, s), one can conclude that G(x, s) ≥ 0.
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Now we prove the uniform in the small parameter estimate

(4) max
x∈ω

∫ 1

0

G(x, s)ds ≤ C.

Using the explicit formula for G(x, s), we get
∫ 1

0

G(x, s)ds =
1
ε

∫ x

0

l(x)(l(0)− l(s))
l(0)e(s)

ds +

1
ε

∫ 1

x

(l(0)− l(x))l(s)
l(0)e(s)

ds.

From here, it follows that
∫ 1

0

G(x, s)ds ≤ 2
ε

∫ 1

0

l(0)− l(s)
e(s)

ds =
2
ε

∫ 1

0

g(s)ds,

g(s) = exp
(

ε−1

∫ 1

s

b(t)dt

) ∫ s

0

exp
(
−ε−1

∫ 1

y

b(t)dt

)
dy.

The function g(s) is the solution of the initial value problem

g
′
(s) = −b(s)

ε
g(s) + 1, g(0) = 0.

From the maximum principle for this initial value problem, we obtain the estimate

max
s∈ω

|g(s)| ≤ ε/b∗.

From here, we conclude (4) with C = 2/b∗.
From (1), (3) and using the mean-value theorem, it follows that z(x) = u(x) −

v(x) is the solution of the following problem

Lεz(x) ≡ −εz
′′
(x) + bz

′
(x) + cuz(x) = −(b− b̄)v

′
(x)− (f − f̄), x ∈ ω,

z(0) = 0, z(1) = 0.

Let z∗(x) be the solution of the problem

Lεz
∗(x) = |(b− b̄)v

′
(x)|+ |f(x)− f̄(x)|, x ∈ ω, z∗(0) = z∗(1) = 0.

From the maximum principle, the following inequality holds

|z(x)| ≤ z∗(x), x ∈ ω.

Now using Green’s function G(x, s) of the differential operator Lb
ε, we write down

z∗(x) in the form

z∗(x) = −
∫ 1

0

G(x, s)cu(s)z∗(s)ds +
∫ 1

0

G(x, s)
(
|(b− b̄)v

′
(s)|+ |f(s)− f̄(s)|

)
ds.

Since G(x, s) ≥ 0, z∗(x) ≥ 0 and cu(x) > 0, it follows that

z∗(x) ≤
∫ 1

0

G(x, s)
(
|(b− b̄)v

′
(s)|+ |f(s)− f̄(s)|

)
ds.

From here, (4), Lemma 1 applied to (3), and taking into account that

ε−1

∫ 1

0

exp
(−ε−1b∗(1− x)

)
dx = b−1

∗ (1− exp
(
ε−1b∗

) ≤ 2b−1
∗ ,

we prove Lemma 2. ¤



28 BOGLAEV AND PACK

3. Construction of difference scheme

On ω, introduce a nonuniform mesh

ωh = {0 = x0 < x1 < . . . < xN−1 < xN = 1, hi = xi+1 − xi} , p ⊂ ωh,

where we assume that the points of discontinuity of the functions b(x) and f(x)
belong to ωh.

On ω, introduce the piecewise-constant functions

b̄(x) = b(xi + 0), f̄(x) = f(xi + 0), xi ≤ x ≤ xi+1,

xi ∈ ωh, i = 0, . . . , N − 1, f(xi ± 0) = lim
x→xi±0

f(x).

We now apply the integral-difference method from [2] to the problem

(5) −εv
′′
(x) + b̄(x)v

′
(x) + c(x, v) + f̄(x) = 0, x ∈ ω,

v(0) = 0, v(1) = 0,

where the functions b̄ and f̄ are defined above and the function c from (1). Let Gi

be Green’s function of the differential operator −εd2/dx2 + b̄(xi)d/dx on [xi, xi+1].
We represent the exact solution of the problem (5) on [xi, xi+1] in the form

vi (x) = v (xi)ϕI
i (x) + v (xi+1)ϕII

i (x) +

xi+1∫

xi

Gi(x, s)ψi (s) ds,

ψi(x) ≡ −c(x, v)− f̄(x), x ∈ [xi, xi+1],
where the local Green function Gi is given by

Gi(x, s) =
1

−εwi(s)

{
ϕI

i (s)ϕ
II
i (x), x ≤ s;

ϕI
i (x)ϕII

i (s), x ≥ s,

wi(s) = ϕII
i (s)

[
ϕI

i (x)
]′
x=s

− ϕI
i (s)

[
ϕII

i (x)
]′
x=s

,

and ϕI
i (x), ϕII

i (x) are defined by

ϕI
i (x) =

1− exp (−bi(xi+1 − x)/ε)
1− exp (−bihi/ε)

, ϕII
i (x) = 1− ϕI

i (x), xi ≤ x ≤ xi+1,

where bi = b(xi +0). Equating the derivatives dvi−1(xi− 0)/dx and dvi(xi +0)/dx
calculated on the intervals [xi−1, xi] and [xi, xi+1], respectively, we get the following
integral-difference scheme

(6) Bi(vi+1 − vi)−Ai(vi − vi−1) = Ψi [ψi−1, ψi] , i = 1, . . . , N − 1,

v0 = vN = 0,

Ai = − bi−1

1− exp (−bi−1hi−1/ε)
, Bi = exp (−bihi/ε) Ai+1,

Ψi [ψi−1, ψi] = − Ai

bi−1

∫ xi

xi−1

[
1− exp

(
−bi−1(s− xi−1)

ε

)]
ψi−1(s)ds−

Bi

bi

∫ xi+1

xi

[
exp

(
bi(xi+1 − s)

ε

)
− 1

]
ψi(s)ds.

Now we approximate c(s, v) on [xi−1, xi+1] by the value at xi. Doing this, we obtain
the following nonlinear difference scheme

(7) Bi(Vi+1 − Vi)−Ai(Vi − Vi−1) = −Dic (xi, Vi)−
(
D

(l)
i fi−1 + D

(r)
i fi

)
,

i = 1, . . . , N − 1, V0 = VN = 0, Di = Ψi[1, 1], fi = f(xi + 0),
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Di = D
(l)
i + D

(r)
i , D

(l)
i =

|Ai|hi−1

bi−1
− ε

bi−1
> 0, D

(r)
i =

ε

bi
− |Bi|hi

bi
> 0.

We mention here that the coefficients of the difference scheme satisfy the inequalities
Ai < 0, Bi < 0 and Di > 0.

With the above assumptions on the data of the problem (5), the nonlinear prob-
lem (7) has a unique solution [7]. Under the assumption c∗ ≥ cu ≥ c∗ > 0, where
c∗, c∗ are constants, this result will be proved in Section 5.

Remark 1. The linear part of the nonlinear difference operator from (7) corre-
sponding to the linear differential operator −εd2/dx2 + b̄d/dx can be represented in
the equivalent form

Bi(Vi+1 − Vi)−Ai(Vi − Vi−1) = −ε

(
Vi+1 − Vi

hi
− Vi − Vi−1

hi−1

)
+

ρ

(
bihi

ε

)
bi (Vi+1 − Vi) +

ρ

(
−bi−1hi−1

ε

)
bi−1 (Vi − Vi−1) ,

where

ρ(ζ) =
1
ζ

(
1− ζ

exp(ζ)− 1

)
.

This difference operator is equivalent to the upwind finite volume method from [6],
[10], where the weighting function ρ(ζ) is denoted by ρI(ζ). We mention here that
the difference operator satisfies the maximum principle.

4. Uniform convergence of the difference scheme (7)

In the following lemma, we estimate a solution of the linear difference problem

(8) Bi (Wi+1 −Wi)−Ai (Wi −Wi−1) = Ti, 1 ≤ i ≤ N − 1, W0 = WN = 0,

where Ai and Bi from (7).

Lemma 3. For the linear difference problem (8), the following estimate holds true

(9) |Wi| ≤ 1
b∗

N−1∑

j=1

|Tj |, 1 ≤ i ≤ N − 1,

where b∗ defined in (1).

Proof. First of all, we transform the difference problem (8) to a self-adjoint form
[8]. We multiply each equation in (8) by Pi 6= 0 and require that AiPi = ai and
BiPi = ai+1. From here, one can conclude that Ai+1Pi+1 = BiPi = ai+1, i.e.

Pi+1 =
Bi

Ai+1
Pi = P1

i∏

k=1

Bk

Ak+1
.

Using the relation Bk = exp (−bkhk/ε)Ak+1 from (6) and choosing P1 = 1, we get

Pi+1 =
i∏

k=1

exp
(
−bkhk

ε

)
.

From here and taking into account that ai+1 = Ai+1Pi+1, the difference problem
(8) is transformed to the self-adjoint form

(10) ai+1(Wi+1 −Wi)− ai(Wi −Wi−1) = TiPi, 1 ≤ i ≤ N − 1,
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W0 = WN = 0, ai+1 =
(
− bi

1− exp(−bihi/ε)

) i∏

k=1

exp
(
−bkhk

ε

)
,

where a1 = A1. Representing the right hand side in the form

TiPi = Ri −Ri+1, Ri =
N−1∑

k=i

TkPk, 1 ≤ i ≤ N − 1, RN = 0,

we obtain

aj+1(Wj+1 −Wj) + Rj+1 = aj(Wj −Wj−1) + Rj = K, 1 ≤ j ≤ N − 1,

where K is a constant which will be determined below. Thus,

Wj = Wj−1 +
K −Rj

aj
.

Summing these expressions from j = 1 to j = i, we get

Wi = W0 + K

i∑

j=1

1
aj
−

i∑

j=1

Rj

aj
.

From here and taking into account that W0 = WN = 0, one can conclude that

K =




N∑

j=1

Rj

aj







N∑

j=1

1
aj



−1

.

We can represent Wi in the form

Wi = −(1− θi)
i∑

j=1

Rj

aj
+ θi

N∑

j=i+1

Rj

aj
, 1 ≤ i ≤ N − 1,

where

θi =




i∑

j=1

1
aj







N∑

j=1

1
aj



−1

, 0 < θi < 1.

Thus,

|Wi| ≤ (1− θi)
N∑

j=1

|Rj |
|aj | + θi

N∑

j=i+1

|Rj |
|aj | ≤

N−1∑

j=1

|Rj |
|aj | ,

where we take into account that RN = 0. Now we estimate

Q =
N−1∑

j=1

|Rj |
|aj | =

N−1∑

j=1

1
|aj |




N−1∑

k=j

|Tk|Pk


 .

Changing the order of summation, write down Q as

Q =
N−1∑

j=1

|Tj |Pj

(
j∑

k=1

1
|ak|

)
.

Representing |ai+1| in the form

|ai+1| = bi

P−1
i+1 − P−1

i

, 1 ≤ i ≤ N − 1, |a1| = −A1,
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and using the assumption on b from (1), we estimate
j∑

k=1

1
|ak| =

1
|a1| +

j−1∑

k=2

P−1
k+1 − P−1

k

bk
≤ 1

b∗Pj
.

Thus,

Q ≤ 1
b∗

N−1∑

j=1

|Tj |,

and we prove the lemma. ¤

Theorem 1. The nonlinear difference scheme (7) on arbitrary meshes converges
ε-uniformly to the solution of problem (1) :

max
0≤i≤N

|u(xi)− Vi| ≤ Ch, h = max
0≤i≤N−1

hi.

Proof. From Lemma 2 and the construction of the functions b̄ and f̄ in (5), we
conclude the estimate

(11) max
x∈ω

|u(x)− v(x)| ≤ Ch,

where u and v are the solutions to (1) and (5), respectively.
We now estimate the error {Zi = v(xi)−Vi, 0 ≤ i ≤ N} in the approximation of

the continuous solution of the problem (5) by the nonlinear difference scheme (7).
From (5) and (7) by the mean-value theorem, we conclude that the error function
{Zi, 0 ≤ i ≤ N} solves the following difference problem

(12) Bi (Zi+1 − Zi)−Ai (Zi − Zi−1) + DicuZi = Ψi[δi−1, δi], 1 ≤ i ≤ N − 1,

Z0 = ZN = 0,

where

δi−1(s) =
∫ xi

s

dc

dx
dx, s ∈ [xi−1, xi], δi(s) = −

∫ s

xi

dc

dx
dx, s ∈ [xi, xi+1],

and the functional Ψi is defined in (6).
Let wi(s) ≥ 0, s ∈ [xi, xi+1], 0 ≤ i ≤ N − 1. From (6), we can represent

Ψi[wi−1, wi] in the form

Ψi =
1

1− exp (−bi−1hi−1/ε)

∫ xi

xi−1

[1− exp (−bi−1(s− xi−1)/ε)] wi−1(s)ds +

1
exp (bihi/ε)− 1

∫ xi+1

xi

[exp (bi(xi+1 − s)/ε)− 1] wi(s)ds.

Taking into account the inequalities

1− exp (−bi−1(s− xi−1)/ε) ≤ 1− exp (−bi−1hi−1/ε) , s ∈ [xi−1, xi],

exp (bi(xi+1 − s)/ε)− 1 ≤ exp (bihi/ε)− 1, s ∈ [xi, xi+1],

we prove that

0 ≤ Ψi[wi−1, wi] ≤
∫ xi

xi−1

wi−1(s)ds +
∫ xi+1

xi

wi(s)ds, 1 ≤ i ≤ N − 1.

From here, Lemma 1 applied to (5), we obtain the estimate of the right-hand side
from (12) in the form

(13) |Ψi[δi−1, δi+1]| ≤ Ti, 1 ≤ i ≤ N − 1,
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Ti = C

∫ xi+1

xi−1

h

[
1 +

1
ε

exp
(
−b∗(1− s)

ε

)]
ds.

Using the maximum principle for the difference operator in (8) and Lemma 3, the
solution of problem (8) with the above right-hand side is estimated as

0 ≤ Wi ≤ 1
b∗

N−1∑

j=1

Tk ≤ C

N−1∑

j=1

∫ xi+1

xi−1

h

[
1 +

1
ε

exp
(
−b∗(1− s)

ε

)]
ds.

Thus,
0 ≤ Wi ≤ Ch, 1 ≤ i ≤ N − 1.

We now show that

(14) |Zi| ≤ Wi ≤ Ch, 0 ≤ i ≤ N,

where {Zi, 0 ≤ i ≤ N} is the solution to (12) and {Wi, 0 ≤ i ≤ N} is the solution
to (8) with the right-hand side from (13). {Wi, 0 ≤ i ≤ N} satisfies the difference
problem

Bi (Wi+1 −Wi)−Ai (Wi −Wi−1) + DicuWi = Ti + DicuWi, 1 ≤ i ≤ N − 1,

W0 = WN = 0,

where cu from (12). Taking into account that Di > 0, cu ≥ 0, Wi ≥ 0 and
|Ψi[δi−1, δi]| ≤ Ti, 1 ≤ i ≤ N − 1, by the maximum principle for the difference
operator in (12) we conclude (14). The theorem now follows from (11) and (14).
¤

5. Monotone iterative method

In this section, we construct an iterative method for solving the nonlinear differ-
ence scheme (7) which possesses the monotone convergence. This method is based
on the approach from [1].

Additionally, we assume that c(x, u) from (1) satisfies the two-sided constraint

(15) 0 < c∗ ≤ cu ≤ c∗, c∗, c∗ = const.

We mention that the assumption cu ≥ c∗ can always be achieved by a transforma-
tion u = ũ exp(γx), with γ chosen appropriately.

Introduce the linear version of (7)

(16)
(Lh + c

)
W (x) = −F (x), x ∈ ωh, W (0) = w0, W (1) = w1,

c(x) ≥ c0 = const > 0, x ∈ ωh, F (xi) =
(
D

(l)
i fi−1 + D

(r)
i fi

)
/Di,

LhW (xi) ≡ [Bi(Wi+1 −Wi)−Ai(Wi −Wi−1)] /Di.

Now we formulate the maximum principle for the difference operator Lh + c and
give an estimate of the solution to (16).

Lemma 4. (i) If W (x) satisfies the conditions
(Lh + c

)
W (x) ≥ 0(≤ 0), x ∈ ωh, W (0),W (1) ≥ 0(≤ 0),

then W (x) ≥ 0(≤ 0), x ∈ ωh.
(ii) The following estimate of the solution to (16) holds true

(17) ‖W‖ωh ≤ max [|W (0)|, |W (1)|, ‖f‖ωh /c0] ,

where
‖W‖ωh ≡ max

x∈ωh
|W (x)|, ‖f‖ωh ≡ max

x∈ωh
|f(x + 0)|.
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Proof. Taking into account that Di = D
(l)
i + D

(r)
i , we conclude

(18) ‖F‖ωh ≤ ‖f‖ωh .

Now, the proof of the lemma can be found in [8]. ¤
The iterative method is constructed in the following way. Choose an initial

mesh function V (0) satisfying the boundary conditions V (0)(0) = V (0)(1) = 0. The
iterative sequence {V (n)}, n ≥ 1, is defined by the recurrence formulae

(19)
(Lh + c∗

)
Z(n)(x) = −Rh

(
x, V (n−1)

)
, x ∈ ωh,

Z(n)(0) = Z(n)(1) = 0,

V (n)(x) = V (n−1)(x) + Z(n)(x), x ∈ ωh.

Rh
(
x, V (n−1)

)
≡ LhV (n−1)(x) + c

(
x, V (n−1)

)
+ F (x),

where Lh and F are defined in (16) and Rh
(
x, V (n−1)

)
is the residual of the dif-

ference scheme (7) on V (n−1).
We say that V (x) is an upper solution of (7) if it satisfies the inequalities

LhV (x) + c(x, V ) + F (x) ≥ 0, x ∈ ωh, V (x) ≥ 0, x = 0, 1.

Similarly, V (x) is called a lower solution if it satisfies the reversed inequalities.
Upper and lower solutions satisfy the inequality

V (x) ≤ V (x), x ∈ ωh.

Indeed, by the definition of lower and upper solutions and the mean-value theorem,
for δV = V − V we have

LhδV + cu(x)δV (x) ≥ 0, x ∈ ωh, δV (x) ≥ 0, x = 0, 1,

where cu(x) ≡ cu [x, V (x) + ϑ(x)δV (x)] , 0 < ϑ(x) < 1. In view of the maximum
principle in Lemma 4, we conclude the required inequality.

The following theorem gives the monotone property of the iterative method (19).

Theorem 2. Let V
(0)

, V (0) be upper and lower solutions of (7), and let c(x, u)
satisfy (15). Then the upper sequence {V (n)} generated by (19) converges mono-
tonically from above to the unique solution V of (7), the lower sequence {V (n)}
generated by (19) converges monotonically from below to V :

V (0) ≤ V (n) ≤ V (n+1) ≤ V ≤ V
(n+1) ≤ V

(n) ≤ V
(0)

, on ωh,

and the sequences converge at the linear rate q = 1− c∗/c∗.

Proof. We consider only the case of the upper sequence. If V
(0)

is an upper solution,
then from (19) we conclude that

(Lh + c∗
)
Z(1)(x) ≤ 0, x ∈ ωh, Z(1)(0) = Z(1)(1) = 0.

From Lemma 4, by the maximum principle for the difference operator Lh + c∗, it
follows that Z(1)(x) ≤ 0, x ∈ ωh. Using the mean-value theorem and the equation
for Z(1), we represent Rh

(
x, V (1)

)
in the form

(20) Rh
(
x, V (1)

)
= −(c∗ − c(1)

u (x))Z(1)(x), x ∈ ωh,

where c
(1)
u (x) ≡ cu[x, V

(0)
(x) + ϑ(1)(x)Z(1)(x)], 0 < ϑ(1)(x) < 1. Since the mesh

function Z(1) is non-positive on ωh and taking into account (15), we conclude
that V

(1)
is an upper solution. By induction we obtain that Z(n)(x) ≤ 0, x ∈ ωh,
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n = 1, 2, . . ., and prove that {V (n)} is a monotonically decreasing sequence of upper
solutions.

We now prove that the monotone sequence {V (n)} converges to the solution of
(7). Similar to (20), we obtain

Rh(x, V
(n)

) = −(c∗ − c(n)
u (x))Z(n)(x), x ∈ ωh,

and from (19), it follows that Z(n+1) satisfies the difference equation
(Lh + c∗

)
Z(n+1)(x) = (c∗ − c(n)

u (x))Z(n)(x), x ∈ ωh.

Using (15) and (17), we have

(21) ‖Z(n+1)‖ωh ≤ qn‖Z(1)‖ωh .

This proves convergence of the upper sequence at the linear rate q. Now by linearity
of the operator Lh and the continuity of c, we have also from (19) that the mesh
function V defined by

V (x) = lim
n→∞

V
(n)

(x), x ∈ ωh,

is an exact solution to (7). The uniqueness of the solution to (7) follows from
estimate (17). Indeed, if by contradiction, we assume that there exist two solutions
V1 and V2 to (7), then by the mean-value theorem, the difference δV = V1 − V2

satisfies the difference problem

LhδV + cuδV = 0, x ∈ ωh, δV (0) = δV (1) = 0.

By (17), δV = 0 which leads to the uniqueness of the solution to (7). This proves
the theorem. ¤

Remark 2. Consider the following approach for constructing initial upper and
lower solutions V

(0)
and V (0). Suppose that a mesh function T (x) is defined on

ωh and satisfies the boundary condition T (0) = T (1) = 0. Introduce the difference
problems

(22)
(Lh + c∗

)
Z(0)

ν = ν|Rh(x, T )|, x ∈ ωh,

Z(0)
ν (0) = Z(0)

ν (1) = 0, ν = 1,−1,

where c∗ from (15). Then the functions V
(0)

= T +Z
(0)
1 , V (0) = T +Z

(0)
−1 are upper

and lower solutions, respectively. We check only that V
(0)

is an upper solution.
From the maximum principle in Lemma 4, it follows that Z

(0)
1 ≥ 0 on ωh. Now

using the difference equation for Z
(0)
1 and the mean-value theorem, we have

Rh
(
x, V

(0)
)

= Rh(x, T ) + |Rh(x, T )|+
(
c(0)
u − c∗

)
Z

(0)
1 .

Since c
(0)
u ≥ c∗ and Z

(0)
1 is nonnegative, we conclude that V

(0)
is an upper solution.

Remark 3. Since the initial iteration in method (19) is either an upper or lower
solution, which can be constructed directly from the difference equation without any
knowledge of the solution as we have suggested in the previous remark, this algorithm
eliminates the search for the initial iteration as is often needed in Newton’s method.
This gives a practical advantage in the computation of numerical solutions.



A UNIFORMLY CONVERGENT METHOD 35

Let the initial function V (0) be chosen in the form of (22) with T (x) = 0, i.e.
V (0) is the solution of the difference problem

(23)
(Lh + c∗

)
V (0) = ν |c(x, 0) + F (x)| , x ∈ ωh,

V (0)(0) = V (0)(1) = 0, ν = 1,−1.

Then the functions V
(0)

(x), V (0)(x) corresponding to ν = 1 and ν = −1 are upper
and lower solutions, respectively.

Theorem 3. If the initial upper or lower solution V (0) is chosen in the form of
(23), then the monotone iterative method (19) converges ε-uniformly to the solution
of problem (1):

∥∥∥V (n) − u
∥∥∥

ωh
≤ Ch +

c0 (q)n

(1− q)
(‖c(x, 0)‖ωh + ‖f‖ωh) ,

q = 1− c∗
c∗

< 1, c0 =
3c∗ + c∗

c∗c∗
,

where constant C is independent of ε and h.

Proof. Using (21), we have

∥∥∥V (n+k) − V (n)
∥∥∥

ωh
≤

n+k−1∑

i=n

∥∥∥V (i+1) − V (i)
∥∥∥

ωh
=

n+k−1∑

i=n

∥∥∥Z(i+1)
∥∥∥

ωh

≤ q

1− q

∥∥∥Z(n)
∥∥∥

ωh
≤ (q)n

1− q

∥∥∥Z(1)
∥∥∥

ωh
.

Taking into account that lim V (n+k) = V as k →∞, where V is the solution to (7),
we conclude the estimate

(24)
∥∥∥V (n) − V

∥∥∥
ωh
≤ (q)n

1− q

∥∥∥Z(1)
∥∥∥

ωh
.

From (18), (19), (23), the definition of Rh in (19) and the mean-value theorem
∥∥∥Z(1)

∥∥∥
ωh

≤ 1
c∗

∥∥∥LhV (0)
∥∥∥

ωh
+

1
c∗

∥∥∥c(x, V (0))
∥∥∥

ωh
+

1
c∗
‖f‖ωh

≤ 1
c∗

(
c∗

∥∥∥V (0)
∥∥∥

ωh
+ ‖c(x, 0)‖ωh + ‖f‖ωh

)
+

1
c∗
‖c(x, 0)‖ωh +

∥∥∥V (0)
∥∥∥

ωh
+

1
c∗
‖f‖ωh .

From here and estimating V (0) from (23) by (17) and (18),
∥∥∥V (0)

∥∥∥
ωh
≤ 1

c∗
‖c(x, 0)‖ωh +

1
c∗
‖f‖ωh ,

we conclude the estimate on Z(1) in the form
∥∥∥Z(1)

∥∥∥
ωh
≤ c0 (‖c(x, 0)‖ωh + ‖f‖ωh) ,

where c0 is defined in the theorem. Thus, from here, (24) and Theorem 1, we prove
the theorem. ¤
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6. Numerical experiments

We solve the nonlinear difference scheme (7) on uniform meshes by the monotone
iterative method (19). The stopping criterion is

max
x∈ωh

|V (n)(x)− V (n−1)(x)| ≤ σ,

where σ is the required accuracy. If at step n = n∗ we satisfy the stopping criterion,
then V (x) = V (n∗)(x), x ∈ ωh, where V (x) is the corresponding numerical solution.

In the absence of an exact solution for test problems, for fixed value of ε, the
nonlinear difference scheme (7) with N = 8192 is solved by the monotone iterative
method (19) with the stopping criterion σ = 10−5. This generates a reference
solution Vref (x).

The basic feature of monotone convergence of the upper and lower sequences is
observed in all the numerical experiments. In fact, the monotone property of the
sequences holds at every mesh point in the domain. Of course, this is expected
from the analytical considerations.

Test problem 1. Consider the following test problem:

−εu
′′

+ b(x)u
′
+ c(x, u) + f(x) = 0, u(0) = 1, u(1) = 1,

c(x, u) = 1− exp(−u),

b(x) = 1, f(x) =
{

1, x ≤ 0.5,
−0.5, x > 0.5.

It is easily seen that

(25) V
(0)

(x) = 1, V (0)(x) = 0, x ∈ ωh,

are upper and lower solutions to (7). From Theorem 2, we conclude that

(26) c∗ = min
0≤u≤1

cu = e−1, c∗ = max
0≤u≤1

cu = 1,

where c∗ and c∗ are defined in (15). In our numerical experiments, the upper
solution V

(0)
(x) = 1, x ∈ ωh is used as an initial iteration.

N\ε 0.1 0.01 0.001 ≤ 0.0001

32 2.52× 10−3 5.04× 10−3 5.32× 10−3 5.33× 10−3

64 1.23× 10−3 2.49× 10−3 2.64× 10−3 2.65× 10−3

128 6.07× 10−4 1.23× 10−3 1.31× 10−3 1.31× 10−3

256 2.97× 10−4 6.03× 10−4 6.42× 10−4 6.45× 10−4

512 1.44× 10−4 2.91× 10−4 3.10× 10−4 3.12× 10−4

1024 6.70× 10−5 1.36× 10−4 1.45× 10−4 1.46× 10−4

2048 2.87× 10−5 5.82× 10−5 6.20× 10−5 6.24× 10−5

Table 1. Maximal approximate error EN,ε for the monotone it-
erative method (19) applied to the test problem 1.

In Table 1 for various values of ε and N , we present the maximal approximate
error

EN,ε = max
x∈ωh

N

EN,ε(x), EN,ε(x) ≡ |VN,ε(x)− Vref,ε(x)|,
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where VN,ε(x) is the numerical solution of the nonlinear difference scheme (7) by
the monotone iterative method (19). For ε ≤ 10−4, the error is independent of ε
and decreases with N . This table verifies our convergent results from Theorems 1
and 3, that is the nonlinear difference scheme by the monotone iterative method
converges ε-uniformly.

The numerical order of convergence αN,ε and the uniform numerical order of
convergence α∗N are calculated as in [4],

RN,ε = max
x∈ωh

N

|VN (x; ε)− V2N (x; ε)|, R
∗
N = max

ε
RN,ε,

αN,ε = log2

(
RN,ε

R2N,ε

)
, α∗N = log2

(
R
∗
N

R
∗
2N

)
,

and are close to one. This confirms the theoretical result from Theorem 1.
The iteration counts are presented in Table 2. For ε ≤ 10−3, the convergence

iteration count is 6. This result confirms the theoretical result from Theorems 2
and 3, that the convergence factor q of the monotone iterative method (19) is
independent of ε.

The approximate error EN,ε(x) with N = 128 and ε = 10−2, 10−3 is depicted in
Fig. 1. The maximum of the approximate error ia attained in the vicinity of the
point of discontinuity x = 0.5 of f(x).
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Figure 1. EN,ε(x) with N=128 and ε = 10−2, 10−3 for the test
problem 1.

Test problem 2. The second test problem is defined by

−εu
′′

+ b(x)u
′
+ c(x, u) + f(x) = 0, u(0) = 1, u(1) = 1,

c(x, u) = 1− exp(−u),

b(x) =
{

2, x ≤ 0.5,
1, x > 0.5,

, f(x) = −0.5.
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N\ε 1 0.1 0.01 ≤ 0.001

32 5 7 6 6

64 5 7 6 6

128 5 7 6 6

256 5 7 6 6

≥ 512 5 7 7 6

Table 2. Iteration counts for the monotone iterative method (19)
applied to the test problem 1.

Similar to the test problem 1, the functions from (25) are upper and lower solutions
to (7) and c∗, c∗ are defined by (26). The upper solution V

(0)
= 1, x ∈ ωh is used

as an initial iteration.
In Table 3, the maximal approximate error is presented for various values of ε

and N . For ε ≤ 10−4, the error is independent of ε and decreases with N . This
table verifies our convergent results from Theorems 1 and 3.

N\ε 0.1 0.01 0.001 ≤ 0.0001

32 3.97× 10−4 8.25× 10−4 8.69× 10−4 8.69× 10−4

64 1.95× 10−4 4.08× 10−4 4.40× 10−4 4.40× 10−4

128 9.64× 10−5 2.02× 10−4 2.19× 10−4 2.20× 10−4

256 4.76× 10−5 9.92× 10−5 1.08× 10−4 1.09× 10−4

512 2.33× 10−5 4.80× 10−5 5.22× 10−5 5.27× 10−5

1024 1.12× 10−5 2.24× 10−5 2.44× 10−5 2.46× 10−5

2048 5.23× 10−6 9.63× 10−6 1.05× 10−5 1.06× 10−5

Table 3. Maximal approximate error EN,ε for the monotone it-
erative method (19) applied to the test problem 2.

The numerical order of convergence αN,ε and the uniform numerical order of
convergence α∗N are close to one, this confirms the theoretical result from Theo-
rem 1.

The iteration counts are the same as for the test problem 1 presented in Table 2.
For ε ≤ 10−3, the convergence iteration count is 6. This result confirms the theo-
retical result from Theorems 2 and 3 that the convergence factor q of the monotone
iterative method (19) is independent of ε.

The approximate error EN,ε(x) with N = 128 and ε = 10−2, 10−3 is depicted in
Fig. 2. The maximum of the approximate error is attained in the boundary layer
at x = 1.

From the numerical evidence, the following observations are made:
• The numerical experiments confirm our theoretical result that the scheme

(7) is first order ε-convergent.
• The numerical experiments confirm that the monotone iterative method

(19) converges ε-uniformly.
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Figure 2. EN,ε(x) with N=128 and ε = 10−2, 10−3 for the test
problem 2.

• Convergence of the iterative method (19) is monotonic.
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