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Abstract. Relative to single-band models, multiband models of strongly interacting
electron systems are of growing interest because of their wider range of novel phenomena
and their closer match to the electronic structure of real materials. In this brief review
we discuss the physics of three multiband models (the three-band Hubbard, the periodic
Anderson, and the Falicov-Kimball models) that was obtained by numerical simulations
at zero temperature. We first give heuristic descriptions of the three principal numerical
methods (the Lanczos, the density matrix renormalization group, and the constrained-
path Monte Carlo methods). We then present generalized versions of the models and
discuss the measurables most often associated with them. Finally, we summarize the
results of their ground state numerical studies. While each model was developed to study
specific phenomena, unexpected phenomena, usually of a subtle quantum mechanical
nature, are often exhibited. Just as often, the predictions of the numerical simulations
differ from those of mean-field theories.
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1 Introduction

As a tool for understanding the properties of strongly correlated electron systems, numer-
ical methods are both an opportunity and a challenge. They are an opportunity because
in only a few cases are the simplest models of such systems exactly solvable. By producing
very accurate solutions and thereby filling the gap between an exact solution and an un-
controlled approximation, these methods are thus an importantly useful way to advance
the understanding of the properties of these models. What has been significant is their
frequent revelations of unexpected and important new physics that standard perturba-
tion and mean-field theories unfortunately often miss. The challenge is finding numerical
algorithms that work well.

In this review we will be concerned only with results produced by three current common
methods for producing the zero temperature energy and wavefunction of certain strongly
correlated electron models. In general, there are three classes of zero temperature numer-
ical methods: Krylov space [1,2], density-matrix renormalization group (DMRG) [3], and
projector Monte Carlo methods. From the wavefunction that each estimates, a variety of
physical properties, other than the energy, are easily calculated.

The Monte Carlo method allows the largest system sizes to be studied but with an
accuracy that is in general several orders of magnitude less than the other two. The
infamous fermion sign problem [4], manifested by the statistical variance of the numerical
solution becoming exponentially large as the size of the system simulated becomes large,
plagues these algorithms. The DMRG method, particularly in one dimension, allows
the study of the next largest system sizes with a high degree of accuracy. For just the
basic qualitative picture of the models’s possible phases, as opposed to extrapolating its
properties to the thermodynamics limit, a particular Krylov space method, the Lanczos
method [1,2], is often the method of choice. Although often called the exact diagonalization
method (ED), it actually only produces a variational upper bound to the ground state
energy of the model. The accuracy of the method however is usually outstanding, being
nearly full floating point precision.

In this review we will only present recent results of zero temperature numerical studies
of the three-band Hubbard, periodic Anderson, and Falicov-Kimball models. All three
are multiband models. The three-band Hubbard obtains multiband stature from having
three single orbital atoms per unit cell. It is inherently two-dimensional, being proposed
to model the CuO2 planes in high temperature superconductors. For this model the
numerical simulations have focused on the behavior the d-wave paring correlation function
as a function of the model’s parameter. Here, the results are obtained by use of a particular
projector Monte Carlo method, the constrained-path Monte Carlo method (CPMC) [5–7].
This method is also the primary tool for the results presented for the periodic Anderson
model. The focus of these results will be magnetic properties, particularly its ferromagnetic
properties. The model which shows the most novel physics is the Falicov-Kimball model.
For the simplest version of the model, a combination of analytic work using strong coupling
theory and numerical work using the ED and CPMC methods, has demonstrated the
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existence of fixed and mixed valence phases with the mixed valence phase being one of
either staggered orbital ordering or one with a chiral and electronic ferroelectric phase
coexisting [8–10].

We will begin by giving brief descriptions of the Lanczos, density-matrix renormal-
ization group, and constrained-path Monte Carlo methods. We will describe their basic
strategies to highlight their differences. Detailed descriptions of each are readily available
elsewhere [6,7,11,12]. Next, in Section 3, we will describe the three models. Here we will
also describe the various physical quantities that have been the focus of computations. In
Section 4, we will summarize the principal zero temperature numerical results obtained
for these models. Lastly, in Section 5, we conclude with some suggestions for some needed
improvements in the numerical methods and some opportunities for new numerical studies.

2 Numerical methods

2.1 Lanczos

The Lanczos method is an iterative method to compute the eigenvalues and eigenvectors
of large, sparse, real, symmetric matrices. It involves the partial tridiagonalization of the
large matrix and is marked by the extremal eigenvalues, that is, the smallest and largest
eigenvalues, of this much smaller matrix rapidly converging to those of the much larger
one.

The method has enjoyed considerable use in studying the physics of one-band electronic
models, such as the Hubbard [13] and t-J models [14], and quantum spin models, such
as the Heisenberg model. Its use is limited by the size of computer memory, not spatial
dimension. In particular, the size of the largest matrix that can be studied is determined
by the ability to store in computer memory 2 or 3 vectors of the order of the Hamiltonian
matrix. (For the problems at hand this matrix is not stored but computed on-the-fly.)
This vector size in turn is determined by the number of lattice sites and the number
electrons. For a N site periodic Anderson model with a Sz = 1

2 |N↑ − N↓| ground-state,
this size is

M =
(2N)!

N↑! (2N − N↑)!
×

(2N)!

N↓! (2N − N↓)!
.

For a 6 site lattice with N↑ = N↓ = 3, M = 48200; with N↑ = N↓ = 6, M = 853776. In
general, the number of sites that can be studied for a two band model is half that of a one-
band model; for a three-band model, it is one third. Typically, symmetries of the model
Hamiltonian are used to block diagonalize the Hamiltonian matrix, and then the method
is applied to each relevant block. The most frequently used symmetry is translational
symmetry. In general, it reduces the size of the Hilbert space and hence the size of the
matrices by N . Other symmetries commonly used are the point group symmetries of the
lattice. They may, for example, allow one to study the ground state as a function of Sz.
Sometimes one can also use spin reflection symmetry.
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In one dimension, the energy for the largest chain possible for one-band models is on
the verge of being extensive. The number of sites that can be studied is however indepen-
dent of the spatial dimension. In dimensions higher than one, finite-size effects become
more apparent even for one-band models. As the mathematics of the Lanczos method is
well described elsewhere [1, 2] and a tutorial article [11] describing its implementation for
electron lattice and quantum spin model exists, we will only describe its most important
features.

To understand the workings of the method the concept of an invariant subspace is
important. First, a subspace is defined as the set of all n-vectors that can written as a
linear combination of the set S = {s1, s2, . . . , sm}. If A is a symmetric matrix, then the
subspace is said to be invariant under A if for any vector x in the subspace, the vector Ax
is also in the subspace. If Q = {q1, q2, . . . , qm} is any basis of an invariant subspace under
A, arranged in the form of the n by m matrix Q whose columns are the n-vectors qi, then
the action of the n by n matrix A on Q is just to form a new n by m matrix AQ whose
columns are a linear combination of the columns of Q. A m by m matrix C can represent
this combination and expresses the restriction of A to this subspace

AQ = QC. (2.1)

The utility of this concept is the following: If (λ, y) is an eigenpair of C, then

Cy = λy,

QCy = λQy,

A(Qy)λ(Qy),

(2.2)

meaning that λ is also an eigenvalue of A and Qy is the corresponding eigenvector. Thus,
eigenpairs of a very large matrix can be found from those a much smaller one if the space
spanned by Q is invariant under A. Knowing this space however is equivalent to knowing
the solution of the eigenvalue problem, but an approximate space can often be constructed
thereby enabling good estimates of some eigenpairs.

The Lanczos method does this by approximating C by a tridiagonal matrix

T =



















α1 β1 · · · 0

β1 α2
. . .

...
. . .

. . .
. . .

...
. . .

. . . βm−1

0 · · · βm−1 αm



















. (2.3)

As a subspace, it chooses the one spanned by the Krylov sequence

Q = (b,Ab,A2b, . . . , Am−1), (2.4)

where b is an arbitrary vector. This sequence approximates an invariant subspace under
A. The argument is: Under A, the vectors Ab,A2, b, . . . , Amb are all in the Krylov space
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except for the last one. It can be shown that Am−1b converges to an eigenvector of A if m
is sufficiently large, so Amb is approximately proportional to Am−1b and hence is almost
in the Krylov space. Thus, to a very good approximation, the Krylov space for m < n is
an invariant subspace of A.

The α’s and β’s are determined from the recursion relation

Aqi = βi−1qi−1 + αiqi + βi+1qi+1, (2.5)

which follows from Eq. (2.1) with T in Eq. (2.3) replacing C. To find the lowest eigenvalue
λ1, a reasonable guess b to the ground state wavefunction is made, and the α’s and β’s are
determined iteratively. At the end of each iteration, a successively larger tridiagonal matrix
is generated whose eigenpairs are obtained with a conventional tridiagonal solver [1]. The
iteration is continued until λ1 converges to the required accuracy.

The recursion relation, Eq. (2.5), preserves the symmetries in the initial guess q0.
This feature enables the separation of the eigenvalues into different sub-spaces of the
Hamiltonian, for example, different values of the momenta k. Thus, not only one can
determine the ground state energy accurately, but also the energies of some low lying
excited states. Additionally, one will always find the lowest eigenvalue in the subspace
where iteration started, as long as the initial state q0 lies in it. However, the efficiency
of the method and the accuracy of the smallest eigenvalue (the ground state) depend on
the gap between it and the next lowest state. The larger the gap, the faster and more
accurately the method converges to the lowest eigenvalue. For a non-interacting problem
with the matrix size being M = 2N , this gap is typically a finite size effect and can be
large. When the interaction is turned on, the gap can become very small unless the model
has a true gap.

This closing of the pseudo-gap sometimes makes determining the ground state energy
of the interacting problem difficult. In practice, we try different initial states with different
symmetries. When number of iteration is larger than 200 and the accuracy is only of the
order 10−7, we consider the iteration unsatisfactory and try the new one. On the other
hand, to avoid finding a solution for a local minimum instead of the ground state, many
Lanczos iterations are executed with a random selection of initial states.

2.2 Density matrix renormalization group

Today, the density matrix renormalization group (DMRG) method is the most widely
used technique for finding the ground state properties of one-dimensional lattice models of
interacting electrons and quantum spins. At the same time, it is still under improvement.
In practice, the method is most effective in one dimension for models with open boundary
conditions and short-ranged interactions. Recently, the DMRG has enjoyed a surge of
new interest by quantum information theorists. They are interested in the relationship
between the product basis functions assumed in the DMRG method and the entanglement
of quantum many body states. Many of the recent improvements being proposed for the
DMRG come from these interests and their emerging insights. Several slightly different
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approaches to its implementation exist, and these are referenced in a recent extensive
review [12] that referenced many other reviews. Here, we will focus on general issues
aimed at contrasting it with the Lanczos algorithm. We will start by noting the different
uses of an invariant subspace and then sketch one possible way to implement the method.

At its core, the DMRG uses an ED method, such as the Lanczos or the Davidson
method [15, 16], to find the ground state of a large sparse matrix. In contrast to these
ED methods that use a Hamiltonian of fixed lattice size at each stage of the iteration,
the DMRG method iteratively increases the lattice size defining the Hamiltonian. At
each iteration this larger lattice Hamiltonian is given to a ED method which returns the
ground state wavefunction from which the density matrix of the system is computed. The
eigenvectors of the largest eigenvalues of this matrix, and not those of Hamiltonian matrix,
become the truncated basis represented by the matrix Q used to restrict the Hamiltonian
to a smaller basis. In the DMRG restriction, the columns of Q are orthonormal so that
QT Q = I. From Eq. (2.1), this implies C = QT HQ. There are several justifications given
for this strategy [12]: It leads to an optimization of the expectation values, wavefunction,
and entanglement of the estimated solution relative to the exact result. It also leads to a
variational estimate of the ground state energy.

To sketch the workings of the method, we will suppose we have a one-band Hamil-
tonian H, the Hubbard model, for instance, defined in one dimension with open boundary
conditions plus hopping amplitudes and Coulomb interactions restricted to neighboring
sites. We can write this Hamiltonian as

H = HS + H•• + HE. (2.6)

If the lattice has N sites, HS is that part of the H defined on the first NS sites going from
left to right; it is usually called the system S. HE is the part of H defined on the last NE

sites; it is called the environment E. The number of sites satisfies N = NS + NE . The
last piece H•• is the interaction between these two systems. With i = NS it has terms like
c†i ci+1 + c†i+1ci. We will also assume that the size M of the basis needed for the number
of sites and the number of electrons is the the largest possible for our ED method. If MS

and ME are the basis sizes for the system and environment, then M = MSME. Using this
break-up of H, we find the ground state wavefunction which we write as

|Ψ0〉 =
∑

σ,ǫ

Aσǫ|σǫ〉 =
∑

σ,ǫ

Aσǫ|σ〉|ǫ〉, (2.7)

where the |σ〉 states refer to S; the |ǫ〉, to E.

For electron lattice models, associated with each site is a local set of basis states
{|s〉} where s = 1, 2, . . . ,Msite. For a generic one-band model, Msite = 4, and |1〉 is
the state with no electron; |2〉, one up electron; |3〉, one down electron; and |4〉, double
occupancy. In Eq. (2.11), the set of system states {|σ〉} = {|s1〉, |s2〉, . . . , |sNS

〉} where si =
1, 2, . . . ,Msite. Alternatively, {|σ〉} = {|Ss〉} = {|S〉|s〉} where S = 1, 2, . . . ,MS/Msite and
s = 1, 2, . . . ,Msite. Similar definitions hold for the environment. reduced density matrices
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for S and E
ρS

σσ′ =
∑

ǫ

AσǫAσ′ǫ, ρE
ǫǫ′ =

∑

σ

AσǫAσǫ′ (2.8)

are computed and a conventional eigensolver is used to find the MS/Msite and ME/Msite

eigenvectors corresponding to the the MS/Msite and ME/Msite largest eigenvalues of ρS

and ρE . These eigenvectors define QE and QS which are then used to restrict the system
to the reduced basis

QT
SHSQS → HS , QT

EHEQE → HE . (2.9)

Similar restrictions of the matrix elements of the operators defining the Hamiltonian for
the S and E sites are also made and stored. They are needed to build the Hamiltonian to
a larger lattice size.

The lattice size is grown by adding two sites. The Hamiltonian is now written as

H = HS + HS• + H•• + H•E + HE. (2.10)

Now N = NS +NE+2 but the value of M is unchanged. The new pieces of H refer to these
additional two sites. HS• has contributions coming from S and the site i = NS + 1 to the
right of S; H•E, from E and the site i + 1 to the left of E. In the original representation,
these Hamiltonians would have terms like c†i−1ci, ni, c†i+1ci+2, and ni+1. Matrix elements
of operators referring to sites i and i + 1 are expressed in the original {|s〉} basis. Those
for sites i − 1 and i + 2 are in the restricted {|S〉} and {|E〉} bases. The last piece H•• is

now the interaction between these two additional sites. It has terms like c†i ci+1 + c†i+1ci.
Giving this Hamiltonian to an ED method, we find the ground state wavefunction

which we again write as

|Ψ0〉 =
∑

σ,ǫ

Aσǫ|σ〉ǫ〉. (2.11)

The σ states now refers to S plus the additional site; the ǫ state, to E plus the additional
site. In particular {|σ〉} = {|S〉|s〉} and {|ǫ〉} = {|E〉|s〉}. The restriction is performed

QT
SHSQS → HS, QT

EHEQE → HE , (2.12)

the matrix elements of the operators are restricted, and the process repeated. An estimate
of an observable X is obtained from

〈X〉 =
〈Ψ0|X|Ψ0〉

〈Ψ0|Ψ0〉
. (2.13)

Typically, NS = NE and this process is repeated until some maximum lattice length is
reached. The physical system will usually have reflection symmetry between the two halves
which eliminates the need to compute system and environment components independently.
The procedure just described is called the infinite-system algorithm. Its steps are illus-
trated in Fig. 1. Often, more satisfying results are obtained by executing the finite-system
algorithm after the infinite-system algorithm is completed.
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Figure 1: Fundamental construction in the infinite-system DMRG using systems and environment blocks plus
two sites (after [12]).

In the finite-system algorithm, N is fixed and a small number of sweeps are executed.
A sweep has two stages. In one stage, right to left (environment growth), a site is added to
E and removed from S until the size of S reaches the minimal value where all the matrix
elements of HS are known exactly. This size is usually the value at the starting point. The
second stage is now left to right (system growth): A site is removed from E and added to
S until the starting size of E is reached. Restriction is applied only to the growing system.
The shrinking system is constructed from the matrix elements of the restricted operators
generated and stored during the execution of the infinite system algorithm. The process
is depicted in Fig. 2.

There are multiple reasons for the need of the finite-system algorithm. Most relevant
for electron models is the need to keep the electron density constant as the lattice size grows
by ”injecting” electrons into the system and environment. If haphazard, this injection can
lead to a electronic distribution inadequately relaxed. The sweeps of the finite-system
algorithm provide the relaxation. In general, the finite-system algorithm reduces the
likelihood of the solution representing a metastable state as opposed to the true ground
state.

The Hamiltonian break-ups in Eqs. (2.6) and (2.10) are more symbolic than precise.
To be more precise, HS in Eq. (2.6), for example, should be written as HS ⊗ IE where
IE is the identity in the environment basis, while in Eq. (2.10) it should be written as
(HS⊗I•)⊗IE where I• is the identity in the local basis. This structure makes the break-up
of the Hamiltonian consistent with the direct product expressions (2.7) and (2.11) for the
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Figure 2: Fundamental construction in the finite-system DMRG (after [12]).

wavefunction. In terms of the matrices A and B, a direct product is defined by

A ⊗ B =











A11B A12B A13B · · ·

A21B A22B A23B · · ·

A31B A32B A33B · · ·
...

...
...

. . .











. (2.14)

If A and B are 2 by 2 matrices, the direct product matrix is

A ⊗ B =









A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22









. (2.15)

It is inefficient to express H other than in the direct product form. To do otherwise requires
significant computer memory and significantly more computer time. Such products have
the useful relations

(A1 ⊗ B1)(A2 ⊗ B2) = (A1B1) ⊗ (A2B2), (2.16a)

(A ⊗ B)−1 = B−1 ⊗ A−1, (2.16b)

(S−1 ⊗ T−1)(A ⊗ B)(S ⊗ T ) = (S−1AS) ⊗ (T−1BT ). (2.16c)

This means that for the ground state in Eq. (2.11) the computation of a quantity such as

〈σ′ǫ′|HS |Ψ0〉 =
∑

σ,ǫ

Aσǫ〈σ
′ǫ′|HS |σǫ〉

=
∑

σ

Aσǫ′〈σ
′|HS |σ〉

=
∑

S

ASs′ǫ′〈S
′|HS |S〉 (2.17)
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reduces to a matrix-vector multiplication

〈S′s′ǫ′|HS |Ψ0〉 =
∑

S

[HS ]S′SASs′ǫ′ (2.18)

in a space reduced with respect to that of σ, with only the matrix elements of 〈σ′ǫ′|HS|Ψ0〉
in this reduced space needing computation. Such products scale as the order of the matrix
squared, so the computation reduction is significant and even more significant for other
examples.

If a multiband model were considered, instead of the one-band one just discussed, Msite

would be much larger which means the bases sizes for the system and environment would
be smaller and a reduction in accuracy is expected. If longer-ranged hoppings or inter-
actions were added, additional pieces would appear in the break-up of the Hamiltonian.
Handling them would require more computer time and memory. The increase in memory
requirements means the bases sizes for the system and environment would be smaller and a
reduction in accuracy is again expected. Similar issues are generated in higher dimensions
or with periodic boundary conditions. Still, the DMRG method is capable of treating
larger multiband models in one and two-dimensions than is possible with the ED method
alone. To date, the DMRG has been underutilized in these contexts.

One of the new developments in the DMRG method is a very recent proposal by
White [17] that adds one site at a time instead of two. Reductions by factors of two to
four in computer time and memory are reported, along with a reduction in tendency of
being trapped in metastable states. Most of the excitement about significant improvement
in the DMRG have come from proposals rooted in quantum information theory that
replace the direct-product space representation of the wavefunction by a matrix-product
representation [12]. States in this representation are often a better representation of the
actual ground state of systems in one or more dimensions and accordingly have promise
of increasing the range of practical uses of the method.

2.3 Constrained-path Monte Carlo

As does the ED method, ground state quantum Monte Carlo methods use an iterative
procedure to project the ground state energy and wavefunction from a suitably chosen
starting point. In contrast to this deterministic method, a Monte Carlo procedure is used
to estimate the values of the implied integrations (summations) present at each step in the
iteration. The eventual result is the generation of a large number of successive “samples”
of the the solution instead of one specific estimate. The Monte Carlo solution is not the
wavefunction itself but averages of various physical quantities computed from samples
drawn from that wavefunction.

Various vastly different looking techniques fall under the rubric “quantum Monte
Carlo.” We will be concerned exclusively with the constrained-path Monte Carlo method
[5–7]. It belongs to a class of projector Monte Carlo methods that includes the auxiliary-
field [18,19] and lattice fixed node methods [20]. The auxiliary-field method possess a sign
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problem. In many respects it is a parent of the lattice fixed-node and constrained-path
methods. The latter two eliminate the sign problem by making an approximation but
differ in the manner in which this approximation is made and in the space in which the
random walk is executed. We are unaware of any application of the lattice fixed-node
method to multiband models.

The constrained-path method is a Markov chain Monte Carlo method. This type of
Monte Carlo is defined by a transition probability Pij for going from state j to state i and

some initial distribution p
(0)
i . The chain is generated iteratively by

p
(i+1)
k =

∑

k

Pkjp
(i)
j . (2.19)

Eventually, under very general conditions on Pij, a fixed point condition is reached

pj =
∑

k

Pkjpj, (2.20)

and it becomes possible to “sample” subsets of the allowed states j distributed by p [21].
In most of statistical mechanics a specific fixed-point distribution is required, usually the
Boltzmann distribution. The power of the famous Metropolis Algorithm [22] is being a
means to specify a simple P that samples from a specific p. In the current applications,
we however know P and endeavor to determine p. This distribution will turn out to be
the ground-state wavefunction. Hence, the quantum Monte Carlo method will generate
many samples of the ground state wavefunction. For fermions, the sign problem means
this function p will not be everywhere positive and hence not a true distribution. The
Monte Carlo method is executed with adjustments.

As a first step, we place our quantum ground state problem in the form of Eq. (2.20).
We accomplish this by transforming the time-dependent Schrödinger’s equation into an
imaginary-time one,

i
∂|Ψ〉

∂t
= H|Ψ〉 −−−→

it→τ

∂|Ψ〉

∂τ
= −H|Ψ〉, (2.21)

which has the formal solution

|Ψ (τ)〉 = e−τH |Ψ (0)〉. (2.22)

One observes that if

|Ψ (0)〉 = a0|Ψ0〉 + a1|Ψ1〉 + · · · ,

with

H|Ψi〉 = Ei|Ψi〉, Ei 6 Ei+1 , (2.23)

then

|Ψ (τ)〉 −−−→
τ→∞

a0e
−τE

0 |Ψ0〉 + a1e
−τE

1Ψ1〉 + · · · . (2.24)
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This limit can be obtained iteratively from

|Ψ (τ + ∆τ)〉 = U (τ + ∆τ, τ) |Ψ (τ)〉, (2.25)

where

U (τ + ∆τ, τ) = e−∆τ(H−E0). (2.26)

After many iterations,

|Ψ (τ + ∆τ)〉 = U (τ + ∆τ, τ) |Ψ (τ)〉

= a0|Ψ0〉 + a1e
−∆τ(E

1
−E0)|Ψ1〉 + · · ·

≈ a0|Ψ0〉. (2.27)

Hence the fixed-point condition is

|Ψ (τ)〉 = U (τ + ∆τ, τ ) |Ψ (τ)〉. (2.28)

Some good guesses, ET and |ΨT 〉, are used for E0 and the starting state |Ψ(0)〉.

Next we note that any many-fermion wavefunction can be written as a linear combi-
nation of Slater determinants. The constrained-path method does this via

|Ψ0〉 =
∑

φ

Aφ |φ〉, (2.29)

where the sum is over the space of all possible Stater determinants. Any one determinant
will be of the form

|φ〉 = b†1b
†
2 · · · b

†
N |0〉 , (2.30)

where

b†j =
∑

i

c†iBij . (2.31)

The matrix B, which in general is rectangular, defines operators that create and destroy
electrons in new orbitals defined relative to some prior set. This set is usually referenced
to the operators defining the original Hamiltonian. Because our Hamiltonians in general
exhibit time reversal invariance, we can choose our ground state to be real and choose the
phase of the ground state so that the Aφ are all positive. These coefficients then define
the p that the Monte Carlo procedure wants to sample. The sign problem arises because
the Monte-Carlo-based iteration produces states with not all the Aφ’s positive, seemingly
mixing |Ψ0〉 and −|Ψ0〉. Wihout knowing the ground state one does not know how to filter
out the componets with negative sign. One should also note the set of all possible Slater
determinants is overcomplete and the members are not necessarily orthogonal; that is, we
have

〈φ′|φ〉 6= δφφ′ ,
∑

φ

|φ〉〈φ| 6= 1. (2.32)
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The initial state |ΨT 〉 is usually chosen to be a single Slater determinant, defined by some
matrix BT , so we need to consider how to execute U (τ + ∆τ) |φ〉. The remarkable thing
is that after using the Trotter approximation [23] to approximate U (τ + ∆τ) for small
∆τ and using the discrete Hubbard-Stratonovich transformation [24] to transform the
exponential of the potential energy, this imaginary-time evolution can be expressed as

∑

x=±1

p(x)B(x) |φ〉, (2.33)

where p(x) = 1
2 and B(x) is the product of exponentials whose arguments are each

quadratic forms of creation and destruction operators [5–7]. By Thouless’ Theorem [25],
the latter means the result of B(x)|φ〉 is simply another single Slater determinant. What
is happening is the Trotter approximation and Hubbard-Stratonovich transformation con-
verts the interacting problem over a short imaginary time into a non-interacting one in a
stochastic external field. A single Slater determinant is a non-interacting state. Each step
of the iteration is thus propagating a non-interacting state by an effective non-interacting
Hamiltonian and hence another non-interacting state evolves. If B′ is the matrix describ-
ing this new Slater determinant and M is the matrix defining the quadratic form, then
one can show that

B′ = e−∆τMB. (2.34)

But there are two values of x! A Monte Carlo method is used to sample one from p(x);
hence, only one Slater determinant is generated from any other one. Overall the strategy is
to begin the simulation by replicating |ΨT 〉 many times. For each, sample an independent
value of x, say x̄, from p(x) and propagate that Slater determinant as B(x̄)|φ〉. For one
starting state, this is depicted in Fig. 3. Each starting state, a random walker, moves
along a path in the space of all Slater determinants. By summing over the evolution of
many starts, the various walkers sample many of the possible states that constitute the
ground state, and after a sufficient number of iterations, the sum of the current Slater
determinants will represent one sampling of the ground state wavefunction |Ψ0〉. The
iteration is continued until a sufficiently large number of statistically independent samples
are accumulated so the error estimate for the measured quantities is acceptable.

Sampling efficiently, reducing the statistical error, and controlling the sign problem
requires augmenting this strategy. Issues of efficiency and variance reduction are discussed
in detail in the original papers and cannot be expressed as succinctly as how the sign
problem is controlled. The sign problem is controlled by selecting a state |ΨC〉 that is
a good approximation to the ground state and throwing away any random walker that
does not satisfy 〈ΨC |φ〉 > 0. This is the constrained-path condition. Typically, one takes
|ΨC〉 = |ΨT 〉. We also remark that one consequence of the variance reduction procedures is
the assignment of a weight wφ to each random walker |φ〉 in the sample. The constrained-
path condition amounts to setting the weights of violating walkers to zero.

The overcompleteness of the basis, Eq. (2.32), has some novel consequences for the
interpretation of the constraint. In general, any |φ〉 can be written as a linear combination
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Figure 3: Schematic representation of a possible path in space of Slater determinants from one starting deter-
minant relative to other possible paths. The space is continuous. At each Monte Carlo decisions there are two
branches The regularity depicted is for convenience.

of many other |φ〉’s in the basis. The overcompleteness means that even if this number is
infinity, the basis need not be exhausted. Further, because the thrown-away state overlaps
the kept states, not all information carried by the terminated walker is lost. In short, the
nodal surface defined by 〈ΨT |φ〉 is not sharp and the solution does not strongly inherit its
features. This situation contrasts that of the lattice fixed-node method.

The consequence of the constraint on the accuracy of measured quantities has been
studied extensively by comparing predictions of the constrained-path method to those ob-
tained by the Lanczos, density-matrix renormalization group, auxiliary-field, and lattice
fixed-node methods. In general, the error of the constrained-path method is more con-
trollable than that of the auxiliary-field method as the system size is increased. This is a
consequence of the elimination of the sign problem. Its accuracy typically, but modestly,
exceeds the fixed-node method [20, 26, 27]. Its results also display good insensitivity to
the choice of |ΨT 〉. Importantly, the method easily generates estimates of a variety of
many-body correlations.

In computing estimates of a physical observable, the so called mixed estimator is used
to obtaining the sample estimate of some observable X,

〈X〉 =
∑

i

wi
〈ΨT |X |φi〉

〈ΨT | φi〉
/
∑

i

wi. (2.35)

It is interesting to note that for the lattice fixed-node method this estimator provides a
variational upper bound for the the ground state energy [27]. This is not true for the
constrained-path method [7]. In general, the mixed estimate is not an upper bound for
most observables.

The basic quantity computed is 〈c†i cj〉. If BT is the matrix defining |ΨT 〉 and B the
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one defining |φ〉, then

Gij =
〈ΨT | c

†
jci |φ〉

〈ΨT | φ〉
=

[

B
(

BT
T B

)−1
BT

T

]

ji
, (2.36)

which is readily computable during the simulation. The importance of this measurable
is permitting the exploitation of the Trotter approximation and Hubbard-Stratonovich
transformation’s replacing the short-time imaginary-time propagation of any Slater deter-
minant with the original interacting Hamiltonian by a propagation by a non-interacting
Hamiltonian in a stochastic external field. The effective Hamiltonian being non-interacting
means Wick’s Theorem can be used to express averages such as 〈c†i cjc

†
kck〉 by sums of prod-

ucts of the basic measurement
〈

c†i cjc
†
kcl

〉

=
〈

c†i cj

〉〈

c†kcl

〉

+
〈

c†icl

〉〈

cjc
†
k

〉

=
〈

c†i cj

〉〈

c†kcl

〉

+
〈

c†icl

〉(

δjk −
〈

c†kcj

〉)

= GjiGlk + Gli(δkj − Gjk). (2.37)

As a closing note, we comment that the restriction of |ΨT 〉 to a single Slater determinant
is unnecessary. The computation cost will be proportional to the number used. While the
results tend to be satisfyingly insensitive to the choice of this state, it is true that when a
single Slater determinant is used, the best results are obtained when this choice represents
a closed-shell solution to the non-interacting problem; that is, the number of electrons in
both spin channels are a non-degenerate solution of the non-interacting problem. We also
comment that while the Hartee-Fock solution of the interacting problem is a single Slater
determinant using it does not necessarily improve the results over those obtained with the
non-interacting solution. For open shell fillings, it is best if multiple Slater determinants
are used.

3 Basic models

Explaining superconductivity, magnetism, and other electronic properties of real materi-
als is challenging. To meet this challenge, many theoretical models have been proposed
whose electronic structures are simpler than those produced by ab initio methods but
have features hopefully representing the essential physical processes at least qualitatively.
Among these models, the simplest and most studied model is the Hubbard model [28,29].
This is a one-band model with one lattice site per unit cell and one non-degenerate orbital
per lattice site. Nevertheless, the physics of this model is rich and includes antiferromag-
netism, a Hubbard-Mott metal-insulator transition, and phase separation. In contrast to
this simple one-band model, several multi-band models have also been actively studied and
are believed to explain the often surprising states of matter observed experimentally. In
this review, we will discuss the three-band Hubbard model [30], periodic Anderson model,
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and Falicov-Kimball [31] model. In the three-band model, the multiband character arises
from the model having three lattice sites per unit cell. A single non-degenerate orbital
occupies each site. In the periodic Anderson model, there is one lattice site per unit cell.
The multiband character arises from that site being occupied by a two-orbital atom. The
Falicov-Kimball model also has a double non-degenerate orbital atom on each site of a one
site unit cell, but in contrast to the periodic Anderson model, the electrons are usually
spinless.

The original purpose of each Hamiltonian was the modelling of distinctly different
physics. The three-band Hubbard model, for example, was proposed to explain the physics
of the high-Tc superconductors so pairing correlations have been the main quantities com-
puted. Often physics other than that initially intended is also modelled. For example, the
periodic Anderson model, which was developed to study heavy fermion and Kondo physics,
has so far proven to exhibit these phenomena limitedly, but instead has displayed a strong
presence of ferromagnetism with a variety of mechanisms producing itinerant ferromag-
netism. Similarly, the Falicov-Kimball model, developed for metal-insulator transitions
and mixed valent behavior, has been found to possess a novel electronic ferroelectric state
co-existing with a coherent chiral state of ordered atomic currents. Indeed, many of these
surprises would have remained hidden or controversial without numerical analysis of the
properties of these models.

3.1 Three-band hubbard model

The three-band Hubbard model [30] was proposed as a minimal model to investigate
the high-Tc superconductivity in the cuprates. This definition is restricted to a two-
dimensional plane describing the CuO2 layer distinctively common in these materials where
the valence electrons occupy 3dx2−y2 , 2px and 2py orbitals.

The Hamiltonian is

H =
∑

<j,k>σ

tjkpp(p
†
jσpkσ + p†kσpjσ) + εp

∑

jσ

np
jσ + Up

∑

j

np
j↑n

p
j↓

+
∑

<i,j>σ

tijpd(d
†
iσpjσ + p†jσdiσ) + εd

∑

iσ

nd
iσ + Ud

∑

i

nd
i↑n

d
i↓ + Vpd

∑

<i,j>

nd
i n

p
j , (3.1)

where the operator d†iσ creates a hole with spin σ in a Cu 3dx2−y2-orbital and p†jσ creates a
hole with spin σ in an O 2px or 2py-orbital. Ud and Up are the Coulomb repulsions at the
Cu and O sites, εd and εp are the corresponding orbital energies, and Vpd is the nearest

neighbor Coulomb repulsion. As written, the model has a Cu-O hybridization tijpd = ±tpd

with the minus sign occurring for j = i+x̂/2 and j = i−ŷ/2 and also an O-O hybridization

tjkpp = ±tpp with the minus sign occurring for k = j−x̂/2−ŷ/2 and k = j+x̂/2+ŷ/2. These
phase conventions are illustrated in Fig. 4. For the non-interacting model (Up = Vpd = 0)
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Figure 4: Phase convention for the hopping matrix elements. The copper dx2
−y2 orbital is surrounded by the

oxygen px and py orbitals. The hopping matrix elements are shown with their corresponding phase.

with tpp = 0, a typical band structure is shown in Fig. 5. The bands are given by

E± (kx, ky) =
1

2

[

εd + εp ±

√

(εd − εp)
2 + 16t2pd

(

sin2 kx

2
+ sin2 ky

2

)

]

,

Em (kx, ky) = εp . (3.2)

To investigate possible superconductivity mechanisms, the extended s-wave and the dx2−y2-
wave pairing correlations as functions of distance are studied. The pairing correlation
functions have the following form

Pα(R) = 〈∆†
α(R)∆α(0)〉, (3.3)

where

∆α(R) =
∑

δ

fα(δ)[(dR↑dR+δ↓ − dR↓dR+δ↑)

+(px
R↑p

x
R+δ↓ − px

R↓p
x
R+δ↑) + (py

R↑p
y
R+δ↓ − py

R↓p
y
R+δ↑)], (3.4)

with δ = ±x̂,±ŷ in a square lattice. The pairing symmetry is defined through the function
fα(δ). For the extended s-wave pairing fs∗(δ) = 1 for all δ and for dx2−y2-wave pairing,
fd(δ) = 1 for δ = ±x̂ and fd(δ) = −1 for δ = ±ŷ.

The magnitude of Pα(R) is dominated by a large peak when |R| is less than a few near-
est neighbor distances. Over these distances, Pα measures local correlations among spin
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and charge, has little information about long-range pairing correlations, and may give a
“false positive” indication of enhanced pairing. Because of this, one usually reports neither
the q = 0 spatial Fourier transformation nor the partial sums like Sα(L) =

∑

|R|≤L Pα(R)

but instead reports partial averages [32,33] like V ave
α (R > L) = 1

N ′

∑

|R|>L Vα(R) where L

is about two lattice spacings, and N ′ is the number of distances larger than L. In fact, we
will mainly report such averages for the “vertex contribution” to the correlation functions
defined as [34]

Vα(R) = Pα(R) − P̄α(R) , (3.5)

where P̄α(R) is the contribution of dressed non-interacting propagator: for each term in

Pα(R) of the form < c†↑c↑c
†
↓c↓ >, P̄α(R) has a term like < c†↑c↑ >< c†↓c↓ >.

3.2 Periodic Anderson model

The periodic Anderson model (PAM) is one of the principal models for the low temperature
properties of heavy fermion and dense Kondo solids. These materials are typically rare-
earth and actinide metallic compounds that exhibit several different kinds of ground states:
antiferromagnetic, superconducting, paramagnetic, or semiconducting [35]. On the other
hand, the periodic Anderson model has been found to be a likely candidate as the minimal
lattice model for itinerant ferromagnetism, phenomena that is rare in these materials
[36–40]. A very simple extension of this model makes it a possible description for many
transition metals [41,42].

The Hamiltonian for a generalized periodic Anderson model is

H = −td
∑

i,j,σ

(d†iσdjσ + d†jσdiσ) − tf
∑

i,j,σ

(f †
iσfjσ + f †

jσfiσ) + εf

∑

i,σ

nf
iσ

+V
∑

i,σ

(d†iσfiσ + f †
iσdiσ) + U

∑

i

nf
i↑n

f
i↓ , (3.6)

where d†iσ and diσ creates and annihilates a conduction electron with the spin σ at the

lattice site i, and f †
iσ and fiσ creates and annihilates a f -electron. nf

iσ = f †
iσfiσ is the

electron number operator. Here td and tf are the hopping matrix elements for conduction
and localized electrons and the td and tf hoppings are only to nearest-neighbor sites. εf is
the energy of the localized f -orbital, U is the on-site Coulomb repulsion of the f electrons.
The hoping amplitude V hybridizes different orbitals on the same site. If the designation
d and f were taken literally, the on-site hybridization would be unphysical because such
orbitals have opposite spatial parity. The intent is merely to model the likely hybridization
of two different orbitals in the simplest way. If the parity of the orbitals matters, the model
is easily adaptable. When tf = 0, the Hamiltonian is the standard PAM.

When U = 0, there are two bands that in two dimensions are given by

E±(kx, ky) =
1

2

[

ǫd + ǫf ±

√

(ǫd − ǫf )2 + 4V 2

]

, (3.7)
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Figure 5: Dispersion of the three-band Hubbard model (a) for the case of zero tpp and (b) for the case of Negro
tpp
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Figure 6: Dispersion of the periodic Anderson model (a) for the case of zero tf , (b) for the case of positive tf

(c) for the case of zero tf with a large band gap, (d) for the case of negative tf

where
ǫd = −2td(cos kx + cos ky), ǫf = εf − 2tf (cos kx + cos ky). (3.8)

Fig. 6 shows typical two-dimensional band structures. When tf = 0, a band gap always
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exists. When tf 6= 0, the qualitative features of the band structure can change. Principally,
when |tf | becomes sufficiently large, the gap closes.

The magnetic properties of the periodic Anderson model are investigated through the
computation of two quantities. One is the energy as a function of the total spin E(S). If
the total number NT of electrons satisfies N ≤ NT ≤ 2N , where N is the number of lattice
sites, have been studied, and if N↑ ≥ N↓, the difference 1

2 (N↑ −N↓) is the z-component of
the total spin Sz. Because the total spin S and Sz commute with the Hamiltonian H, we
can set S = Sz and compute the ground state energy of H as a function of S. If E(S) is
a minimum for 0 < S < N , the ground state is a partially saturated ferromagnetically. If
E(S) is a minimum for S = N , the saturation is full. By plotting E(S) versus S, we can
tell if the ground state is ferromagnetic.

If the minimum occurs for S = 0, the ground state is unpolarized (paramagnetic or
antiferromagnetic). Further information about the spin structure of the ground state is
obtained by computing the Fourier transform of the spin-spin correlation function

S (k) =
1

N

∑

i,j

〈Sz
i Sz

j 〉e
ik·(xi−xj), (3.9)

where Sz
i = 1

2(nf
i↑−nf

i↓), xi its the lattice position, and 〈Sz
i Sz

j 〉 is the ground state expecta-
tion value of the product of the two spins at sites i and j. Since most of the magnetism of
the system comes from the polarization of the f -electrons, this usually is the most relevant
correlation functions. (An analogous one can be defined for the d-electrons.) By analyz-
ing the correlation spectrum, one can distinguish which type of magnetic ordering exists
in the system. For example, in two dimensions, if a large peak exists at the wavevector
(π, π), antiferromagnetic ordering exists; if a large peak exists at the wavevector (0, π) and
(π, 0), a resonating spin density wave exists. If these peaks extrapolate to non-zero values
as the lattice size is increased toward infinity (the thermodynamic limit), then a state of
long-range order exists.

3.3 Falicov-Kimball model

Introduced forty years ago to describe the semiconductor-metal transition in SmB6 and
related materials , the Falicov-Kimball model [31], while appearing very simple, exhibits an
array of rich and interesting properties. Under certain restrictions, many of its properties
have been determined analytically. For example, for the original version of the model,
in any dimension greater than 1, and for any value of its repulsive interaction between
the electrons, its equilibrium states display long-range charge ordering of the chessboard
type provided the temperature is low enough [43]. Away from 1/2-filling, i.e., when the
total electron densities differs from 1, the electrons segregate at zero temperature when
the repulsion is large enough. Not all properties have been as accessible analytically.
Recently, a proposal that the model exhibits a novel electronic ferroelectric state model was
made [44,45], and more recently this was successfully demonstrated through a combination
of analytic and numerical work [8–10]. In this review, we will summarize results for the
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Figure 7: Dispersion of the Falicov Kimball model (a) for the case of zero tf , (b) for the case of nonzero tf

charge structure simulations and will present results for the electronic ferroelectric state,
plus the other interesting states, such as orbital ordering, exhibited by this model.

The generalized Falicov-Kimball Hamiltonian we consider is

H = −td
∑

〈i,j〉

(d†idj + d†jdi) + εd

∑

i

nd
i − tf

∑

〈i,j〉

(f †
i fj + f †

j fi) + εf

∑

i

nf
i

+V
∑

i,ν=x̂,ŷ

(d†ifi+ν + f †
i+νdi − f †

i di+ν − d†i+νfi) + U
∑

i

nd
i n

f
i , (3.10)

where ǫd and ǫf are the d and f orbital energies, td and tf are the hopping integrals between
neighboring d and f -orbitals, V is the off-site hybridization between the orbital, and U
is the inter-orbital Coulomb interaction. The off-site hybridization assumes the d and
f -orbitals have opposite parity under spatial inversion (td = −tf ). For the non-interacting
problem the energy bands are given by

E±(kx, ky) =
1

2

[

(ǫd + ǫf )2 ±

√

(ǫd − ǫf )2 + 16V 2 (sin kx + sin ky)
2

]

, (3.11)

where

ǫd = εd − 2td(cos kx + cos ky), ǫf = εf − 2tf (cos kx + cos ky). (3.12)

Figure 7 illustrates typical two-dimensional band structures. To some extent, this gener-
alized Falicov-Kimball model is close to being a spinless version of the periodic Anderson
model. The key difference is the form of the band hybridization term necessitated by the
assumption of the different parity of the orbitals. The original version of the model had
tf = V = 0 and the relative parity of the orbitals was unspecified. Correlations functions
of the pseudo-spins are used to identify orbital orderings. These components are defined
by

τx
i =

1

2
(d†ifi + f †

i di), τy
i =

i

2
(d†ifi − f †

i di), τ z
i =

1

2
(f †

i fi − d†idi). (3.13)
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They are called pseudo-spin because they obey the same commutation relations as the
physical spin-1/2 components of angular momentum.

[

τx
i , τy

j

]

= τ z
i δij ,

[

τy
i , τ z

j

]

= τx
i δij ,

[

τ z
i , τx

j

]

= τy
i δij . (3.14)

The pseudospin-pseudospin correlation functions are defined in analogy to the spin-spin
correlation functions

Sα (k) =
1

N

∑

i,j

〈τα
i τα

j 〉e
ik·(xi−xj), (3.15)

where α = x, y, or z. (These are pseudo-directions.) If Sz(k) peaks at a non-zero value
of k, this is an indication of a modulation of the relative density of d and f -orbitals, that
is, an ordering of atomic orbitals. Peaks in Sx(k) and Sy(k) are indicators of more novel
types of ordering. As τx

i relates to an on-site hybridization, something that is symmetry
forbidden, a peak in Sx(k) at k = 0 would indicate the development of a spontaneous
broken time-reversal symmetry. A peak in Sy(k) signifies the development of a chiral
state, an ordering of atomic currents. As we will discuss later, when td = −tf , such states
do develop and are accompanied by the appearance of a ferroelectric state.

4 Numerical results

4.1 Three-band Hubbard model

The three-band Hubbard model (3.1) is obviously more complicated than the one-band
model. It has more degrees of freedom and a much larger parameter space. Studying it
numerically thus requires more resources to perform systematic studies so these studies
have been limited to smaller lattices and less comprehensive ranges of parameters. Nev-
ertheless, there still have been many attempts to use numerical methods to investigate its
magnetic and superconducting properties. For example, Scalettar et al. [32, 46] and Dopf
et al. [33, 47–49] did QMC simulations at finite temperatures. However, the infamous
sign problem, which is even more severe for the three-band model than for the single-
band model, further limited these studies to relatively high temperatures. Similar to the
single-band model, they found an anti-ferromagnetic state at 1/2-filling which is strongly
suppressed upon doping. With regard to the existence of superconductivity, their results
remain controversial: At finite temperatures, attractive interactions between pairs were
found, but separate claims of extended s-wave [33, 47] and d-wave superconductivity [46]
were made.

Avoiding the sign problem several groups did ED studies [50–53] of hole binding
energies, and several other groups [54–59] performed zero-temperature QMC (including
CPMC) computations calculations of superconducting pairing correlation functions. The
ED studies unequivocally established that holes can bind, and the auxiliary-field projector
QMC studies established the existence of an extended s-wave and dx2−y2-wave attractive
pairing interaction [55–57], with one claim of no evidence of s-wave superconductivity [54].
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The CPMC studies carried out by Guerrero and Gubernatis [58] and Huang et al. [59]
confirmed the ED result that holes bind but found that increasing system size tended to
decrease the long range part of the pairing correlations. In contrast to the ED work, the
CPMC studies found hole binding in the absence of a Coulomb repulsion Vpd between
charge on neighboring Cu and O sites in contrast to the ED studies which found that hole
binding requires an unphysically large value of Vpd.

With this preview, we will now review the studies in more detail and focus on three
issues: (i) the charge distribution (that is, where do the doped holes go?) (ii) the existence
of antiferromagnetic long-range order at 1/2-filling and its disappearance upon hole doping
away from half filing, and (iii) the existence of superconductivity.

With regard to the charge distribution, almost all results show that the holes mainly
distribute themselves onto the O sites, even when the difference between the O and Cu
orbital energies ǫ = εp − εd is relatively large. There are basically two regimes in the
parameter space: the charge transfer regime, Ud > ǫ > W and Vpd > 0, and the mixed-
valent regime, Ud > W > ǫ, where W is the bandwidth for non-interacting case. In
the charge transfer regime, Vpd is expected to induce charge transfer from the O to the
Cu sites as it is increased. The transfer rate should also increase if ǫ is increased. On
the other hand, in the mixed-valent regime, the transfer is holes from the Cu to the O
sites. Here, ǫ is small and a strong on-site repulsive Ud, favoring charge transfer from
the Cu sites, should dominate the smaller repulsive Vpd which opposes the movement of
charge to the O sites. These trends were also observed in the finite-temperature QMC
[47], the CPMC studies [59], and zero-temperature exact diagonalization [46] studies.
An important conclusion is that in the physically relevant charge transfer region, hole
binding energy is mainly gained from magnetic mechanisms, rather than from the so
called electronic polarization mechanism suggested by early exact diagonalization studies
at the limit UCu = UO = ∞ [53].

The local magnetic moment and spin-spin correlation function are typically calculated
to understand the magnetic properties of the model. Fig. 8 shows the magnetic moment
on the Cu site as a function of Vpd and doping. These results were obtained from a CPMC
simulation of a 6× 6 lattice by Huang et al. [59]. For a given ǫ, increasing the hole doping
increases the moment, while for a given doping, increasing ǫ also increases the moment.
The effect of Vpd depends on the value of ǫ, showing the moment increase being strongly
correlated with the charge on the Cu sites.

An important feature of the cuprates is the appearance of incommensurate peaks in
neutron scattering measurements of the spin-spin correlation functions. Similar peaks are
observed in the CPMC calculations of this function for the three-band model, and typical
results are shown in Figs. 7 and 8 in the Ref. [59]. As shown, there are two principal
peaks in the Fourier transform of the static Cu spin-spin correlation function: one is the
displaced antiferromagnetic peak at (π, π − δ) and the other is the incommensurate peak
at (π − δ′, π − δ′). This latter peak was also observed in the numerical simulations of
the single-band Hubbard model [60–62], and it qualitatively agrees with the experimental
data for (La1−xSrx)2CuO4 [63], where a minimum is observed at (π, π) along the diagonal
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direction.

The three-band model has an important additional parameter that the one-band model
lacks, the hopping between oxygen sites tpp. The value of this parameter strongly influences
the incommensurate peak along the diagonal direction. Huang et al. [59] showed that even
for a very small tpp, a weak peak exists at (π − δ′, π − δ′). On increasing tpp, the spin-spin
correlations are strongly suppressed near the antiferromagnetic wave vector (π, π), and at
the same time the amplitude of the incommensurate peak along the diagonal direction,
or simply the tendency to form this peak, is enhanced. Studies of the magnetic structure
factor also showed that antiferromagnetism at 1/2-filling is destroyed by hole doping,
similar to the destruction seen in the single-band model. For 1/2-filling, increasing tpp

greatly suppresses antiferromagnetic order. These results suggest that tpd, Ud, and ǫ are
the most important parameters for the intrinsic physics of cuprates compounds.

Finally, we come to the most relevant question for studying the three-band model,
Does it support an electronic mechanism for superconductivity? To answer this question,
the long distance behavior of the pairing correlation function was studied. Shown in Fig. 9
is a typical d-wave pairing correlation function as a function of distance and Vpd. Here,
we observe a large peak at short distances (|R| < 2). At these distances, increasing Vpd

increases the magnitude of the correlations slightly. At larger distances (|R| > 2), the
trend reverses. The dominance of the local peak means the k = 0 Fourier transform of
the pairing correlation function, that is, the integral of P (R) with a large distance cut-off,
exhibits behavior indicative only of short-range behavior and hides the more relevant long-
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correlations [59].

range behavior. In Fig. 10 is the long-range behavior of the dx2−y2-wave and extended
s-wave pairing correlation functions averaged over R > 2. As a function of distance, they
both decay quickly. In the charge-transfer regime, increasing Vpd decreases the long-range
part of both correlation functions, while in the mixed-valent regime, it increases the long-
range part of the s-wave behavior but decreases that of the d-wave behavior. For all cases
simulated, the long-range part of the d-wave contribution is consistently larger than the
s-wave contribution. However, these correlations are rather weak, and their dependence on
lattice size is similar to that found for the d-wave paring correlation functions of the single-
band model; namely, increasing the lattice size systematically suppresses the long-ranged
parts of these correlations.

4.2 Periodic Anderson model

Early numerical works on the PAM dealt mainly with the symmetric case (U = −εf/2)
of the standard Hamiltonian

H = −td
∑

i,j,σ

(d†iσdjσ + d†jσdiσ)

+V
∑

i,σ

(d†iσfiσ + f †
iσdiσ) + U

∑

i

nf
i↑n

f
i↓ , (4.1)
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at 1/2-filling (2 electrons per lattice site). For instance, Blankenbecler et al. [64], in
particular, performed a QMC calculation on a finite chain up to 16 sites and observed
short-ranged antiferromagnetic correlations. These results were confirmed by subsequent
ED work [65–67]. Ueda et al., in particular, studied the importance of RKKY and Kondo
interactions to the stability of the ground state. For the 2D case, Zhang et al. [68] used a
QMC method to study spin-spin correlation functions and susceptibilities on 4×4 and 6×6
square lattices. Later, Callaway et al. [69–72] performed ED studies and confirmed the
work of Zhang et al. All the numerical results were consistent with analytic results [73–75].

An important issue for the PAM is the nature of its charge transfer gap. The system
can be metal or insulator depending on the value of the Coulomb interaction Uf , f -orbital
energy εf , and the hybridization V between the d and f -bands. Using ED, Nishino et

al. [76] studied the dependence of the spin excitation ∆(s) and charge excitation ∆(c)
gaps for 1/2-filled chains up to 8 sites as a funcion of the Coulomb coupling Uf . They
observed that the ratio of the gaps, R = ∆(c)/∆(s), increases monotonically from unity
when Uf = 0 and diverges in the strong-coupling limit. In particular, ∆(s) decreases
exponentially as Uf is increased but ∆(c) at the same time decreases much more slowly.
This behavior was later confirmed by Tian’s rigorous result [77,78].

When the f -band is dispersive, Guerrero et al.’s DMRG work [79,80] gave some addi-
tional insight. For Uf = 0, a small dispersion in the f -band can close the hybridization and
hence the charge transfer gap. In contrast, when Uf is large, the dispersion has little affect
on the charge transfer gap. This suggests that for a given dispersion, a metal-insulator
transition may occur at a critical value of the Coulomb repulsion U c

f . An analytic calcu-
lation shows that this transition in fact occurs at Uf = 0. In contrast to this behavior
for the charge transfer gap, the spin gap is strongly suppressed as Uf is increased. This
suppression is associated with the enhancement of antiferromagnetic correlations, with the
spin gap closing when Uf is increased enough so an antiferromagnetic state develops.

Before investigating the magnetic properties of PAM for fillings far away from 1/2-
filling, the effect of doping away from 1/2 filling should be mentioned. Bonča et al. [81]
found the non-monotonic effect of doping, which means doping does not always enhance
or reduce the magnetism. The reason why lies in the features of the band structure,
segmented features and Fermi surface nesting for some given parameters.

Mapping the phase diagram of the system is always the most interesting challenge.
Considerable numerical and analytic work has been poured into this. Since the lattice
sizes typically are less than what is needed to extrapolate to the thermodynamic limit,
only the broad features as opposed to precise boundaries, are obtained. The interesting
parameter region was found from 1/4 to 1/2-filling with different hybridizations V , f -
orbital energies εf , and Coulomb interactions Uf .

For perspective, we first consider the phase diagram obtained by Moller and Wolfle
[82] by using the slave-boson theory mean-field of Kotliar and Ruckenstein [83]. They
studied the ground state of the symmetric, finite U , periodic Anderson model and found
at 1/2-filling a charge gap for all U > 0 and a transition from a paramagnetic to an
antiferromagnetically ordered (AF) state at a critical value of U for given value of V .
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The AF state was the one lowest in energy within a manifold of spiral magnetic states.
Results for the energy, hybridization matrix element, and local moment compared well with
quantum Monte Carlo results for finite systems. Lowering the electron density induces a
smooth crossover from AF to ferromagnetic (FM) order via a spiral phase. Just above
1/4-filling, they found a first order transition from FM to AF order. The insulating state
at 1/4-filling was well described by an AF Heisenberg model.

In 1996 Guerrero et al. [84] used the DMRG method to obtain the magnetic phase
diagram of the 1D PAM as a function of band filling. For strong coupling, the 1/4-filled
system (one electron per site) has an S = 0 ground state with strong antiferromagnetic
correlations. As electron filling increases, they found first a ferromagnetic phase, as also
reported by Moller and Wolfle [82], and then a singlet (S = 0) phase. Within this phase,
they reported Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillations in the spatial depen-
dence of spin-spin correlation functions.

Using the constrained-path Monte Carlo method, Batista et al. [37] and Wang et

al. [85] studied the magnetic properties of the two-dimensional periodic Anderson model for
electron fillings from 1/4 to 1/2. For 1/4-filling, they found that the system can be a Mott
or a charge-transfer insulator, depending on the relative values of the Coulomb interaction
and the charge-transfer gap between the two noninteracting bands. The insulator may
be a paramagnet or antiferromagnet. Upon electron doping away from 1/4-filling, they
observed a partially saturated ferromagnetic phase for a variety of parameter combinations.
Provided the system was a charge-transfer insulator, the ferromagnetism was induced by
the RKKY interaction. The regions of ferromagnetism spanned a much smaller doping
range than suggested by the above slave boson [82] and dynamical mean-field theory
(DFMT) calculations [86, 87], but they were consistent with those obtained by Guerrero
et al. for the one-dimensional periodic Anderson model. For fillings between 3/8 and 1/2,
Bonca and Gubernatis [81] predicted a PM region, whereas mean-field theory predicts
ferromagnetic states in part of that region. In fact, at a filling of 3/8, where DMFT
calculations predict ferromagnetism, they found a spin-density-wave state with a wave
vector equal to (π, 0) or (0, π).

The ED method was also applied to the PAM to study its magnetism. Wang et al. [85]
carried out calculations for a 6 and 8 site chain. For the 6-site chain, their simulations
ranged from 1/4 to 1/2-filling with different f -band dispersions but with typical values
of εf and V . For the 8-site chain, they conducted their simulations only for the number
of electrons Ne = 6, 8, and 10. The energy E(S) versus magnetization S curves and
wavevector dependent spin-spin correlation functions were computed to determine which
magnetic state is stable in the ground state. E(S) versus S curves for the 6-site chain are
shown in Fig. 11 and the spin-spin correlations are shown in Fig. 12. From the figures
the magnetic regions are observed emerging in the paramagnetic (nonmagnetic) regime.
Antiferromagnetism is observed around 1/2 and 1/4-filling for appropriate parameters.
Ferromagnetic states are stable for fillings between 1/4 and 3/8, which qualitatively agrees
with above DMRG and QMC works [36,38].

The existence of antiferromagnetism at 1/4 and 1/2-fillings is suggested by the follow-
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Figure 11: E(S) versus S curves for 1/4 to 1/2 filing and εf = −2 with V = −0.5 on a 6-site chain [85].

ing argument. For 1/4-filling, a very negative f -electron orbital energy places one electron
per f -orbital, and the resulting system behaves like a one-band 1/2-filled Hubbard model
which is antiferromagnetic. This is illustrated in Fig. 12. For 1/2-filling, with relatively
small values of the f -electron orbital energy and V , but a large value of Uf , one elec-
tron per f -orbital, (and d-orbital) is induced, and again the system is like the Hubbard
model, but now weakly coupled to a non-interacting environment of d-electrons. This is
illustrated in the last plot of Fig. 12.

The mechanism for ferromagnetism between 1/4 and 3/8-fillings is less obvious [36–
40, 81, 86–89]. The work of Batista et al. [38, 39, 89] established that more than one
exists, with none consistent with the traditional one, extracted from mean-field theories,
of a competition between RKKY and Kondo interactions. For example, in the mixed
valent state, Batista et al. attributed the appearance of ferromagnetism to a segmented
band mechanism (Fig. 13). In this mechanism, the effect of the Coulomb interaction
is the promotion of electrons near the Fermi energy into unoccupied f -states associated
with the lower bands. These electrons align ferromagnetically so the spatial part of their
wavefunction is antisymmetric and supports the reduction of the Coulomb interaction by
allowing spatial separation of the electron. The basic competition is between two energy
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Figure 12: Spin structure factor curves for 1/4 to 1/2 filing with V = −0.5 on a 6-site chain [85].
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scales ∆, the gap of the system, and δ, the energy cost of the spread of the electrons out
of the Fermi sea into the f -like state. If ∆ >> δf , a ferromagnetic state will exist.

To assess the stability of the ferromagnetic state and the relevance of the model to real
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materials, Batista et al. [39] added dispersion to the f -band for a few test cases and found
that it could sometimes greatly change the ground state state. Using the CPMC and
ED methods, Shik et al. [90] investigated the matter further. They found that depending
on the values of tf and εf strong antiferromagnetism was induced among among the f -
electrons, but their ED results, for example, the third plot of Fig. 11, showed that positive
dispersion and large negative dispersion seems to destroy the ferromagnetic ordering but
the negative dispersion, when not too large, seems to enhance it for the given values of εf .

4.3 Falicov-Kimball model

Considerable numerical and analytic work has been poured into the original version of the
Falicov-Kimball model [31]

H = −td
∑

〈i,j〉

(d†idj + d†jdi) + εf

∑

i

nf
i + U

∑

i

nd
i n

f
i . (4.2)

Besides conserving the total number N = Nd + Nf of electrons, this Hamiltonian also

conserves the number of d-electrons Nd =
∑

i nd
i , the number of f -electrons Nf =

∑

i n
f
i ,

and the number of f -electrons nf
i at each site. The latter conservation enables the rewriting

of the Hamiltonian as

H ′ = −td
∑

〈i,j〉

(d†idj + d†jdi) + εf

∑

i

wi + U
∑

i

nd
i wi , (4.3)

where the wi = 0 or 1 are the eigenvalues of nf
i constrained so that Nf =

∑

i wi. Being
quadratic in the creation and destruction operators, (4.3) has the form of a non-interacting
problem. Accordingly, as the main numerical approach, a conventional eigensolver, a true
exact diagonalization method, is used to find all the eigenvalues for each Hamiltonian
representing one of the 2L possible configurations of f -electrons for a lattice of L sites
and a given value of N . When L gets too large, a Monte Carlo method is used to sample
the most important configurations. By inspection, the configuration with the lowest total
energy determines the ground state.

For one-dimensional systems, various types of charge-ordered, mixed valent, and phase-
separated states are found as a function of the model’s parameters and electron density
[91–94]. A true exact diagonalization was used. Transitions between conducting and
insulating states as well as valence transitions are observed. In contrast to Hartree-Fock
predictions, the number of discrete valence transitions were found to be just a few for
large U . In weak coupling, the valence transitions are gradual, metal-insulator-like, and
accompanied by a discontinuous change in the energy gap. In strong coupling they are
also metal-insulator-like. There are also relatively fewer phases and these are formed from
the most homogeneous of possible configurations with the smallest periods.

The conservation of nf
i implies the absence of f -electron dynamics

i~
dnf

j

dt
=

[

nf
j ,H

]

= 0.
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This absence clearly restricts the physics of the model, and it is not surprising that when
an on-site hybridization was added,

H = −td
∑

〈i,j〉

(d†idj + d†jdi) + εf

∑

i

nf
i + U

∑

i

nd
i n

f
i + V

∑

i

(d†ifi + f †
i di), (4.4)

which breaks this symmetry (and the conservation of Nd and Nf ), the physics markedly
changed.

The most interesting physical consequence of such a symmetry breaking is a proposal
by Sham and co-workers [44, 45] that when the on-site orbitals have opposite parity, a
Hamiltonian such as

H = −td
∑

〈i,j〉

(d†idj + d†jdi) + εf

∑

i

nf
i + U

∑

i

nd
i n

f
i

+V
∑

i,ν=x̂,ŷ

(d†ifi+ν + f †
i+νdi − f †

i di+ν − d†i+νfi) (4.5)

can exhibit a ferroelectric ground-state caused by a Bose-Einstein condensation (BEC)
of excitons (bound particle-hole pairs) accompanied by the spontaneous generation of an
on-site hybridization which breaks spatial inversion symmetry.

In a series of papers, Farašovký [95–97] studied the role of local hybridization on
the valence and metal-insulator transitions in the one- and two-dimensional versions of
Eq. (4.4) by using the Lanczos and DMRG methods. Targeted were the gaps in the energy
spectrum. He found that at zero hybridization the gaps in the d and f density of states do
not coincide and almost all the f -electron spectral weight is located outside the d-electron
sub-bands. For nonzero hybridization the d and f gaps coincide. No hybridization driven
metal-insulator transitions were found in either dimension.

Farašovký also studied the effect of a non-local hybridization on these transitions in
the one dimensional version of Eq. (4.5) by using the DMRG method [98,99]. Significant
differences between the results for local and non-local hybridizations occur. The effect of
non-local hybridization can be so strong that it can induce a metal-insulator transition
even in the 1/2-filled case where the ground states with and without hybridization are
insulating for all finite values of the Coulomb interaction. This metallic state persists
outside the 1/2-filled case and up to relatively large values of εf where the model undergoes
a continuous transition into an insulating state.

The novel condensate proposal was also investigated numerically by Farašovky with
the Lanczos methods [100] and then with the DMRG method [101], using Eq. (4.4) in
one dimension with the on-site hybridization treated as a small symmetry breaking term.
As V vanished the expectation value 〈f †

i di〉 vanished which was interpreted as signifying
the absence of the proposed electronic ferroelectricity. Thus his conclusion is correct but
trivial.

In a series of papers, Batista and co-workers [8–10] clarified the situation. Breaking the
conservation of on-site f occupancy (but not the conservation of Nd and Nf ) by starting
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with

H = −td
∑

〈i,j〉

(d†idj + d†jdi) + εd

∑

i

nd
i + U

∑

i

nd
i n

f
i − tf

∑

〈i,j〉

(f †
i fj + f †

j fi) + εf

∑

i

nf
i (4.6)

instead of Eq. (4.4) or (4.5), Batista [8] first showed that in the strong coupling limit
(U ≫ |td|, |tf |) this Hamiltonian is equivalent to an anti-ferromagnetic spin-1/2 XXZ-
Heisenberg model in an external magnetic field where the true electron spin operators are
replaced by the pseudo-spin operators Eq. (3.13). From extensive pre-existing numerical
work in two and three dimensions, this model is known to possess a state of planar magne-
tization (perpendicular to the pseudo z-direction) for a sufficiently strong pseudo-magnetic
field. In this state the x-component of the pseudo-magnetization corresponds to a state of
spontaneous global on-site hybridization, and the y-component, to a state of spontaneous
ordering of local atomic currents, a magnetic quadrapolar state. The two component order
parameter M⊥ = (Mx,My) → |M⊥|eiφ exhibits the phase coherence of a condensate. Ad-
ditionally, for weaker fields, the ground state is pseudo-antiferromagnetic, corresponding
to a staggered ordering of atomic orbitals in terms of the original degrees of freedom.

The Lanczos and constrained-path Monte Carlo method were used to study Eq. (4.6)
in the intermediate coupling regime and confirmed the persistence of the basic features
of the strong coupling phase diagram. The nature of the ground state was determined
by examining the pseudo-spin correlation functions and extrapolating their peaks to the
thermodynamic limit. Figure 14 shows the one and two dimensional phase diagrams
obtained with the CPMC method.

The effects of an off-site hybridization was next considered by using

H = −td
∑

〈i,j〉

(d†idj + d†jdi) + εd

∑

i

nd
i + U

∑

i

nd
i n

f
i

+V
∑

i,ν=x̂,ŷ

(d†ifi+ν + f †
i+νdi − f †

i di+ν − d†i+νfi)

−tf
∑

〈i,j〉

(f †
i fj + f †

j fi) + εf

∑

i

nf
i . (4.7)

Perturbation arguments, supported by Lanczos and constrained-path Monte Carlo calcula-
tions, proposed that the spontaneous hybridization of the orbitals, and hence a ferroelectic
ground state, can still occur, but only Sx(q = 0) extrapolates to an non-zero value in the
thermodynamic limit. This is illustrated in Fig. 15. Accordingly, the effect of the off-site
hybridization is to change the ground state from one that breaks guage invariance (breaks
U(1) symmetry) to one that breaks a polar symmetry (a Z2 symmetry).

In the original Falicov-Kimball model (4.2), the conservation of local f -electron charge

corresponds to a local gauge symmetry: f †
i → eiφf †

i . The phase coherent condensate rep-
resented by the BEC of excitons corresponds to the breaking of a global gauge symmetry.
By Elitzur’s Theorem [102], a global gauge symmetry cannot be broken if a local gauge
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Figure 14: On the left and right are the one and two dimensional phase diagrams of the version of the Falicov-
Kimball model described by Eq. (4.6). Here, Bz = εd − εf , SOO denotes staggered obitally ordered, and fully
polarized refers all the d or f orbitals being fully occupied at each lattice site [9].

Figure 15: Extrapolation of the pseudospin correlation functions to the thermodynamic limit for a two-
dimensional Falicov-Kimball model (4.7) with off-site hybridization. The dashed curve for the x-component
is for U = 2; the others are for U = 4 [9].

symmetry exists. Physically, the holes cannot move, and hence cannot condense. To allow
the necessary dynamics, the local guage symmetry has to be eliminated. The sequence of
Hamiltonians, Eqs. (4.4) to (4.7) represents various ways of doing this, but only Eq. (4.6)
leads to BEC. Mean-field theory predicts a BEC of excitons as a ground state for Eq. (4.5).
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Adding spin is the next natural enhancement to the Falicov-Kimball model [95]. There
are several ways to do this, leading to several generalizations of the Falicov-Kimball model
that are special cases of a two-band Hubbard model

H = −
∑

〈i,j〉,ν,ν′,σ

tνν′

(

c†iνσciν′σ + c†iν′σciνσ

)

+
∑

i,ν

εvn
ν
i

+
∑

i

Udfnd
i n

f
i +

∑

i,ν

Uννn
ν
i↑n

ν
i↓,

(4.8)

where ν = {d, f}, c†iνσ = {d†iσ , f †
iσ}, nν

iσ = c†iνσciνσ, and nν
i =

∑

σ nν
iσ.

Using a true exact diagonalization method, the Lanczos method, and small clusters,
Farašovsky and coworkers [103–105] studied cases of this Hamiltonian that conserved nf

iσ.
The focus was on the consequence of a Udf in the absence of an interband hybridization.
One- and two-dimensional lattices were studied. Typically U is very large. They found
that their models describe two types of discontinuous valence transitions: In the weak
coupling limit there is a metal-insulator transition from an integer valence state with
nf = 1 to a mixed valence state with 0 < nf < 1; in the strong coupling limit there is
a metal-insulator transition from nf = 1 to nf = 0. The detailed picture is relatively
complicated. Phase-separated states were also found. Some evidence of pairing of local
f -electrons was also reported.

Batista and coworkers [106] analytically studied Eq. (4.8) in the strong coupling limit
and proved that ferromagnetism and ferroelectricity can co-exist in the ground state in the
limit Uaa, Ubb → ∞. They then used the Lanczos method to compute the strong coupling
phase diagram for a small cluster. A rich variety of co-existing phases was seen. Equation
(4.8) is presently being investigated by the DMRG and constrained path Monte Carlo
methods for larger lattices at weaker couplings.

Some other work on the Falicov-Kimball model includes changing the nearest neighbor
hopping to being long ranged [107,108] or correlated (dependent on the occupancy of the
f -orbitals at the two sites) [109–111] . The consequences relative to the original Falicov-
Kimball model can be significant, for example, inducing metal-insulator transitions where
there were previously none. We will not discuss these results further.

5 Summary

Numerical studies have revealed a variety of ground state behaviors for the three-band
Hubbard, periodic Anderson, and Falicov-Kimball models. Some of the behaviors were
expected; some were not. These methods are clearly a valuable tool for unravelling and
unveiling the fascinating consequences that quantum mechanics has on the properties of
systems of interacting electrons.

For the three-band Hubbard model, the numerical results point to ground states where
holes bind. The expected consequences of this binding, phase separation or superconduc-
tivity, remain underestablished. A superconducting state, if it exists, is likely extremely
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subtle, as the vertex contribution to the pairing correlations, that is, the part due to the
dressing of the electron by the interactions, is small and appears to scale into the noise of
the simulation as the lattice size or interaction strength is increased. The static spin struc-
ture factor sometimes exhibits features consistent with experiment, but such features are
possibly a general consequence of spin fluctuations rather than a signature of an incipient
superconducting state [112].

Perhaps the most surprising finding for the periodic Anderson model is the apparent
minor role played by the competition between the RKKY and Kondo interactions in
framing most of its physics. The now well-established itinerant ferromagnetic region is
novel in that at least three different mechanisms have been documented for its origin. Its
most striking feature is the co-existence of itinerant ferromagnetism and mixed valency.
This co-existence is in sharp contrast to the predictions of many mean-field theories. While
the different mechanisms appear in different parameters regimes, their common physics are
constructive quantum interference effects. The observed itinerant magnetism is definitely
more Nagaoka-like than Stoner-like [40,114].

Metallic to insulating transitions are found in various types of the Falicov-Kimball
models. The novel purely electronic mechanism for ferroelectricity is now well established
and clarified. Along with this is the appreciation that the the dynamics of the f -electrons,
absent in the original model, is essential to this physics. Multiferroric behavior is now
being simulated more extensively in generalizations of the model.

These results and others point to the strength of the numerical methods used. An
important point is that while the Monte Carlo methods have not pulled superconductivity
out the three-band model, they have pulled a non-trivial phase coherent ground state out
of an extended Falicov-Kimball model. This state of off-diagonal long-range order co-exists
with an ordered state of atomic currents.

The numerical methods are not without their shortcomings. The Lanczos method
is restricted to small systems, the density-matrix renormalization group is best in one
dimension and short-ranged interactions, and quantum Monte Carlo methods, such as the
constrained-path method, have limited precision. The limitations in the Lanczos method
are intrinsic; those for the other two are less so. As an agenda for future research, attention
to algorithmic improvement is encouraged. An area needing the most attention is finite
temperature methods.

In short, multiband models present an opportunity to explore and discover novel phys-
ical phenomena and yet remain simple enough so the interpretation of this physics is pos-
sible. Various numerical methods are an important tool toward researching this physics.
The current interest of multiband models is poised to grow.
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