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Abstract. We develop an efficient one-dimensional moving mesh algorithm for solv-
ing partial differential equations. The main contribution of this paper is to design an
effective interpolation scheme based on L2-projection for the moving mesh method.
The proposed method preserves not only the mass-conservation but also the first order
momentum of the underlying numerical solution at each mesh redistribution step. Nu-
merical examples are presented to demonstrate the effectiveness of the new interpolation
technique.
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1 Introduction

In the past two decades, there has been important progress in developing adaptive mesh
methods for PDEs. Mesh adaptivity is usually of two types: local mesh refinement and
moving mesh method. In local mesh refinement methods, see, e.g., [1], an adaptive mesh
is obtained by adding or removing grid points to achieve a desired level of accuracy. They
allow a posteriori error estimates to guide the mesh refinement and coarsening. However,
local mesh refinement methods require complicated data structures, and increase computer
code complexity. In the moving mesh method, the mesh points are moved continuously in
the whole domain to concentrate in regions where the solution has the largest variations.
Unlike the local mesh refinement methods, the moving mesh method keeps a fixed number
of mesh points throughout the computation.
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There have been a variety of moving mesh techniques, including the variational ap-
proach [2, 21]; the moving finite element methods [7, 13]; the moving mesh PDEs ap-
proach [4, 5, 10]; the moving mesh methods based on harmonic mapping of [9, 11, 12].
We can classify the moving mesh methods into two classes: interpolation free moving
mesh methods and moving mesh methods using interpolation. The earlier works such
as [8, 13] are directly based on the equidistribution principle which was first proposed by
de Boor [3]. Generally speaking, the earlier moving mesh methods have a common feature
that the grid equation is strongly coupled with the underlying PDEs, and consequently,
their numerical approximation leads to a nonlinear system even if the underlying PDEs
are linear. Since the mesh redistribution and the PDEs are solved simultaneously, the in-
terpolation of solution information from the old mesh to the new mesh is unnecessary. So
we call this class of methods interpolation-free moving mesh methods. Another group of
interpolation-free moving mesh methods was developed by Russell and his research group;
see, e.g., [4]. Their moving mesh equation is written as moving mesh partial differential
equations (MMPDEs) based on the equidistribution principle.

Li et al. [11] developed a moving finite element method containing two independent
parts: solution evolution and mesh redistribution. These two parts are relatively inde-
pendent in the sense that the change of the underlying PDEs will only affect the first
part (solution evolution), while the second part (mesh redistribution) is kept unchanged.
An immediate advantage of this class of methods is the computer code simplicity. In the
mesh redistribution part, the adaptive mesh is usually generated through some iterative
algorithm, which makes the solution interpolation from one iteration step to the next in-
dispensable. In the moving finite element paper [11], a convection equation is solved to
pass the solution in the old mesh to the new mesh. Later, Tang and Tang [18] proposed
a moving mesh finite volume method, which uses conservative interpolation to pass the
soution information from the old mesh to the new mesh. This method has recently been
applied to the Hamilton-Jacobi equations [19], convection-dominated problems [24, 25],
and phase-field problems [17]. The conventional interpolation method, such as third order
polynomial interpolation [14], is applied to solve the Schrödinger equations involving static
blow-ups.

The main objective of this work is to propose an interpolation algorithm based on
L2-projection for the moving mesh method. Similar to [11, 18, 25], our moving mesh ap-
proach includes two independent parts: PDE solution evolution and mesh redistribution.
The first part is problem-dependent, that is to say, we need to design appropriate nu-
merical solvers for different governing equations. In the second part, we need to transfer
the solution information from the old mesh to the new one. This is similar to an Arbi-
trary Lagrangian-Eulerian (ALE) method, where a remapping algorithm plays an essential
and important role. A good remapping scheme should possess properties such as accu-
racy, conservation and computational efficiency. Many authors have worked on developing
remapping strategies. Recently, Cheng and Shu [6] proposed a high-order accurate conser-
vative remapping method on staggered meshes. Their method is built on the framework
of ENO interpolation and reconstruction, so it has the good properties such as high-order
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accuracy and essential non-oscillatory performance. In this paper, the mesh is generated
using the equidistribution principle, and then the solution in the old mesh is interpolated
to the new mesh by using an L2-projection technique.

The idea of applying L2-projection to moving mesh interpolation is new. An impor-
tant property of the proposed interpolation is that the mass-conservation and momentum
are preserved after interpolation, which is an essential requirement for many practical
problems. The paper is organized in two main parts. The first part (Sections 2 and 3)
introduces our moving mesh strategy and derives the interpolation scheme based on L2-
projection. In the second part (Section 4), several numerical experiments including KdV
equation and Kuramoto-Sivashinsky equation are presented to show the effectiveness of
the proposed algorithm. Finally, some concluding remarks will be given in Section 5.

2 Moving mesh algorithm

As mentioned in Section 1, our solution procedure contains two independent parts: PDE
solution evolution and mesh redistribution. Here, we give a brief derivation of the 1D mesh
generation equation. Let x = (x1, · · · , xd) and ξ = (ξ1, · · · , ξd) denote the physical and
computational coordinates, respectively. Here d denotes the number of spatial dimensions.
A one-to-one coordinate transformation from the computational (or logical) domain Ωc to
the physical domain Ωp is denoted by x = x(ξ), ξ ∈ Ωc. Similarly, the inverse form is
denoted by ξ = ξ(x), x ∈ Ωp. In the variational approach, the mesh map is to find the
minimizer of the functional

E(ξ) =
1

2

∑

k

∫

Ωp

∇ξT
k G−1

k ∇ξkdx, (2.1)

where the Gk’s are given symmetric positive definite matrices called monitor functions.
In general, a monitor function depends on the solution or its derivatives of the underlying
PDE. The corresponding Euler-Lagrange equation for the variational mesh functional (2.1)
is given by

∇ · (G−1
k ∇ξk) = 0, 1 ≤ k ≤ d. (2.2)

The simplest choice of the monitor function is Gk = ωI, 1 ≤ k ≤ d, where I is the identity
matrix and ω is a weight function. In this sense, the equation (2.2) reduces to Winslow’s
variable diffusion method [21]:

∇ ·
(

1

ω
∇ξk

)

= 0, 1 ≤ k ≤ d. (2.3)

Therefore, the above equation determines a map between the physical domain Ωp and the
computational domain Ωc.

For 1D problems, assume the physical domain is [a, b] and the computational domain is
unit interval [0, 1], respectively. The 1D Euler-Lagrange equation becomes (ω−1ξx)x = 0,
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Table 1: Outline of 1D moving mesh finite volume algorithm.

Initialize variables
0. Determine the initial mesh based on the initial function.

1. Determine ∆t based on some stability condition so that tn+1 = tn + ∆t.

2. Advance the solution one time step based on an appropriate numerical scheme.

3. Mesh Redistribution

a. Solve the mesh redistributing equation (a generalized Laplacian equation) by
one Gauss-Seidel iteration, to get x(k),n

b. Interpolate the approximate solutions on the new grid x(k),n

c. A weighted average of the locally calculated monitor at each computational cell
and the surrounding monitor values.

d. The iteration procedure (a.)-(c.) on grid-motion and solution-interpolation is
continued until there is no significant change in calculated new grids from one
iteration to the next.

Start new time step (go to 1 above).

x ∈ [a, b]. Equivalently, from the above equation we can obtain the conventional 1-D
equidistribution principle equation:

(ωxξ)ξ = 0, ξ ∈ [0, 1]. (2.4)

In this work the mesh equation (2.4) is used to generate the moving mesh. A complete
solution procedure is displayed in Table 1.

In the step 3(a) of Table 1, the iterative step is performed following Gauss-Seidel
formula:

x
(k+1)
j =

(

ω
(k)
j+1x

(k)
j+1 + ω

(k)
j−1x

(k+1)
j−1

)

/
(

ω
(k)
j+1 + ω

(k)
j−1

)

. (2.5)

In the step 3(c), the monitor function is smoothed as indicated below:

ωj ←
1

4
(ωj−1 + 2ωj + ωj+1). (2.6)

In the step 3(b), the interpolation is realized through an L2-projection technique which
will be described in detail in Section 3.

3 Interpolation based on L
2-projection

In the step 3(b) of Table 1, we need to transform the solution information from the old
mesh to the newly produced mesh. Let {xj} be the old mesh and {x̃j} be the new one.
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Case a.

Case b.

Case c.

Case d.

Figure 1: Demonstration of the new and old mesh distribution.

The numerical solution should be projected from the approximation function space Vh

defined on {xj} to another approximation function space Wh defined on {x̃j}. Let

V (Ij+ 1

2

) = {φ0,j+ 1

2

(x), φ1,j+ 1

2

(x), · · · , φp,j+ 1

2

(x)} (3.1)

be a local basis of the space Vh in cell Ij+ 1

2

, and

W (Ĩj+ 1

2

) = {φ̃0,j+ 1

2

(x), φ̃1,j+ 1

2

(x), · · · , φ̃p,j+ 1

2

(x)} (3.2)

be a local basis of the space Wh in cell Ĩj+ 1

2

. Assume we have already constructed a

piecewise polynomial approximation uh(x) ∈ Vh in the mesh {xj}. That is, in the control
volume Ij+ 1

2

, we have

uh(x) =

p
∑

i=0

ai,j+ 1

2

φi,j+ 1

2

(x), x ∈ Ij+ 1

2

, (3.3)

where p denotes the degree of the piecewise polynomial, and the coefficients {ai,j+ 1

2

}
will be determined through some kind of resconstruction such as a slope limiter or an
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essentially non-oscillatory (ENO) method. After one step of Gauss-Seidel iteration (step
3(a) in Table 1), we obtain the new mesh distribution {x̃j}. In the new control volume
Ĩj+ 1

2

, we also have the following form of piecewise polynomial approximation ũh(x) ∈Wh:

ũh(x) =

p
∑

i=0

ãi,j+ 1

2

φ̃i,j+ 1

2

(x), x ∈ Ĩj+ 1

2

. (3.4)

The coefficients {ãi,j+ 1

2

} are to be determined based on piecewise polynomial distribution

defined on the old mesh, i.e., (3.3). In this work, an L2-projection will be used to find the
ũh(x) in (3.4). Since the approximation function space consists of piecewise functions, the
L2-projection leads to a local and simple linear system.

Multiplying both sides of (3.4) by the basis function φ̃l,j+ 1

2

(x) ∈ W (Ĩj+ 1

2

) and inte-

grating the resulting equation over the cell Ĩj+ 1

2

lead to the following equations:

∫

Ĩ
j+ 1

2

uh(x)φ̃l,j+ 1

2

(x)dx =

∫

Ĩ
j+1

2

ũh(x)φ̃l,j+ 1

2

(x)dx, φ̃l,j+ 1

2

(x) ∈W (Ĩj+ 1

2

), (3.5)

for l = 0, 1, · · · , p. We replace uh(x) and ũh(x) above by (3.3) and (3.4), respectively.

We now consider all the possible cases for the grid structures as shown in Fig. 1. If
the grid points of the old and new meshes are distributed as shown in Fig. 1(a), then (3.5)
becomes

p
∑

i=0

ãi,j+ 1

2

∫

Ĩ
j+1

2

φ̃i,j+ 1

2

(x)φ̃l,j+ 1

2

(x)dx (3.6)

=

∫ xj

x̃j

uh(x)φ̃l,j+ 1

2

(x)dx +

∫ x̃j+1

xj

uh(x)φ̃l,j+ 1

2

(x)dx

=

p
∑

i=0

ai,j− 1

2

∫ xj

x̃j

φi,j− 1

2

(x)φ̃l,j+ 1

2

(x)dx +

p
∑

i=0

ai,j+ 1

2

∫ x̃j+1

xj

φi,j+ 1

2

(x)φ̃l,j+ 1

2

(x)dx,

for φ̃l,j+ 1

2

(x) ∈ W (Ĩj+ 1

2

), l = 0, 1, · · · , p. Since (3.3) has been constructed, all the terms

in the right-hand side of (3.6) are known. Therefore, (3.6) forms a linear system for the
unknown {ã0,j+ 1

2

, ã1,j+ 1

2

, · · · , ãp,j+ 1

2

}. Similar systems can be obtained for Cases (b)-(d):

For the case (b) in Fig. 1, we have

p
∑

i=0

ãi,j+ 1

2

∫

Ĩ
j+1

2

φ̃i,j+ 1

2

(x)φ̃l,j+ 1

2

(x)dx (3.7)

=

∫ xj

x̃j

uh(x)φ̃l,j+ 1

2

(x)dx +

∫ xj+1

xj

uh(x)φ̃l,j+ 1

2

(x)dx +

∫ x̃j+1

xj+1

uh(x)φ̃l,j+ 1

2

(x)dx;
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for the case (c) in Fig. 1, we have

p
∑

i=0

ãi,j+ 1

2

∫

Ĩ
j+ 1

2

φ̃i,j+ 1

2

(x)φ̃l,j+ 1

2

(x)dx =

∫ x̃j+1

x̃j

uh(x)φ̃l,j+ 1

2

(x)dx; (3.8)

and for the case (d) in Fig. 1, we get

p
∑

i=0

ãi,j+ 1

2

∫

Ĩ
j+ 1

2

φ̃i,j+ 1

2

(x)φ̃l,j+ 1

2

(x)dx =

∫ xj+1

x̃j

uh(x)φ̃l,j+ 1

2

(x)dx+

∫ x̃j+1

xj+1

uh(x)φ̃l,j+ 1

2

(x)dx.

(3.9)
In our computation, we set p = 1. The polynomial basis function spaces are defined as

V (Ij+ 1

2

) = {φ0,j+ 1

2

(x), φ1,j+ 1

2

(x)} ≡ {1, x − xj},

W (Ĩj+ 1

2

) = {φ̃0,j+ 1

2

(x), φ̃1,j+ 1

2

(x)} ≡ {1, x − x̃j}.
(3.10)

After obtaining {ãi,j+ 1

2

} in one of the four cases, the solution information on the new

mesh {Ĩj+ 1

2

}, i.e., (3.4), can be obtained, provided that the solution information on the

old mesh, (3.3), is given. In this work, the piecewise linear polynomial (3.3) is constructed
using the minmod slope limiter. That is, on each cell, the approximation function uh(x)
is defined in the form

uh(x) = ūj+ 1

2

+ σj+ 1

2

(x− xj+ 1

2

), x ∈ Ij+ 1

2

, (3.11)

where σj+ 1

2

is defined by

σj+ 1

2

= minmod

(

ūj+ 3

2

− ūj+ 1

2

|Ij+ 1

2

| ,
ūj+ 1

2

− ūj− 1

2

|Ij− 1

2

|

)

. (3.12)

Here the minmod function of two arguments is defined by

minmod(a, b) =







a if |a| < |b| and ab > 0,
b if |b| < |a| and ab > 0,
0 if ab ≤ 0.

If a and b are of the same sign, then this selects the one with smaller absolute value; else, it
takes the value zero. This choice of slope gives second-order accuracy for smooth solutions
while still satisfying the TVD property.

With the piecewise linear construction, the coefficients in (3.3) have the form

a0,j+ 1

2

= ūj+ 1

2

+ σj+ 1

2

(xj − xj+ 1

2

), a1,j+ 1

2

= σj+ 1

2

. (3.13)

A high resolution method such as an ENO and WENO scheme can be used to construct
the high-order piecewise polynomial defined in (3.3); see for example [6].
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Figure 2: Example 4.1: mesh trajectory for 0 < t < 2.

In (3.5), taking the test function as 1 leads to

∫

Ĩ
j+ 1

2

uh(x)dx =

∫

Ĩ
j+ 1

2

ũh(x)dx. (3.14)

So the L2-projection interpolation guarantees the conservation of mass in the following
discrete sense:

∑

j

∫

I
j+ 1

2

uh(x)dx =
∑

j

∫

Ĩ
j+1

2

ũh(x)dx. (3.15)

It is noted that the interpolation scheme in [18] also has the property (3.15), but the
present interpolation has the mass-conservation held in each cell, see (3.14). Another
important difference is that the present approach also preserves solution momentum in
each cell,

∫

Ĩ
j+1

2

uh(x)(x− x̃j)dx =

∫

Ĩ
j+ 1

2

ũh(x)(x − x̃j)dx. (3.16)

This can be verified by replacing the basis function in (3.5) by x− x̃j .

We close this section by pointing out that the L2-projection interpolation proposed in
this section can be regarded as some combination of the high-order conservative remapping
developed in [6] and the discontinuous Galerkin method based on non-polynomial approx-
imation spaces developed in [23]. As proved in [23], the transfer of solution information
from one approximation space Vh to another approximation space Wh does not destroy
the accuracy.
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Figure 3: Example 4.1: comparison of the adaptive mesh solutions at t = 2 with that given by using the
interpolation method in [18]. The solid line denotes the exact solution and ’o’ denotes the numerical solution.

4 Numerical experiments

In this section, we implement our moving mesh method proposed in the previous sections
for several 1D model problems. The cell-centered finite volume method is used to solve
these PDEs. For time evolution, a 3-stage Runge-Kutta method proposed by Shu and
Osher [15] is employed. For a given ODE system u′(t) = L(u), it is discretized in time by

u
(1)
j = un

j + ∆tL(un
j ), u

(2)
j =

3

4
un

j +
1

4

[

u
(1)
j + ∆tL(u

(1)
j )
]

,

un+1
j =

1

3
un

j +
2

3

[

u
(2)
j + ∆tL(u

(2)
j )
]

.

(4.1)

Example 4.1. [Burgers’ equation.] This example is the inviscous Burgers’ equation

ut +

(

u2

2

)

x

= 0, 0 < x < 2π , (4.2)

subject to the initial condition u(x, 0) = 1
2 + sin(x), and a periodic boundary condition.

The monitor function is chosen as ω =
√

1 + 0.5|ux|2. The number of Gauss-Seidel
iteration used in each time step is 5. The numerical scheme for solving the Burgers’
equation is the second-order MUSCL finite volume scheme (with the Lax-Friedrichs flux).
Fig. 2 displays the grid trajectory up to t = 2. It is observed that the mesh points begin
to cluster at about t = 1.2, which indicates the shock begins to form at this time. It is
also observed in Fig. 3 that 30 grid points are sufficient to capture the steep solution using
the proposed interpolation method. For the same problem, the method proposed in [18]
requires 50 grid points in order to obtain a comparable resolution near the shock region.
This implies that the the L2-projection interpolation approach is more appropriate than
the conservative interpolation method proposed in [18].
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Figure 4: Example 4.2: the adaptive mesh solution at t = 0.5 with N = 60. The solid line denotes the exact
solution and ’o’ means the numerical solution.

Example 4.2. [Generalized Korteweg-de Vries equation.] Here we apply the proposed
moving mesh method to one-dimensional generalized Korteweg-de Vries equation (GKdV
equation):

ut + f(u)x + ǫuxxx = 0, f(u) = ηu +
up+1

p + 1
, (4.3)

with the initial condition u(x, 0) = Asech2/p[K · (x− x0)].

This problem has the exact solution u(x, t) = A · sech2/p[K · (x− x0)− wt] , where

K = p ·
√

Ap

2ǫ(p + 1)(p + 2)
, w = K ·

(

η +
2Ap

(p + 1)(p + 2)

)

.

In our numerical experiment, we set η = 1, p = 1, ǫ = 0.2058 × 10−4, A = 0.2275, and
x0 = 0.25. Since the problem involves a 3rd order derivative, the monitor function should
involve higher-order derivatives. The monitor function for this example is taken as ω =
√

1 + |uξξ|2. It is seen from Fig. 4 that most of the grid points are moved to capture
the peak. Around the peak region, the adaptive mesh has the largest mesh density. The
numerical solution obtained using our moving mesh method has a good agreement with
the exact solution (denoted by solid line in Fig. 4).

Example 4.3. [Kuramoto-Sivashinsky equation.] In this example, we show the order
of accuracy for the proposed moving mesh algorithm. The Kuramoto-Sivashinsky (K-S)
equation is of the form:

ut + uux − uxx + uxxxx = 0, −∞ < x <∞. (4.4)
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Figure 5: Example 4.3: the adaptive mesh solution at t = 0 and t = 5 with N = 40. The solid line denotes the
exact solution and ’o’ denotes the numerical solution. c = 5, k = 1

2
√

19
, x0 = −25.

The initial condition is chosen so that the exact solution is given by

u(x, t) = c +
15

19
√

19
(−3 tanh(k(x− ct− x0)) + tanh3(k(x− ct− x0))). (4.5)

It is necessary to describe the numerical solution solver for the above K-S equation. We
rewrite the equation (4.4) as a first order system:

ut + f(u)x − vx + wx = 0,

v − ux = 0, p− vx = 0, w − px = 0.
(4.6)

Integrating the above system over the cell [xj, xj+1]× [tn, tn+1] leads to the following finite
volume scheme:

un+1
j − un

j

∆t
+ ∆+f̂n

j −∆+v̂n
j + ∆+ŵn

j = 0,

vn+1
j −∆+ûn

j = 0, pn+1
j −∆+v̂n

j = 0, wn+1
j −∆+p̂n

j = 0,

(4.7)

where ∆+wj = (wj+ 1

2

− wj− 1

2

)/∆xj+ 1

2

. The “hat” terms in (4.7) are those cell boundary

terms from the integration by parts, called numerical fluxes which are single-valued func-
tions defined on the edges. The numerical fluxes are computed based on different guiding
principles for different governing equations to ensure stability. In our computations, we
can take f̂ = f̂(u−, u+), û = u−, v̂ = v+, and p̂ = p−, where the simple Lax-Friedrichs
flux is applied to f̂ ,

f̂(u−, u+) =
1

2
(f(u−) + f(u+)− α(u+ − u−)), α = max |f ′(u)|. (4.8)



Z.-R. Zhang / Commun. Comput. Phys., 1 (2006), pp. 930-944 941

Table 2: L2-error and convergence order for the Kuramoto-Sivashinsky equation (4.4) with exact solution (4.5)
at t = 1. c = 0.2, k = 1

2
√

19
, x0 = −10.

N 20 40 80 160
L2-error 8.145e-3 1.600e-3 2.267e-4 5.758e-5
rate - 2.43 2.81 1.98
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Figure 6: Example 4.4: the adaptive mesh solution at t = 0.2 with N = 80. The solid line denotes the exact
solution and ’o’ denotes the numerical solution. (a): density, (b): velocity, (c): pressure, (d): internal energy.

In (4.8), the maximum is taken between u+ and u−. The values of u+ and u− are calcu-
lated through the piecewise linear construction in the form (3.11), and v+, v−, p+, p− are
obtained in a similar way.

In Fig. 5 we plot the wave propagation profile for the K-S equation (4.4)-(4.5) with
c = 5, k = 1

2
√

19
and x0 = −25. We also present the L2-errors and rate of convergence

in Table 2. The corresponding rate of convergence is about two; and the errors obtained
by using our moving mesh method are almost the same as those computed by using the
local discontinuous Galerkin method [22]. More precisely, the results in Table 2 are almost
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Figure 7: Example 4.4: adaptive mesh points trajectory with N = 80.

identical to those given in Table 4.2 of [22].

Example 4.4. [Euler equations of gas dynamics.] In this example, we test our adaptive
mesh algorithm for the one-dimensional Euler equations of gas dynamics,





ρ
ρu
E





t

+





ρu
ρu2 + p
u(E + p)





x

= 0 , (4.9)

where ρ, u, p, and E are density, velocity, pressure, and total energy, respectively. The
above system is closed by the equation of state, p = (γ− 1)(E− ρu2/2) with γ = 1.4. The
initial data are chosen as

(ρ, ρu,E) =

{

(1, 0, 2.5) if x < 0.5,
(0.125, 0, 0.25) if x > 0.5.

This well-known problem has been studied by Stockie, Mackenzie and Russell [16] and
Tang and Tang [18], using moving mesh methods. The monitor function employed in
our computation is the simple second derivative based monitor: ω =

√

1 + 30|ρξξ|2. It
is noted that the moving mesh methods used in [16] and [18] require special attention
to choose an appropriate monitor function. In Fig. 6, we show the numerical solution
obtained using the proposed moving mesh method. The exact solution is computed using
the Riemann solver given in [20]. It is found in Fig. 6 that the contact wave and the shock
discontinuities are well resolved using 80 grid points. Moreover, the mesh trajectory is
presented in Fig. 7. It is noted that in order to obtain the same resolution the moving
mesh approach in [18] requires at least 100 grid points.

5 Concluding remarks

In this paper, we have presented a 1-D moving mesh method using a conservative inter-
polation based on L2-projection. The proposed method guarantees the mass-conservation
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in discrete sense. Numerical examples are presented to illustrate the effectiveness of the
proposed approach. It is demonstrated that to obtain the same solution resolution our
moving mesh approach requires fewer grid points than the method presented in [18]. We
also point out that the idea of L2-projection can be easily extended to handle higher-order
interpolation schemes used in the moving mesh methods.

In upcoming works, we will study the L2-projection-based interpolaton for the moving
mesh methods in high space dimensions, which seems much more challenging. In some
sense, this task can be viewed as an application of the remapping method proposed in [6]
and the non-polynomial approximation developed in [23].
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