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Abstract. Aiming at a complex multi-block structured grid, an efficient dynamic mesh
generation method is presented in this paper, which is based on radial basis functions
(RBFs) and transfinite interpolation (TFI). When the object is moving, the multi-block
structured grid would be changed. The fast mesh deformation is critical for numerical
simulation. In this work, the dynamic mesh deformation is completed in two steps. At
first, we select all block vertexes with known deformation as center points, and apply
RBFs interpolation to get the grid deformation on block edges. Then, an arc-length-
based TFI is employed to efficiently calculate the grid deformation on block faces and
inside each block. The present approach can be well applied to both two-dimensional
(2D) and three-dimensional (3D) problems. Numerical results show that the dynamic
meshes for all test cases can be generated in an accurate and efficient manner.

AMS subject classifications: 65Z05

Key words: Multi-block structured grid, mesh deformation, radial basis functions, transfinite
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1 Introduction

Currently, the use of unstructured grid is very popular in Computational Fluid Dynam-
ics (CFD) due to its great flexibility and easy generation. However, the unstructured grid
suffers the difficulty of capturing the thin boundary layer on the solid surface, especially
at high Reynolds numbers. In contrast, the structured grid is preferred to capture the
boundary layer. The structured grid is usually associated with coordinate transforma-
tion. When a complex geometry such as aircraft is considered, a single-block structured
grid is very difficult to be generated. Instead, the multi-block structured grid is often
used, in which, the whole computational domain is divided into a number of blocks, and
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the structured grid is generated in each block. Clearly, the grid in each block is structured
and the block edges are unstructured. When the complex object is moving, the dynamic
change of resultant multi-block structured grid is still a challenging issue in CFD. Basi-
cally, there are two major approaches for the dynamic change of mesh. They are mesh
deformation approach and mesh reconstruction approach. As compared with mesh re-
construction, mesh deformation is more efficient and accurate, and is more widely em-
ployed.

For a single structured mesh deformation, Transfinite Interpolation [1–6] (TFI) method
is most frequently used, which generates the dynamic mesh with an algebraic interpola-
tion. The computational effort of TFI is proportional to the grid number. So its efficiency
is still very high when the grid number is large. However, TFI is very difficult to be ap-
plied for a complex geometry when a multi-block structured grid is used. This is because
the mesh points on block edges are irregularly distributed when the mesh is deformed.

On the other hand, it is found that Radial Basis Functions [7–9] (RBFs) interpolation
is a desirable approach for scattered data interpolation, which could be used to compute
the mesh deformation on block edges. As a new interpolation method, RBFs method has
been successfully applied to the multivariate interpolation in a fluid-structure-interaction
problem [10], the numerical simulation of a flapping foil [11] and the aerodynamic shape
optimization [12, 13]. Based on RBFs, Rendall and Allen [14] proposed a unified algo-
rithm for the fluid-structure interpolation and mesh motion. In RBF interpolation, the
computational effort is usually proportional to the cube of the total grid number. Thus,
when RBF interpolation is applied to the whole grid, the computational effort for mesh
deformation will be extremely large for a complex problem with a large grid number.
Some attempts [15, 16] have been made with a reduced size of equation system to im-
prove the efficiency of RBF interpolation. Nevertheless, the computational effort is still
very large.

In this paper, a hybrid mesh deformation method, which is especially suitable for a
complex multi-block structured grid, is developed. In the approach, the RBF interpola-
tion is only utilized to generate the dynamic mesh on block edges, and TFI is adopted
to generate structured mesh on block faces and within each block. The present hybrid
method is firstly applied to the dynamic mesh generation for one two-dimensional (2D)
and one three-dimensional (3D) problems with different complexity. Then numerical
simulation of a 2D unsteady flow is conducted. Based on the given multi-block struc-
tured grids, the numerical results demonstrate that the dynamic meshes for all test cases
can be generated in an accurate and efficient manner by using present method.

2 Mesh deformation on block edges by RBFs interpolation

2.1 RBFs interpolation

RBFs [17] use the interpolation function f to describe the displacement in the whole phys-
ical space, and f can be approximated by a weighted sum of the basis functions
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f (x)=
Nb

∑
i=1

ai ·ϕ
(

‖x−xb i‖
)

+ψ(x), (2.1)

where xbi =[xbi,ybi,zbi] are the coordinates of the selected center points with known dis-
placements, Nb is the number of center points, ϕ is a given basis function with respect
to the Euclidean distance ‖•‖ and ψ= b0+b1x+b2y+b3z is a linear polynomial. The co-
efficients ai and b0, b1, b2, b3 are evaluated from the collocation condition and additional
requirement, which are formulated as follows

f (xbi)=dbi,
Nb

∑
i=1

ai =
Nb

∑
i=1

aixbi=
Nb

∑
i=1

aiybi=
Nb

∑
i=1

aizbi =0, (2.2)

where dbi is the discrete known displacement on the boundary. Then, the coefficients ai

and b0, b1, b2, b3 can be obtained by solving the following equation system
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ϕij = ϕ(‖xbi−xb j‖). There are several mature methods to solve Eq. (2.3), such as the fast
iterative techniques [18] and methods based on partition of unity [19].

After the interpolation function f is determined, the displacement dinter for any inte-
rior point xinter =[xinter,yinter,zinter] can be calculated by

dinter= f (xinter). (2.5)

The available basis functions can be divided into two main categories: functions with
compact and functions with global support [20]. Boer has discussed the effects of dif-
ferent basis functions on mesh quality in [21]. Table 1 lists several frequently used RBFs

with global support [22,23]. RBFs with spline type function f (x)=‖x‖3
is adopted in this

work.
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Table 1: RBFs with global support.

No. Name Abbrevi f (x)
1 Spline type Rn ‖x‖3

2 Thin plate spline TPS ‖x‖2 log‖x‖

3 Multiquadric biharmonics MQB
√

a2+‖x‖2

4 Inverse multiquadric IMQB
√

1+(a2+‖x‖2)
5 Quadric biharmonics QB 1+‖x‖2

6 Inverse quadric IQB 1/(1+‖x‖2)

7 Gaussian Gauss e−‖x‖2

2.2 Mesh deformation on block edges

2.2.1 Choice of center points for RBFs interpolation

Conventionally, all the grid points with known displacements are selected as the center
points. Because the number of center points directly controls the size of matrix M in
Eq. (2.3), the computational efficiency is very low in the case of a large number of center
points, such as the multi-block grid for a complex geometry. In this work, only the block
vertexes with known displacements are selected as center points. This can greatly speed
up the process of mesh deformation. An example is shown in Fig. 1. When all the grid
points with known displacements (red points) are selected as the center points, there are
504 center points. On the other hand, when only the block vertexes with known displace-
ments are selected as center points, there are only 16 center points. The corresponding
sizes of matrix M are respectively 507×507 for the former and 19×19 for the latter. As a
consequence, their calculation time differs about 19,000 times.

(a) (b)

Figure 1: Selection of center points: left is all points at the boundary and right is block vertexes at the boundary.
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2.2.2 Block division

As computational efficiency greatly depends on the number of center points, it is unprac-
tical to select all points on the boundary as center points. Thus, only block vertexes are
chosen as RBF center points in this work. However, if the block division is not properly
made, the displacement information of boundary may not be reflected in RBF interpo-
lation very well, and this may lead to errors in interpolation. For cases with relative
movement of some bodies or boundary with soft deformation, blocks should be divided
to assure that the displacement information of boundary can be considered commend-
ably. As a rule of thumb, the block division principle is to keep the dimension of block
in deformation direction 0.2∼ 0.3 times greater than the dimension of block in other di-
rections. For the left picture in Fig. 2, before block division, the shape of block around
boundary is prolate, since the deformation direction of block is Y direction, grid inter-
section appears after interpolation. As shown in the right picture of Fig. 2, a very good
mesh quality is obtained after all the grid blocks surrounding the airfoil are subdivided
into several blocks along the chord wise.

(a) (b)

Figure 2: Deformed meshes before and after grid block subdivision.

2.2.3 Mesh generation on block edges

The blue point in Fig. 3 is a point on one of red curves whose displacements are un-
known. Now set all block vertex points (black points) as center points and blue point
as interpolative dot, the displacement of blue point can be calculated by all black points
easily with RBF interpolation method. Similarly, other grid points on this edge and other
edges can be worked out one by one. After that, deformation of all block edges (green
curves and red curves) is generated as shown in Fig. 4.
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Figure 3: Generation of mesh deformation on block edge.

(a) (b)

Figure 4: Deformed block edges before and after RBFs interpolation.

3 Mesh deformation on block faces and within each block by

TFI interpolation

3.1 Transfinite interpolation

Transfinite interpolation [24] means the construction of a function over a planar domain
or a three-dimensional space that matches a given function on the boundary, and has
various applications, notably in geometric modeling and finite element methods.

By using the Boolean sum of interpolation functions, a 3-D TFI can be written as

∆xi,j,k =U+V+W−UV−VW−UW+UVW, (3.1)
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where the grid deformation is defined as

∆xi,j,k =
[

∆xi,j,k,∆yi,j,k,∆zi,j,k

]

. (3.2)

The univariate products are

U=(1−αi,j,k)∆x1,j,k+αi,j,k∆ximax,j,k, (3.3a)

V=(1−βi,j,k)∆xi,1,k+βi,j,k∆xi,jmax,k, (3.3b)

W=(1−γi,j,k)∆xi,j,1+γi,j,k∆xi,j,kmax, (3.3c)

and the tensor products are evaluated as follows

UV=(1−αi,j,k)(1−βi,j,k)∆x1,1,k+αi,j,k(1−βi,j,k)∆ximax,1,k+(1−αi,j,k)βi,j,k∆x1,jmax,k

+αi,j,kβi,j,k∆ximax,jmax,k, (3.4a)

VW=(1−βi,j,k)(1−γi,j,k)∆xi,1,1+βi,j,k(1−γi,j,k)∆xi,jmax,1+(1−βi,j,k)γi,j,k∆xi,1,kmax

+βi,j,kγi,j,k∆xi,jmax,kmax, (3.4b)

UW=(1−αi,j,k)(1−γi,j,k)∆x1,j,1+αi,j,k(1−γi,j,k)∆ximax,j,1+(1−αi,j,k)γi,j,k∆x1,j,kmax

+αi,j,kγi,j,k∆ximax,j,kmax, (3.4c)

UVW=(1−αi,j,k)(1−βi,j,k)(1−γi,j,k)∆x1,1,1+αi,j,k(1−βi,j,k)(1−γi,j,k)∆ximax,1,1

+(1−αi,j,k)βi,j,k(1−γi,j,k)∆x1,jmax,1+(1−αi,j,k)(1−βi,j,k)γi,j,k∆x1,1,kmax

+αi,j,kβi,j,k(1−γi,j,k)∆ximax,jmax,1+αi,j,k(1−βi,j,k)γi,j,k∆ximax,1,kmax

+(1−αi,j,k)βi,j,kγi,j,k∆x1,jmax,kmax+αi,j,kβi,j,kγi,j,k∆ximax,jmax,kmax. (3.4d)

In order to maintain the grid distribution laws of the initial grid, an arc-length-based
TFI method [25] is applied in this work. The arc-length-based control functions along i,
j, k directions are defined as

α1,j,k =0, βi,1,k =0, (3.5a)

γi,j,1=0, αi,j,k=
∑

i
m=2

∥

∥xm,j,k−xm−1,j,k

∥

∥

∑
imax
m=2

∥

∥xm,j,k−xm−1,j,k

∥

∥

, (3.5b)

βi,j,k =
∑

j
m=2

∥

∥xi,m,k−xi,m−1,k

∥

∥

∑
jmax
m=2

∥

∥xi,m,k−xi,m−1,k

∥

∥

, γi,j,k=
∑

k
m=2

∥

∥xi,j,m−xi,j,m−1‖

∑
kmax
m=2

∥

∥xi,j,m−xi,j,m−1‖
. (3.5c)

3.2 Structured mesh on block faces

After computing the displacement of mesh points on all block edges by RBF interpolation
method, the displacement of grid points in the interior of faces is computed by a 2-D TFI
method as described below. Since the interpolation is a two-dimensional one, all terms
related to W in Eq. (3.1) are removed in this sub-section. Take Fig. 5 as an example. For
any structured face, displacements of point P(i, j) are computed by 8 points.
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Figure 5: 2-D TFI sketch.

The specific interpolation functions are

∆xi,j =U+V−UV, (3.6)

where U, V and UV are defined as follows

U= L2∆x1,j+L1∆ximax,j, V= L4∆xi,1+L3∆xi,jmax, (3.7a)

UV= L2L4∆x1,1+L1L4∆ximax,1+L2L3∆x1,jmax+L1L3∆ximax,jmax, (3.7b)

and L is the arc length.

3.3 Structured mesh within each block

After computing the displacement of mesh points on all the faces, the TFI interpolation
method is also used to compute the displacement of mesh points in the interior of each
block. For each single structured block, displacements of point P(i, j,k) are calculated by
26 points in the block as shown in Fig. 6.

The coordinates of mesh points can be computed by Eq. (3.1), but relevant functions
are specifically defined as

U= L2∆x1,j,k+L1∆ximax,j,k, (3.8a)

V= L4∆xi,1,k+L3∆xi,jmax,k, (3.8b)

W= L6∆xi,j,1+L5∆xi,j,kmax, (3.8c)

UV= L2L4∆x1,1,k+L1L4∆ximax,1,k+L2L3∆x1,jmax,k+L1L3∆ximax,jmax,k, (3.8d)

VW= L4L6∆xi,1,1+L3L6∆xi,jmax,1+L4L5∆xi,1,kmax+L3L5∆xi,jmax,kmax, (3.8e)

UW= L2L6∆x1,j,1+L1L6∆ximax,j,1+L2L5∆x1,j,kmax+L1L5∆ximax,j,kmax, (3.8f)

UVW= L2L4L6∆x1,1,1+L1L4L6∆ximax,1,1+L2L3L6∆x1,jmax,1

+L2L4L5∆x1,1,kmax+L1L3L6∆ximax,jmax,1+L1L4L5∆ximax,1,kmax

+L2L3L5∆x1,jmax,kmax+L1L3L5∆ximax,jmax,kmax, (3.8g)

and L is the arc length.



128 L. Ding, Z. L. Lu and T. Q. Guo / Adv. Appl. Math. Mech., 6 (2014), pp. 120-134

Figure 6: 3-D TFI sketch.

4 Numerical tests

The present RBFs-TFI hybrid method has been applied to one 2D and one 3D mesh defor-
mation problems with different complexity: a rigid airfoil and a wing-body combination.
After that, simulation of unsteady inviscid flows around a moving airfoil is performed to
show the accuracy of this moving mesh method. Based on the given multi-block grids,
the dynamic meshes for the above test cases have been generated in an accurate and
efficient manner. All the CPU times are taken from a single 2.93GHz Intel processor.

4.1 Determinant

In order to compare the dynamic mesh quality with initial mesh, a parametric evaluation
criterion should be introduced. In this paper, mesh quality inspection process is accom-
plished by software ”ANSYS ICEM CFD”. ICEM CFD is one of the most popular mesh
generation softwares in the world. There are many mesh checking methods in ICEM
CFD [26], such as Quality, Aspect Ratio and Determinant. The Determinant [27], more
properly defined as the relative determinant, is the ratio of the smallest determinant of
the Jacobian matrix divided by the largest determinant of the Jacobian matrix, where each
determinant is computed at each node of the element. The Determinant can be found for
all linear hexahedral, quadrahedral, and pyramidal elements. A Determinant value of 1
would indicate a perfectly regular mesh element, 0 would indicate an element degener-
ating in one or more edges, and negative values would indicate inverted elements.

4.2 Test case 1: rigid airfoil

Test case 1 is a NACA0012 airfoil rotating 45 degrees about its quarter-chord point. For
this case, the number of grid blocks is 12, and the number of grid cells is 11,252.
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(a) (b)

Figure 7: Initial mesh and mesh quality of NACA0012.

(a) (b)

Figure 8: Deformed mesh and mesh quality of NACA0012 using RBFs method.

Fig. 7 shows the initial mesh and its mesh quality histogram. Both RBFs and present
RBFs-TFI hybrid method are applied for the dynamic mesh generation. As shown in
Fig. 8 and Fig. 9, the mesh quality of the RBFs-TFI hybrid method is comparable with
RBFs. On the other hand, the CPU-time required by RBFs is 1,217ms, and it is only 4ms
needed by the RBFs-TFI hybrid method which is about 0.32% of the former. This test
case indicates that the RBFs-TFI hybrid method is as accurate as RBFs, but it is much
more efficient.

4.3 Test case 2: wing-body

Test case 2 is a wing-body combination of a DLR-F4 airplane. For this case, the number
of grid blocks is 318, and the number of grid cells is 2,565,588. For this case, the wing is
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(a) (b)

Figure 9: Deformed mesh and mesh quality of NACA0012 using RBFs-TFI hybrid method.

Figure 10: Initial and deformed configurations of DLR-F4.

undergone a vertical bending deformation and the maximum deformation at the wingtip
is 10% of the semi-wingspan. Fig. 10 shows the initial and deformed configurations

For the RBFs method, a 2-D problem selects all block edge points with known dis-
placements as the center points and the CPU-time cost is about 2∼3 orders of magnitude
higher than present RBFs-TFI hybrid method, and a 3-D problem will select all block face
points as the center points which is too large to lead to a unbearable CPU-time. Therefore,
only the RBFs-TFI hybrid method is used for the 3-D problem.

Fig. 11 shows the final surface and symmetry plane mesh. Fig. 12 and Fig. 13 illustrate
the mesh quality for the initial and dynamic mesh, respectively. The comparison indicates
that the dynamic mesh quality almost maintains the same level as the initial mesh. On
the other hand, the CPU-time cost by the RBFs-TFI hybrid method is only 2,169ms for
this complex multi-block grid with millions of grid cells.

4.4 Test case 3: unsteady inviscid flow around airfoil

The third test case is numerical simulation of an unsteady flow associated with mesh
deformation. For this case, a NACA0012 airfoil is forced to pitch around the quarter
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Figure 11: Deformed surface and symmetry plane mesh of DLR-F4.

Figure 12: Initial mesh quality of DLR-F4.

Figure 13: Deformed mesh quality of DLR-F4.

chord with a reduced frequency of 0.0814 [28]. The form of pitching motion is given as
follows

α=0.016◦+2.51◦sinωt, (4.1)

where the angle of attack is α, ω is the reduced frequency, t is the time, and the Mach
number Ma is 0.755. In this case, only Euler equations are solved and the mesh has
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Figure 14: Calculated normal force coefficient by solving Euler equations.

Figure 15: Calculated pitching moment coefficient by solving Euler equations.

been used in test case 1. The normal force coefficient and pitching moment coefficient
calculated by Euler equations are compared with the reference data calculated by Deng
et al. [29] and the experimental data [30] as depicted in Fig. 14 and Fig. 15.

Overall, the present numerical results in Fig. 14 and Fig. 15 have a good agreement
with the date in literature. This implies that the present hybrid method can be effectively
applied to solve the real complicated flow problems.

5 Conclusions

By combining the most favorable elements of RBFs and TFI, a novel hybrid mesh de-
formation method is proposed for a complex multi-block structured grid. By using the
present RBFs-TFI hybrid method, the dynamic mesh generation with millions of grid
cells can be efficiently achieved in several seconds. In the future work, the present hy-
brid mesh deformation method will be applied to aeroelastic problems and optimization
design problems of airplane.



L. Ding, Z. L. Lu and T. Q. Guo / Adv. Appl. Math. Mech., 6 (2014), pp. 120-134 133

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant
No. 11372135), the National Basic Research Program of China (”973” Project) (Grant No.
2014CB046200) and the Priority Academic Program Development of Jiangsu Higher Ed-
ucation Institutions.

References

[1] J. REUTHER, A. JAMESON, J. FARMER, L. MARTINELLI AND D. SAUNDERS, Aerodynamics
shape optimization of complex aircraft configurations via an adjoint formulation, AIAA, 96-0094.

[2] C. BYUN AND G. P. GURUSWAMY, A parallel multi-block moving grid method for aeroelastic
applications on full aircraft, AIAA, 98-4782.

[3] H. M. TSAI, A. S. F. WONG, J. CAI, Y. ZHU AND F. LIU, Unsteady flow calculations with a
parallel multiblock moving mesh algorithm, AIAA J., 39 (2001), pp. 1021–1029.

[4] A. L. GAITONDE, D. P. JONES AND S. P. FIDDES, A 2D Navier-Stokes method for unsteady
compressible flow calculations on moving meshes, Aeronautical J., 102 (1998), pp. 89–97.

[5] L. DUBUC, F. GANTARITI, M. WOODGATE, B. GRIBBEN, K. J. BADCOCK AND B. E.
RICHARDS, A grid deformation technique for unsteady flow conputations, Int. J. Numer. Meth-
ods Fluids, 32 (2000), pp. 285–311.

[6] S. A. MORTON, R. B. MELVILLE AND M. R. VISBAL, Accuracy and coupling issues of aeroelastic
Navier-Stokes solutions on deforming meshes, J. Aircraft, 35 (1998), pp. 798–811.

[7] R. FRANK, Scattered data interpolation: Tests of some methods, Math. Comput., 38 (1982), pp.
181–200.

[8] Z. M. WU, Multivariate compactly supported positive definite radial functions, Adv. Comput.
Math., 4 (1995), pp. 283–292.

[9] F. BERNAL AND G. GUTIERREZ, Solving delay differential equations through BRF collocation,
Adv. Appl. Math. Mech., 1 (2009), pp. 257–272.

[10] A. BECKERT AND H. WENLAND, Multivariate interpolation for fluid-structure-interaction prob-
lems using radial basis functions, Aerosp. Sci. Technol., 5 (2001), pp. 125–134.

[11] F. M. BOS, Numerical Simulation of Flapping Foil and Wind Aerodynamics: Mesh Defor-
mation using Radial Basis Functions, Ph. D. Thesis, Dutch: Technical University Delft, 2009.

[12] S. JAKOBSSON AND O. AMOIGNON, Mesh deformation using radial basis functions for gradient-
based aerodynamic shape optimization, Comput. Fluids, 36 (2007), pp. 1119–1136.

[13] A. M. MORRIS, C. B. ALLEN AND T. C. S. RENDALL, CFD-based optimization of aerofoils using
radial basis functions for domain element parameterization and mesh deformation, Int. J. Numer.
Methods Fluids, 58 (2008), pp. 827–860.

[14] T. C. S. RENDALL AND C. B. ALLEN, Unified fluid-structure interpolation and mesh motion using
radial basis functions, Int. J. Numer. Methods Eng., 74 (2008), pp. 1519–1559.

[15] T. C. S RENDALL AND C. B. ALLEN, Efficient mesh motion using radial basis functions with data
reduction algorithms, J. Comput. Phys., 228 (2009), pp. 6231–6249.

[16] A. H. VAN ZUIJLEN, A. DE BOER AND H. BIJL, Higher-order time integration through smooth
mesh deformation for 3D fluid-structure interaction simulations, J. Comput. Phys., 224 (2007), pp.
414–430.

[17] M. D. BUHMANN, Radial basis functions, Acta Numer., 9 (2000), pp. 1–38.



134 L. Ding, Z. L. Lu and T. Q. Guo / Adv. Appl. Math. Mech., 6 (2014), pp. 120-134

[18] A. C. FAUL AND M. J. D POWELL, Proof of convergence of an interative technique for thin plate
spline interpolation in two dimensions, Adv. Comput. Math., 11 (1999), pp. 183–192.

[19] H. WENDLAND, Fast evalution of radial basis functions: methods based on partition of unity, Ap-
proximation Theory X: Wavelets, Splines, and Applications, Vand erbilt University Press,
2002, pp. 473–483.

[20] H. WENDLAND, On the smoothness of positive definite and radial functions, Comput. Appl.
Math., 101 (1999), pp. 177–188.

[21] A. DE BOER A, M. S. VAN DER SCHOOT AND H. BIJL, Mesh deformation based on radial basis
function interpolation, Comput. Struct., 85 (2007), pp. 784–795.

[22] J. C. CARR, R. K. BEATSON, B. C. MCCALLUM, W. R. FRIGHT, T. J. MCLENNAN AND T. J.
MITCHELL, Smooth surface reconstruction from noisy range data, First International Conference
on Computer Graphics and Interaction Techniques, 2003.

[23] M. J. SMITH, C. E. S CESNIK AND D. H. HODGES, Evaluation of some data transfer algorithms
for noncontiguous meshes, J. Aerosp. Eng., 13 (2000), pp. 52–58.

[24] GORDON WILLIAM, THIEL LINDA, Transfinite mapping and their application to grid generation,
In Thomson, Joe, Numerical Grid Generation, pp. 117–134.

[25] W. T. JONES AND J. SAMAREH, A grid generation system for multi-disciplinary design optimiza-
tion, AIAA, 95-1689.

[26] ANASYS Software Corporation, ANASYS ICEM CFD 14.0 User Manual, Printer in U.S.A,
2011.

[27] K. J. BATHE, Finite Element Procedures, Prentice Hall, 1996.
[28] NING GU, ZHILIANG LU AND TONGQING GUO, Simulation of viscous flows around a moving

airfoil by field velocity method with viscous flux correction, Adv. Appl. Math. Mech., 4 (2012), pp.
294–310.

[29] F. DENG, Y. Z. WU AND X. Q. LIU, Numerical simulation of two-dimensional unsteady viscous
flow based on hybrid dynamic grids, Journal of Nanjing University of Aeronautics & Astronau-
tics, 39 (2009), pp. 444–448.

[30] N. C. LAMBOURNE, R. H. LANDON AND R. J. ZWAAN, Compendium of unsteady aerodynamic
measurements, AGARD R-702, 1982.


