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DEVELOPMENT, ANALYSIS AND NUMERICAL TESTS
OF A COMPOSITIONAL RESERVOIR SIMULATOR

ZHANGXIN CHEN AND YOUQIAN ZHANG

Abstract. The governing equations of a compositional model for three-phase

multicomponent fluid flow in multi-dimensional petroleum reservoirs are cast in

terms of a pressure equation and a set of component mass balance equations in

this paper. The procedure is based on a pore volume constraint for component

partial molar volumes, which is different from earlier techniques utilizing an

equation of state for phase fluid volumes or saturations. The present technique

simplifies the pressure equation, which is written in terms of various pressures

such as phase, weighted fluid, global, and pseudo-global pressures. The dif-

ferent formulations resulting from these pressures are numerically solved; the

numerical computations use a scheme based on the mixed finite element method

for the pressure equation and the finite volume method for the component mass

balance equations. A qualitative analysis of these formulations is also carried

out. The analysis yields that the differential system of these formulations is of

mixed parabolic-hyperbolic type, typical for fluid flow equations in petroleum

reservoirs. Numerical experiments based on the benchmark problem of the third

comparative solution project organized by the society of petroleum engineers

are presented.

Key Words. compositional model, reservoir simulation, mixed finite elements,

finite volume, thermodynamic equilibrium, numerical experiments.

1. Introduction

A compositional model for three-phase multicomponent fluid flow in petroleum
reservoirs has been recently analyzed in [10]. This model incorporates compress-
ibility, compositional effects, and mass interchange between phases. It consists of
Darcy’s law for volumetric flow velocities, mass balance for hydrocarbon compo-
nents, thermodynamic equilibrium for mass interchange between phases, and an
equation of state for phase saturations. It models important enhanced oil recovery
procedures such as condensing gas drive and miscible gas injection. To understand
complex chemical and physical phenomena of fluid flow in petroleum reservoirs, it
has become increasingly important to study such a realistic model.

In this paper this compositional model is further studied. Instead of the equa-
tion of state for phase saturations, a pore volume constraint for component partial
molar volumes is exploited for this model. Specifically, the governing equations of
this model are cast in terms of a pressure equation and a set of component mass
balance equations, and the procedure is based on this pore volume constraint. The
advantages of using this constraint over the state equation for phase saturations
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are that the saturations can be zero but the number of overall moles of each com-
ponent appearing in this constraint is often positive, that the present development
is practically well suited for multiphase flow since this constraint does not involve
phases, and that the formulation of the pressure equation is simpler.

As in [10], the pressure equation is written in terms of various pressures such as
phase, weighted fluid, global, and pseudo-global pressures. The emphasis here is
to carry out numerical computations for the different formulations resulting from
these pressures. The numerical computations use a scheme based on the mixed fi-
nite element method for the pressure equation and the finite volume method for the
component mass balance equations. This scheme is suitable for numerical simula-
tion of multiphase flow through geometrically complex geological petroleum reser-
voirs [11, 12]. Numerical experiments based on the benchmark problem of the third
comparative solution project organized by the society of petroleum engineers [13]
are presented.

A qualitative analysis of the differential system of these formulations is given.
This system is of mixed parabolic-hyperbolic type, typical for fluid flow equations
in petroleum reservoirs. We show that the pressure equation is a standard para-
bolic problem and the component mass balance equations are advection-dominated
problems in the presence of capillary diffusive forces; they are purely hyperbolic in
the absence of these diffusive forces. For simplicity, we neglect hydraulic disper-
sion and molecular diffusion effects in this paper. The mathematical structure of a
one-dimensional two-phase multicomponent compositional model without capillary
pressure effects was analyzed in [21] by a different approach.

The rest of the paper is organized as follows. In the next section, we review the
governing equations for a compositional model. Then in the third section, we derive
some lemmas from thermodynamic equilibrium conditions, which are used in the
development of the pressure equation. In the fourth section, we derive the pressure
and component mass balance equations. In the fifth section, we give a qualitative
analysis of the derived differential system, and in the sixth section, we develop our
numerical scheme. Finally, in the seventh section we report numerical experiments.

2. Governing Equations for Compositional Flow

There are books that develop the equations for compositional flow in petroleum
reservoirs (e.g., [8, 15]). In this section, we briefly review these equations. The
compositional flow involves mass interchange between phases and compressibility.
In a model for this type of flow, a finite number of hydrocarbon components is
used to represent the composition of reservoir fluids. These components associate
as phases in the reservoirs. In this paper, we describe a compositional model under
the assumptions that the flow process is isothermal (i.e., the constant temperature),
the components form at most three phases (e.g., gas, oil, and water), and there is
no mass interchange between the water phase and the hydrocarbon phases (i.e., the
oil and gas phases).

Because of mass interchange between phases, mass is not conserved within each
phase; the total mass of each component is conserved:

(2.1)
∂t(φnw) +∇ · (ξwuw) = qw,

∂t(φni) +∇ · (xigξgug + xioξouo) = qi, i = 2, . . . , Nc,

where ∂t denotes time differentiation, φ is the porosity of the reservoir, g, o, and w
refer to gas, oil, and water phases, i is the component index, Nc − 1 is the number
of hydrocarbon components, nw and ni denote the number of overall moles per
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pore volume of the water and ith hydrocarbon component, xig and xio are the
mole fraction of the ith component in gas and oil phases, ξα and uα are the molar
density and volumetric flow velocity of the α phase, and qw and qi stand for the
molar flow rate of the water and the ith component, respectively, α = g, o, w. For
notational convenience later, let water be the first component and n1 = nw. In
(2.1), the volumetric velocity uα in multiphase flow is given by Darcy’s law:

(2.2) uα = −krα

µα
k(∇pα − ραgc), α = g, o, w,

where k is the effective permeability of the reservoir, krα, µα, pα, and ρα are the
relative permeability, viscosity, pressure, and mass density, respectively, of the α-
phase, and gc is the gravitational constant vector.

In addition to the differential equations (2.1) and (2.2), there are also algebraic
constraints. Assume that the fluid volume completely fills the available pore volume
as defined by

(2.3)
Nc∑

i=1

nivi = 1,

where vi represents the partial molar volume of component i. Equation (2.3) is
referred to as the pore volume constraint and is used here. Previously, the equation
of state for the phase saturations sα has been used, as mentioned in the introduction:

sg + so + sw = 1.

The phase pressures are related by capillary pressures:

(2.4) pcαo = pα − po, α = g, o, w,

where pcoo = 0, pcgo represents the gas phase capillary pressure, and pcwo is the
negative water phase capillary pressure, which are assumed to be known functions
of the saturations. The relative permeabilities krα are also assumed to be known in
terms of the saturations. The viscosities µα, molar densities ξα, and mass densities
ρα are functions of their respective phase pressure and compositions.

Other algebraic relations are stated as follows. The mass balance implies that

(2.5) ni = nig + nio, i = 2, . . . , Nc,

where nig and nio represents the number of moles per pore volume of the ith
hydrocarbon component in the oil and gas phases, respectively. Also, the mole
fractions xig and xio are defined by

(2.6) xiα =
niα

Nc∑

j=1

njα

, i = 2, . . . , Nc, α = g, o.

Finally, the saturations are expressed in terms of the phase compositions:

(2.7) sw =
nw

ξw
, sα =

Nc∑

i=1

niα

ξα
, α = g, o.

It should be noted that there are more dependent variables than there are differ-
ential and algebraic relations; there are formally 5Nc + 5 dependent variables: nw,
ni, nig, nio, xig, xio, uα, pα, and sα, α = g, o, i = 2, . . . , Nc. It is then necessary to
have 5Nc + 5 independent relations to determine a solution of the system. Equa-
tions (2.1)–(2.7) provide 4Nc + 6 independent relations, differential or algebraic;
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the additional Nc − 1 relations are provided by the equilibrium relations needed to
relate the numbers of moles. However, as discussed in the fourth section later, the
primary unknowns will be (p, n1, . . . , nNc), and other variables will be expressed in
terms of them, where p is some as yet unspecified pressure.

3. Thermodynamic Equilibrium and Some Useful Lemmas

Mass interchange between phases is characterized by the variation of mass distri-
bution of each component in the oil and gas phases. As usual, these two phases are
assumed to be in the phase equilibrium state at every moment. This is physically
reasonable since the mass interchange between phases occurs much faster than the
flow of reservoir fluids. Consequently, the distribution of each hydrocarbon com-
ponent into the two phases is subject to the condition of stable thermodynamic
equilibrium, which is given by minimizing the Gibbs free energy of the composi-
tional system.

3.1. The Kuhn-Tucker condition. The total Gibbs free energy in the reservoir
is defined by

γ = γg + γo,

where γα indicates the total Gibbs free energy of the α-phase. The constrained
minimization problem for the Gibbs free energy of the compositional system under
consideration is formulated as follows:

(3.1)
Given p, 0 ≤ ni, find (nig, nio), i = 2, . . . , Nc, such that
γ(nig, nio) = inf{γ(vig, vio) : 0 ≤ vig, vio and vig + vio = ni}.

From this minimization problem, we can derive the Kuhn-Tucker condition [14]
under the assumption that both the gas and oil phases are formed (see Lemma 3.2
in [10]):

fig(p, n2g, . . . , nNcg) = fio(p, n2o, . . . , nNco), i = 2, . . . , Nc,

where fiα is the chemical potential of the ith component in the α-phase, i =
2, . . . , Nc, α = g, o. This relation represents a set of necessary (but not suf-
ficient) conditions at equilibrium. To guarantee that a minimum is achieved,
the second order Kuhn-Tucker condition must be satisfied; i.e., the Hessian ma-
trix (∂fig/∂njg + ∂fio/∂njo)(Nc−1)×(Nc−1) is symmetric and positive definite at
(p, nig, nio), where p is treated as a parameter.

3.2. Some useful relations. Let V be the volume of the overall fluid in the
reservoir. Euler’s Theorem implies that

(3.2) V =
Nc∑

i=1

n′ivi,

where n′i is the number of overall moles of the ith hydrocarbon component and

(3.3) vi =
∂V

∂n′i
, i = 1, . . . , Nc.

From (3.2) and (3.3), we can deduce the next lemma.

Lemma 3.1. It holds that

(3.4)
Nc∑

i=1

ni
∂vi

∂nj
= 0, j = 1, . . . , Nc.
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Proof. It follows from (3.2) that

∂V

∂n′j
= vj +

Nc∑

i=1

n′i
∂vi

∂n′j
, i = 1, . . . , Nc.

Then (3.4) follows from (3.3) and the fact that ni = n′i/V . []
The next lemma was proven in [10] (see Proposition 3.5 there).

Lemma 3.2. For α, β = g, o, we have
Nc∑

j=2

njα
∂sβ

∂nj
=

{
sα if α = β,

0 if α 6= β.

Let Vα represent the volume of the α-phase, α = g, o, w. Note that

V = Vg + Vo + Vw.

We now show the following result.

Lemma 3.3. It holds that
Nc∑

j=2

vixjαξα = 1, α = g, o.

Proof. Applying (3.3), we see that

vj =
∂V

∂n′j
=

∂

∂n′j
(Vg + Vo + Vw), j = 2, . . . , Nc.

From the definition of the saturations, this implies that

vj =
∂

∂nj
(sg + so + sw) =

∂

∂nj
(sg + so), j = 2, . . . , Nc.

Thus by (2.6) and (2.7), we have

Nc∑

j=2

vixjαξα =
1
sα

Nc∑

j=2

njα
∂

∂nj
(sg + so),

which, together with Lemma 3.2, yields the desired result. []

4. The Pressure and Component Mass Balance Equations

The system in (2.1)–(2.7) involves a large number of strongly coupled nonlinear
differential equations and algebraic constraints. To alleviate the nonlinearity and
coupling, we choose our primary variables as (p, n1, . . . , nNc) and derive a com-
positional system for them. This system consists of the (various) pressure and
component mass balance equations. We employ the usual total flow velocity

(4.1) u = ug + uo + uw.

Several choices for p will be made later. For the time being, let us assume that p
has been given. Also, for expositional convenience we assume that vi depends on
p instead of pα, α = g, o, w, i = 1, . . . , nNc . This means that we neglect the errors
(due to the capillary pressures) caused by calculating vi at p instead of pα. These
small errors contribute to the lower order terms in the pressure equations, which
does not affect the properties of these equations. The technique for handling these
errors for a simpler problem in [5] applies here.
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4.1. The pressure equation. The subsequent development is based on the con-
straint (2.3). Define

VT =
Nc∑

i=1

nivi.

Note that VT = VT (p, n1, . . . , nNc), as given, is a function of its arguments. Then
it follows from the differentiation of (2.3) with respect to time that

∂VT

∂p
∂tp +

Nc∑

i=1

∂VT

∂ni
∂tni = 0.

Apply (2.1) to see that

(4.2)

cT ∂tp + ∂VT

∂nw
∇ · (ξwuw)+

Nc∑

i=2

∂VT

∂ni
∇ · (xigξgug + xioξouo)

= ∂VT

∂nw
qw +

Nc∑

i=2

∂VT

∂ni
qi,

where cT is the total fluid and rock compressibility given by

(4.3) cT = −φ
∂VT

∂p
+

(
nw

∂VT

∂nw
+

Nc∑

i=2

ni
∂VT

∂ni

)
dφ

dp
.

By (3.4), we see that

(4.4)
∂VT

∂ni
= vi, i = 1, . . . , Nc.

Now, apply (2.3), (4.1), (4.4), and Lemma 3.3 to (4.2) and (4.3) to obtain

cT ∂tp +∇ · u− ξw∇vw · uw −
Nc∑

i=2

∇vi · (xigξgug + xioξouo) = vwqw +
Nc∑

i=2

viqi,

where

cT = −φ
∂VT

∂p
+

dφ

dp
.

Normally, water is assumed to be incompressible or slightly compressible. In this
case, we obtain

(4.5) cT ∂tp +∇ · u−
Nc∑

i=2

∇vi · (xigξgug + xioξouo) = vwqw +
Nc∑

i=2

viqi.

We remark that the pressure equation (4.5) is simpler than that derived in [10],
where the state equations for the saturations was exploited to derived the pressure
equation. Also, we do not see the saturations explicitly in (4.5). It now remains to
express u in terms of p.

4.1.1. Phase pressure. Several choices for p have been made in [3, 10]. For the
numerical simulation given in the seventh section, we consider these choices in this
and the next three subsections for the compositional model under consideration.
We first review the phase pressure. The water phase pressure is often used in
petroleum reservoir simulation; to be consistent with (2.4), let us use the oil phase
pressure

(4.6) p = po;
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the formulation for the water phase pressure is similar. For expositional conve-
nience, we introduce the phase mobility functions

λα =
krα

µα
, α = g, o, w,

and the total mobility

λ =
∑
α

λα,

where (and later)
∑
α

=
∑

α=w,o,g

. Then it follows from (2.2), (2.4), and (4.6) that

(4.7) u = −kλ

(
∇p−Gλ +

∑
α

λα

λ
∇pcαo

)
,

where Gλ = gc

∑
α

ραλα/λ. Substitution of (4.7) into (4.5) yields the equation for

the phase pressure p. The analysis of the resulting equation will be described in
subsection 5.1 later. The pressure equation as split in (4.5) and (4.7) into a first-
order differential system is suitable to the application of the mixed finite element
method considered in the sixth section.

From (2.2) and (2.4), we see that the phase velocity is related to the total velocity
by

(4.8) uα =
λα

λ


u + k

∑

β

λβ {∇(pcβo − pcαo)− (ρβ − ρα)gc}

 , α = g, o, w.

4.1.2. Weighted fluid pressure. We now define a smoother pressure than the
phase pressure given in (4.6). Namely, we define the weighted fluid pressure

(4.9) p =
∑
α

sαpα.

Note that even if some saturation is zero (i.e., some phase disappears), we still have
a non-zero smooth variable p. By (2.4), the phase pressures are given by

pα = p + pcαo −
∑

β

sβpcβo, α = g, o, w.

Then, apply (2.2) and (4.1) to see that

(4.10) u = −kλ

(
∇p−Gλ +

∑
α

λα

λ
∇pcαo −

∑
α

∇(sαpcαo)

)
.

Finally, the relationships between the phase velocities and the total velocity are the
same as in (4.8).

Observe that the pressure is strongly coupled to the saturations or to the com-
positions through the last term on the right-hand side of (4.7) (respectively, the
last two terms of (4.10)). To have less coupling, we next introduce the so-called
global pressure.
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4.1.3. Global pressure. To introduce a global pressure, we assume that three-
phase relative permeability and capillary pressure functions satisfy the condition
(4.11)

∂

∂sg

(
λw

λ

)
∂pcwo

∂sw
+

∂

∂sg

(
λg

λ

)
∂pcgo

∂sw
=

∂

∂sw

(
λw

λ

)
∂pcwo

∂sg
+

∂

∂sw

(
λg

λ

)
∂pcgo

∂sg
.

This condition is referred to as the total differential condition [2, 3], and it is a
necessary and sufficient mathematical condition to write (2.2) and (2.4) in terms
of (4.13) below (see the derivation of (4.13) and the reason that (4.11) is needed in
[3] for a simpler problem). When it is satisfied, we can define a pressure

pc(sw, sg)=
∫ sw

1

{(
λw

λ

)
(ζ, 0)∂pcwo

∂sw
(ζ, 0) +

(
λg

λ

)
(ζ, 0)∂pcgo

∂sw
(ζ, 0)

}
dζ

+
∫ sg

0

{(
λw

λ

)
(sw, ζ)∂pcwo

∂sg
(sw, ζ) +

(
λg

λ

)
(sw, ζ)∂pcgo

∂sg
(sw, ζ)

}
dζ.

We now introduce the global pressure

(4.12) p = po + pc.

Apply (2.2), (2.4), (4.1), (4.11), and (4.12) to see that

(4.13) u = −kλ(∇p−Gλ).

The phase velocity is determined by

(4.14) uα =
λα

λ
u + kλα

(∇(pc − pcαo)− δα

)
, α = g, o, w,

where

δα =
∑

β

λβ

λ
(ρβ − ρα)gc.

While condition (4.11) is not always true, it has been shown [3] that it is satisfied
for some simple three-phase relative permeability and capillary pressure functions.
Also, a simple numerical procedure for constructing three-phase relative permeabil-
ity and capillary pressure curves satisfying this condition has been given in [2], some
of the numerical examples have been compared with the classical Stone’s model [20],
which does not satisfy this condition, and similar results have been obtained.

4.1.4. Pseudo-global pressure. The global pressure formulation in the previous
subsection requires the total differential condition (4.11) on the shape of three-
phase relative permeability and capillary pressure functions. In this subsection, as
introduced in [3], we finally consider a pseudo-global pressure formulation, which
does not require this condition. For this, assume that the capillary pressures satisfy
the usual condition

(4.15) pcwo = pcwo(sw), pcgo = pcgo(sg).

We then introduce the mean values

(4.16)

(̂
λw

λ

)
(sw) = 1

1−sw

∫ 1−sw

0

(
λw

λ

)
(sw, ζ)dζ,

(̂
λg

λ

)
(sg) = 1

1−sg

∫ 1−sg

0

(
λg

λ

)
(ζ, sg)dζ,

and the pseudo-global pressure

p = po +
∫ sw

swc

(̂
λw

λ

)
(ζ)

dpcwo(ζ)
dsw

dζ +
∫ sg

sgc

(̂
λg

λ

)
(ζ)

dpcgo(ζ)
dsg

dζ,
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where swc and sgc are such that pcwo(swc) = 0 and pcgo(sgc) = 0. Now, apply these
definitions to (4.7) to find that

(4.17) u = −kλ

{
∇p−Gλ +

∑
α

(
λα

λ
−

(̂
λα

λ

))
dpcαo

dsα
∇sα

}
.

The phase velocities in terms of the total velocity are expressed as in (4.8).
The global formulation seems more efficient than the phase and pseudo-global

ones from the computational point of view and also more suitable for mathematical
analysis since the coupling between the equations in this formulation is much less.
The weakness of the global formulation is the need of the satisfaction of the total
differential condition (4.11) by the three-phase relative permeability and capillary
pressure curves. In general, the phase and weighted fluid formulations can be
applied. However, if the fractional flow functions of the water and gas phases
are close to their respective mean values as defined in (4.16), the pseudo-global
formulation is more useful. In the (probably unphysical) case where the capillary
pressures pcα are zero, all the formulations are the same.

4.2. The component mass balance equations. The component mass balance
equations are given as in (2.1); i.e.,

(4.18)
∂t(φnw) +∇ · (ξwuw) = qw,

∂t(φni) +∇ · (xigξgug + xioξouo) = qi, i = 2, . . . , Nc.

The phase velocities uα are related to the total velocity u as in (4.8) or (4.14).
Apply (4.11) and the definition of pc, it can be checked that (4.8) and (4.14) have
the same form

(4.19) uα =
λα

λ
u + λαk

(
λw

λ
∇pcwo +

λg

λ
∇pcgo −∇pcαo − δα

)
, α = g, o, w.

In terms of ∇pcwo and ∇pcgo, the component mass balance equations are thus the
same for all pressure formulations. Therefore, it suffices to analyze one of them,
which is illustrated in the next section.

5. A Qualitative Analysis

In this section we carry out a qualitative analysis for the pressure and component
mass balance equations.

5.1. Analysis of the pressure equation. The pressure equation is given by (4.5)
and (4.7) (respectively, (4.10), (4.13), or (4.17), depending upon the formulation
used). We analyze the global formulation in detail. Substitution of (4.13) into (4.5)
yields

(5.1)

cT ∂tp−∇ · {kλ(∇p−Gλ)
}

=
Nc∑

i=2

∇vi · (xigξgug + xioξouo) + vwqw +
Nc∑

i=2

viqi.

Since the porosity φ is a non-decreasing function of pressure, dφ/dp ≥ 0. Also,
the fluid compressibility means that −φ(∂VT /∂p) > 0. Hence the rock and fluid
compressibility combines to see that

cT = −φ
∂VT

∂p
+

dφ

dp
> 0.
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Furthermore, although the individual phase mobilities λα can be zero (α = g, o,
w), the total mobility λ is positive. Thus if the absolute permeability k of the
reservoir is positive-definite, so is kλ. Consequently, it follows from (5.1) that the
pressure equation is parabolic. Typically, the rock and fluid compressibility is quite
small, and the pressure reaches a steady state very rapidly. The analysis for other
formulations is exactly the same.

5.2. Analysis of the component mass balance equations. We first analyze
the equation for the water phase, i.e., the first equation in (4.18). For notational
simplicity, let pcwo and pcgo satisfy the usual assumption (4.15). Then it is obvious
that

(5.2)

∇pcwo = 1
ξw

dpcwo

dsw
∇nw,

∇pcgo = dpcgo

dsg


∂sg

∂p ∇p +
Nc∑

j=2

Nc∑

i=2

∂sg

∂nig

∂nig

∂nj
∇nj


 .

Substitute (4.19) with α = w and the first equation in (5.2) into the water phase
equation to see that

(5.3)
∂t(φnw) +∇ ·

(
ξwλw

λ u
)
−∇ ·

(
λw(λo+λg)

λ
dpcwo

dsw
k∇nw

)

= qw −∇ ·
(
ξwλwk

{
λg

λ ∇pcgo − δw

})
.

Recall that pcwo is the negative water phase capillary pressure, so dpcwo/dsw > 0
by the property of this capillary pressure. Hence if k is positive-definite, we see
that

λw(λo + λg)
λ

dpcwo

dsw
k

is positive semi-definite. Consequently, equation (5.3) is a degenerate parabolic
problem. The degeneracy is caused by the fact that λw can be zero. Also, from the
properties of the capillary pressure pcwo and the phase mobility λw, the diffusion
coefficient in (5.3) is small compared to the advection term in this equation. Thus
(5.3) is advection-dominated.

We now consider the equation for the hydrocarbon components, i.e., the second
equation in (4.18). Substitute (4.19) with α = g and o into this equation to see
that

(5.4)

∂t(φni) +∇ · ( 1
λ{xigξgλg + xioξoλo}u

)

+∇ ·
(

λg

λ {−xigξg(λw + λo) + xioξoλo} k∇pcgo

)

+∇ · (λw

λ {xigξgλg + xioξoλo} k∇pcwo

)

−∇ · (xigξgλgkδg + xioξoλokδo) = qi, i = 2, . . . , Nc.

Introduce the column vectors

N = (ni)i=2,Nc
, Q = (qi)i=2,Nc

, H =
(

1
λ
{xigξgλg + xioξoλo}u

)

i=2,Nc

,

and the matrix

D = −
(

λg

λ

dpcgo

dsg
{−xigξg(λw + λo) + xioξoλo}

Nc∑

l=2

∂sg

∂nlg

∂nlg

∂nj

)

i,j=2,Nc

.
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Also, set

bi=
λg

λ
dpcgo

dsg

∂sg

∂p {−xigξg(λw + λo) + xioξoλo} k∇p

+λw

λ {xigξgλg + xioξoλo} k∇pcwo

−(xigξgλgkδg + xioξoλokδo), i = 2, . . . , Nc,

and the column vector B to be

B = (bi)i=2,Nc
.

With these notation and substitution of the second equation in (5.2) into (5.4), we
have the system

(5.5) ∂t(φN) +∇ ·H −∇ · (Dk∇N) = Q−∇ ·B.

As in [21], it can be shown that ∂H
∂N has all real eigenvalues. Also, we want D to be

positive semi-definite. This condition guarantees that (5.5) is a parabolic system
and should be a consequence of thermodynamic analysis of real fluids. We do not,
however, know how to prove the positive semi-definiteness of D for the time being.
In the case where we move the off-diagonal terms in D to the right-hand side of
(5.5), it can be proven that D is indeed positive semi-definite (see [10]). This is
practically reasonable since the capillary pressures are quite small compared to the
advection term in (5.5).

6. Numerical Scheme

In this section we briefly review a sequential procedure for numerically solving
the differential system developed in the earlier sections. This sequential procedure
was analyzed in detail in [10].

It is known that accurate numerical reservoir simulation requires accurate ap-
proximations to flow velocities. However, standard finite difference and finite ele-
ment methods do not lead to accurate velocities. On the other hand, the mixed
finite element method [1] has a very satisfactory property in both this aspect and
the treatment of the geometrically complex geological structure of reservoirs (see
the references in [4]). Also, due to their advection-dominated features, more suit-
able methods than the standard finite difference and finite element methods need be
exploited for the component mass balance equations. Here we use a finite volume
method for these equations. This method is applicable to the solution of hyperbolic
conservation laws [12]. Finally, as mentioned before, the phase compositions of the
reservoir fluid are calculated at the thermodynamic phase equilibrium state when
a pressure and the overall compositions of the fluid are prescribed. This solution
technique for the phase compositions is called a flash calculation in mechanics and
is characterized by the Gibbs minimization problem (3.1).

We now state our sequential solution procedure as follows [10]:
(1) At time t = 0, the primary variables (p, n1, . . . , nNc) are computed from

the initial data.
(2) Use the flash calculation to determine the phase compositions niα, i =

2, . . . , Nc, α = g, o.
(3) Evaluate the phase viscosities µα by empirical correlations [16] and molar

and mass densities (ξα, ρα) by the equation of state [17], and then the mole
fractions xiα and saturations sα by (2.6) and (2.7).

(4) Calculate the coefficients of the pressure equation and some of the coef-
ficients of the mass balance equations and then proceed to the next time
level.
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Fig. 1. A reservoir domain.

(5) Apply the mixed finite element method to solve the pressure equation for
u (and p if desired).

(6) Exploit the total velocity to complete the calculation of the coefficients of
the mass balance system.

(7) Utilize the finite volume method to solve this system for (n1, . . . , nNc).
(8) Perform a few iterations between the pressure equation, the mass balance

system, and constitutive relations at the current time level, if necessary.
(9) Go back to step two to update the coefficients at the current time level and

repeat the above procedure until a final state t = T is reached.

7. Numerical Experiments

The simulation problem considered is chosen from the benchmark problem of
the third comparative solution project [13]. Nine companies participated in that
comparison project. It is a study of gas cycling in a rich retrograte condensate
reservoir. Two prediction cases are considered. The first case is gas cycling with
constant sales gas removal, and the second case is cycling with some gas sales
deferral to enhance pressure maintenance in the early life of the reservoir. The
data are taken from [6, 7, 13]. The specification of the reservoir model can be
found in [8, 13]. A reservoir grid with 9 × 9 × 4 is shown in Fig. 1, and it is
diagonally symmetrical, indicating that it would be possible to simulate half of
this reservoir. We chose to model the full reservoir. Also, the reservoir layers
are homogeneous and have a constant porosity, but there are permeability and
thickness variations between layers, a factor leading to unequal sweepout. The two-
well pattern is arbitrary and is employed to allow for some retrograde condensation
without significant revaporization by recycling gas to simulate what occurs in sweep-
inaccessable parts of a real reservoir.

The initial conditions, the location of the gas-water contact, and the capillary
pressure data produce a water-gas transition zone extending to the pay zones [8].
However, the very small compressibility and water volume make water quite in-
significant for the present problem. Relative permeability data are used under the
assumption that the phase relative permeability function depends only on its own
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Fig. 2. Stock-tank oil production rate in case 1.
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Fig. 3. Stock-tank oil production rate in case 2.

phase saturation. Oil is immobile to 24% saturation, and krg is reduced from 0.74
to 0.4 as condensate builds to this saturation with irreducible water present.

Production is separator gas rate controlled. Liquid production through multi-
stage separation is to be predicted. The separator train is given, and the primary
separator pressure depends on reservoir pressure [9]. Sales gas is removed from the
bulked separator gas, and the remaining gas is recycled. Volumetrically, the two
cases under consideration provide for exactly the same amount of recycling gas to
be reinjected over the cycling period (10 years), but more gas is recycled in the
critical early years in the second case. Blowdown (all gas to sales) starts at the end
of the tenth year of cycling, and simulations are run up to 15 years or 1,000 psi
average reservoir pressure, whichever occurs first. The simulations are initialized
at pressure about 100 psi above the dew point pressure 3, 443 psia.

Simulation results for the compositional model considered are given in Figs. 2–6.
The time step size used in the sequential solution procedure is about 30 days (in
the first few time steps, it is smaller). Our compositional simulator can use either
the ORTHOMIN (orthogonal minimum residual) [22] or GMRES (generalized min-
imum residual) [18] Krylov subspace methods, with incomplete LU factorization
preconditioners, as the linear solver. The phase-pressure formulation given in Sec-
tion 4.1.1 is used in the simulation, since this formulation applies to more general
relative permeabilities and capillary curves.

Stock-tank oil rates for the first and second cases and the corresponding cu-
mulative liquid production for these cases at the final simulation time of 15 years
are shown in Figs. 2–5. Incremental stock-tank oil produced by gas-sales deferral
(the second case minus the first) is given in Fig. 6. Primary separator switchout
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Fig. 4. Cumulative stock-tank oil production in case 1.
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Fig. 5. Cumulative stock-tank oil production in case 2.
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Fig. 6. Incremental stock-tank oil produced by gas-sales deferral (case 2 minus case 1).

occurs late in the cycling phase (10 years). The predicted surface oil rate is closely
correlated with the liquid yield predictions.

As noted earlier, the first case is gas cycling with constant sales gas removal,
while the second case is cycling with some gas sales deferral to enhance pressure
maintenance in the early life of the reservoir. The total sales gas removal is the
same for the two cases; the difference lies in the way sales gas is removed in the first
ten years. For a gas condensate reservoir, decreasing the occurring of retrograde
condensate phenomena leads to less loss of heavy hydrocarbon components and
more production of oil.

Fig. 6 gives incremental stock-tank oil produced by gas-sales deferral. In the
peak of this curve (at the eighth year), the cumulative stock-tank oil produced by
the second case is 182 Mstb more than that by the first case (i.e, 9.76% increase).
At the final production time (the 15th year), the increase is down to 159 Mstb
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(6.65%). This phenomenon can be seen from the observation that after injection of
recycle gas stops, liquid production is due to depletion and the heavy end fractions
vaporize into the vapor phase and are produced.
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