
NUMERICAL MATHEMATICS
A Journal of Chinese Universities (English Series)

Vol. 15 No. 1, pp. 1-11
February 2006

Algorithms for Finding the Inverses of Factor

Block Circulant Matrices†

Zhaolin Jiang1,∗, Zongben Xu2 and Shuping Gao3

1 School of Science, Xi’an Jiaotong University, Xi’an 710049, China/Department
of Mathematics, Linyi Teachers College, Linyi 276005, China/College of Mathe-
matics, Qufu Normal University, Qufu 273165, China.
2 School of Science, Xi’an Jiaotong University, Xi’an 710049, China.
3 Department of Applied Mathematics, Xidian University, Xi’an 710071, China.

December 27, 2002; Accepted (in revised version) January 10, 2004

Abstract. In this paper, algorithms for finding the inverse of a factor block circulant matrix,
a factor block retrocirculant matrix and partitioned matrix with factor block circulant blocks
over the complex field are presented respectively. In addition, two algorithms for the inverse
of a factor block circulant matrix over the quaternion division algebra are proposed.
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1 Introduction

Factor block circulant matrices arise in diverse fields of applications [1–3], especially on the
differential equations involving circulant matrices. So, computing the inverse of the factor block
circulant matrix has become an important problem. In order to solve differential equations
involving circulants, we consider in this work the inverses of factor block circulants over the
complex field and the quaternion division algebra.

In Section 1, a computation formula for the inverse of a factor block circulant matrix over
the complex field is presented by utilizing only the interpolation methods and basic properties
of matrix. A remarkable character of the method needs neither the diagonalization method of a
factor block circulant matrix nor the theory of the Jordan canonical form.

In Section 2, a computation formula for the inverse of partitioned matrix with factor block
circulant blocks over the complex field is presented by using Schur complements.

In Section 3, we consider a new kind of matrices which are factor block circulant matrices
over the quaternion division algebra and give a sufficient and necessary condition to determine
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whether a factor block circulant matrix is singular or not and propose two algorithms for the
inverse of a factor block circulant matrix over the quaternion division algebra.

In Section 4, by utilizing only the relationship between a factor block retrocirculant matrix
and a factor block circulant matrix, a computation formula for the inverse of a factor block
retrocirculant matrix over the complex field is presented.

Definition 1.1. Let C1, C2, · · · , Cm, A be square matrices each of order n over the complex field
C. We assume that A is nonsingular and that it commutes with each of the C′

ks. By an A-factor
block circulant matrix of type (m, n) over the complex field C is meant an mn × mn matrix of
the form

ℜ = circA(C1, C2, · · · , Cm) =









C1 C2 · · · Cm−1 Cm
ACm C1 · · · Cm−2 Cm−1

...
... · · ·

...
...

AC3 AC4 · · · C1 C2

AC2 AC3 · · · ACm C1









.

We define πA as the basic A- factor circulant over C, that is,

πA =









0 I 0 · · · 0 0
0 0 I . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 0 I
A 0 0 . . . 0 0









.

The following useful results are well known [1].

Lemma 1.1. ℜ is an A- factor block circulant matrix over C if and only if ℜ = F(πA) for some

matrix polynomial F(z). The polynomial F(z) =
∑m−1

k=0
Ck+1z

k will be called the representer of

the factor circulant over C.

Lemma 1.2. Two A-factor circulants over C B = circA(B1, · · · , Bm), ℜ = circA(C1, · · · , Cm)
commute if the Bj’s commute with the Cj ’s.

Lemma 1.3. Let ℜ be an A- factor block circulant over C. Then

ℜ = VAF(DA)V −1

A ,

where

VA = Vn(K, ωK, . . . , ωm−1K), F(DA) = diag[F(K),F(ωK), . . . ,F(ωm−1K)],

ω = exp(2πi/m), F(z) =
m−1
∑

k=0

Ck+1z
k.

Lemma 1.4. The inverse matrix ℜ−1 of a nonsingular factor block circulant matrix ℜ over C

is also a factor block circulant matrix of the same type.

Lemma 1.5. Let K denote the principal mth root of the nonsingular matrix A over C. Then

Vn(K, ωK, . . . , ωm−1K) is nonsingular, and its inverse equals

FmnX−1/
√

m =
1

m
[Vn(K−1, ̟K−1, . . . , ̟m−1K−1)]T ,

where

X = diag[I, K, K2, . . . , Km−1].
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2 Inverse of factor block circulant matrices over the com-

plex field C

Theorem 2.1. Let ℜ = circA(C1, C2, . . . , Cm) be a nonsingular A-factor block circulant matrix

over C, if ℜ−1 = circA(B1, B2, . . . , Bm) =
∑m−1

j=0
Bj+1π

j
A, then

G(ωiK) = F(ωiK)−1, i = 0, 1, . . . , m − 1.

where ω = exp(2πi/m),F(z) =
∑m−1

k=0
Ck+1z

k is the representer of the A-factor block circulant

matrix ℜ,G(z) =
∑m−1

j=0
Bj+1z

j is the representer of the A-factor block circulant matrix ℜ−1 ,

K denotes the principal mth root of the nonsingular matrix A.

Proof. Since ℜℜ−1 = Imn, by Lemmas 1.3 and 1.4, we obtain

[VAF(DA)V −1

A ][VAG(DA)V −1

A ] = Imn,

diag[F(K),F(ωK), . . . ,F(ωm−1K)]diag[G(K),G(ωK), . . . ,G(ωm−1K)] = Imn.

Therefore,

diag[F(K)G(K),F(ωK)G(ωK), . . . ,F(ωm−1K)G(ωm−1K)] = diag[In, . . . , In].

Then F(ωiK)G(ωiK) = In, i = 0, . . . , m−1. This implies G(ωiK) = F(ωiK)−1, i = 0, . . . , m−1.

Theorem 2.2. Let ℜ = circA(C1, C2, . . . , Cm) be a nonsingular A-factor block circulant matrix

over C, if ℜ−1 = circA(B1, B2, . . . , Bm) =
∑m−1

j=0
Bj+1π

j
A, then

Bj+1 =
1

m

m−1
∑

k=0

(ωkK)−j [F(ωkK)]−1, j = 0, 1, . . . , m − 1. (1)

where ω = exp(2πi/m),F(z) =
∑m−1

k=0
Ck+1z

k is the representer of the factor circulant ℜ, and

K denotes the principal mth root of the nonsingular matrix A.

Proof Let the representer of ℜ−1 be

G(x) = B1 + B2x + . . . + Bmxm−1. (2)

Replacing x in the equation (2) with K, ωK, . . . , ωm−1K , respectively, we obtain the following
system of equations











B1 + B2K + . . . + BmKm−1 = G(K)
B1 + B2ωK + . . . + Bm(ωK)m−1 = G(ωK)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B1 + B2ω

m−1K + . . . + Bm(ωm−1K)m−1 = G(ωm−1K),

which is equivalent to









1 K . . . Km−1

1 ωK . . . (ωK)m−1

...
...

...
...

1 ωm−1K . . . (ωm−1K)m−1















B1

B2

...
Bm






=









G(K)
G(ωK)

...
G(ωm−1K)









(3)
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The coefficient matrix of the system of equations (3) is precisely [Vn(K, ωK, . . . , ωm−1K)]T ,where
Vn(K, ωK, . . . , ωm−1K) denotes the block Vandermonde matrix of the ωkK’s. From Lemma
1.5, we know that Vn(K, ωK, . . . , ωm−1K) is nonsingular, then [Vn(K, ωK, . . . , ωm−1K)]T is
nonsingular. Thus, the system of equations (3) will have the unique solution B1, B2, . . . , Bm. By
the system of equations (3), we have







B1

B2

...
Bm






=









1 K . . . Km−1

1 ωK . . . (ωK)m−1

...
...

...
...

1 ωm−1K . . . (ωm−1K)m−1

















G(K)
G(ωK)

...
G(ωm−1K)









= {[Vn(K, ωK, . . . , ωm−1K)]T }−1









G(K)
G(ωK)

...
G(ωm−1K)









= {[Vn(K, ωK, . . . , ωm−1K)]−1}T









G(K)
G(ωK)

...
G(ωm−1K)









.

By Lemma 1.5, we have







B1

B2

...
Bm






= { 1

m
[Vn(K−1, ωK−1, . . . , ωm−1K−1)]T }T









G(K)
G(ωK)

...
G(ωm−1K)









=
1

m
[Vn(K−1, ̟K−1, . . . , ̟m−1K−1)]









G(K)
G(ωK)

...
G(ωm−1K)









.

By Theorem 2.1, we have







B1

B2

...
Bm






=

1

m
[Vn(K−1, ̟K−1, . . . , ̟m−1K−1)]









F(K)−1

F(ωK)−1

...
F(ωm−1K)−1









(4)

Multiplying the (j + 1)th row of the 1

m
[Vn(K−1, ̟K−1, . . . , ̟m−1K−1)] by

(F(K)−1,F(ωK)−1, . . . ,F(ωm−1K)−1)T

respectively in the system of equations (4), we have

Bj+1 =
1

m

m−1
∑

k=0

(ωkK)−j [F(ωkK)]−1, j = 0, 1, . . . , m − 1.

This completes the proof of this theorem.

Let ℜ = circA(C1, C2, . . . , Cm) be a nonsingular A-factor block circulant matrix over C, by
Theorem 2.2, we have the following algorithm which can find the inverse of the matrix ℜ :
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• Step 1. Find out the principal mth root K of the nonsingular matrix A.

• Step 2. By F(z) =

m−1
∑

k=0

Ck+1z
k for computing F(ωkK), k = 0, 1, . . . , m − 1, respectively.

• Step 3. By Step 2 for computing [F(ωkK)]−1, k = 0, 1, . . . , m − 1, respectively.

• Step 4. By Equation(1) for computing Bj+1, j = 0, 1, . . . , m − 1, respectively, we have

ℜ−1 = circA(B1, B2, . . . , Bm).

3 Inverse of partitioned matrix with factor block circulant

blocks over C

Let ℜ1,ℜ2,ℜ3,ℜ4 be A-factor block circulant matrices over C. If ℜ1 is nonsingular, and if let

Ω =
( ℜ1 ℜ2

ℜ3 ℜ4

)

,H1 =

(

I 0
−ℜ3ℜ−1

1 I

)

,H2 =

(

I −ℜ−1

1 ℜ2

0 I

)

,

then

H1ΩH2 =

(

ℜ1 0
0 ℜ4 −ℜ3ℜ−1

1 ℜ2

)

. (5)

So Ω is nonsingular if and only if ℜ4−ℜ3ℜ−1

1 ℜ2 is nonsingular. Furthermore, if Ω is nonsingular,
by equation (5), we have

Ω−1 = H2

(

ℜ−1
1 0
0 (ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1

)

H1

=

(

I −ℜ−1

1 ℜ2

0 I

) (

ℜ−1

1 0
0 (ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1

) (

I 0
−ℜ3ℜ−1

1 I

)

=

(

ℜ−1

1 −ℜ−1

1 ℜ2(ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1

0 (ℜ4 −ℜ3ℜ−1
1 ℜ2)

−1

) (

I 0
−ℜ3ℜ−1

1 I

)

=

(

ℜ−1

1 + ℜ−1

1 ℜ2(ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1ℜ3ℜ−1

1 −ℜ−1

1 ℜ2(ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1

−(ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1ℜ3ℜ−1

1 (ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1

)

.

Therefore, we have

Theorem 3.1. Let

Ω =
( ℜ1 ℜ2

ℜ3 ℜ4

)

,

where ℜ1,ℜ2,ℜ3,ℜ4 are all A-factor block circulant matrices over C. If ℜ1 is nonsingular, then

Ω is nonsingular if and only if ℜ4 − ℜ3ℜ−1
1 ℜ2 is nonsingular. Moreover, if Ω is nonsingular,

then

Ω−1 =

(

ℜ−1

1 + ℜ−1

1 ℜ2(ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1ℜ3ℜ−1

1 −ℜ−1

1 ℜ2(ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1

−(ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1ℜ3ℜ−1

1 (ℜ4 −ℜ3ℜ−1

1 ℜ2)
−1

)

. (6)

In particular, we have
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Corollary 3.1. Let ℜi = circA(Ci1, Ci2, . . . , Cim),with each Cik and a-factor scalar circulant

over C, for i = 1, 2, 3, 4 , and let us assume that A is an a-factor circulant over C. Let

Ω =
( ℜ1 ℜ2

ℜ3 ℜ4

)

.

If ℜ1 is nonsingular, then Ω is nonsingular if and only if ℜ1ℜ4−ℜ2ℜ3 is nonsingular. Moreover,

if Ω is nonsingular, then

Ω−1 =

(

ℜ−1
1 + (ℜ1ℜ4 −ℜ2ℜ3)

−1ℜ2ℜ3ℜ−1
1 −(ℜ1ℜ4 −ℜ2ℜ3)

−1ℜ2

−(ℜ1ℜ4 −ℜ2ℜ3)
−1ℜ3 (ℜ1ℜ4 −ℜ2ℜ3)

−1ℜ1

)

. (7)

Proof Now since each Cik is a-factor scalar circulant, then the Cik’s commute with the Cjk’s
if i 6= j, for i, j = 1, 2, 3, 4 and k = 1, 2, . . . , m. By Lemma 1.2, we obtain that the ℜi commutes
with the ℜj if i 6= j for i, j = 1, 2, 3, 4. Thus

ℜ1(ℜ4 −ℜ3ℜ−1
1 ℜ2) = ℜ1ℜ4 −ℜ2ℜ3. (8)

By Theorem 3.1 and equation (8), we conclude that Ω is nonsingular if and only if ℜ1ℜ4 −ℜ2ℜ3

is nonsingular and the validity of equation (7) is proved.

Using the proof similar to that of Theorem 3.1, we can obtain the following conclusion.

Theorem 3.2. Let

Ω =
( ℜ1 ℜ2

ℜ3 ℜ4

)

, (9)

where ℜ1,ℜ2,ℜ3,ℜ4 are all A-factor block circulant matrices over C. If ℜ4 is nonsingular, then

Ω is nonsingular if and only if ℜ1 − ℜ2ℜ−1

4 ℜ3 is nonsingular. Moreover, if Ω is nonsingular,

then

Ω−1 =

(

(ℜ1 −ℜ2ℜ−1

4 ℜ3)
−1 −(ℜ1 −ℜ2ℜ−1

4 ℜ3)
−1ℜ2ℜ−1

4

−ℜ−1

4 ℜ3(ℜ1 −ℜ2ℜ−1

4 ℜ3)
−1 ℜ−1

4 ℜ3(ℜ1 −ℜ2ℜ−1

4 ℜ3)
−1ℜ2ℜ−1

4 + ℜ−1

4

)

. (10)

4 Factor block circulant matrices over quaternion division

algebra

Let F be a field, and D = F[i, j, k] = {a + bi + cj + dk|a, b, c, d ∈ F} a quaternion division algebra
over the field F , and suppose that 1, i, j, k is a basis of D as a vector space over the field F,
where i, j, k are elements in D such that i2 = j2 = k2 = −1, ij = k = −ji, ki = j = −ik and
jk = i = −kj. It is easy to show that there exist matrices ℜ0,ℜ1,ℜ2,ℜ3 over the field F such
that ℜ = ℜ0 + iℜ1 + jℜ2 + kℜ3 for a matrix ℜ over D .

Definition 4.1. Let C1, C2, . . . , Cm, A be square matrices each of order n over D. We assume
that A is nonsingular and that it commutes with each of the Ck’s. By an A- factor block circulant

matrix of type (m, n) over the quaternion division algebra D is meant an mn×mn matrix of the
form

ℜ = circA(C1, C2, . . . , Cm) =











C1 C2 . . . Cm−1 Cm
ACm C1 . . . Cm−2 Cm−1

...
... . . .

...
...

AC3 AC4 . . . C1 C2

AC2 AC3 . . . ACm C1











.



Zhaolin Jiang, Zongben Xu and Shuping Gao 7

We define πA as the basic A-factor circulant over the quaternion division algebra D , that is,

πA =











0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 I
A 0 0 . . . 0 0











.

This block matrix can be conveniently written as

πA = (E2, E3, . . . , Em, AE1)
T = (Aem, e1, e2, . . . , em−1),

where Ej = (0, 0, . . . , I, . . . , 0), ej = col(0, 0, . . . , I, . . . , 0) are the jth unit row and column block
matrix respectively. The powers of πA are easily seen to be

(Ek+1, . . . , Em, AE1 . . . , AEk)T =

{

(Aem−k+1, . . . , Aem, e1, . . . , em−k), k = 1, . . . , m − 1,
AImn, k = m,
Aqπp

A, k = qm + p, p = 1, . . . , m − 1, q = 1, 2, . . . ,

where Imn denotes the mn×mn identity matrix, and the product of a square matrix with a block
matrix is to be understood as the block matrix obtained by multiplying the square matrix with
each matrix component of the given block matrix. These powers can be visualized as follows.
The matrix A which occupies the lower corner entry moves up, occupying each entry of the kth
lower subdiagonal, while the nonzero upper subdiagonal shrinks into the next one. For k ≥ m
there is a cyclic reproduction of the above, times a power of A.

In view of the structure of the powers of the basic factor circulant πA over D , it is clear that

ℜ = circA(C1, C2, . . . , Cm) = C1 + C2πA + . . . + Cmπm−1

A . (11)

Thus, ℜ is an A-factor circulant matrix over D if and only if ℜ = F(πA) for some matrix

polynomial F(z). The polynomial F(z) =
∑m−1

k=0
Ck+1z

k will be called the representer of the
factor circulant over D .

Clearly, we have

Theorem 4.1. ℜ = ℜ0 + iℜ1 + jℜ2 + kℜ3 is a factor block circulant matrix over D if and only

if ℜ0,ℜ1,ℜ2,ℜ3 are all factor block circulant matrices over the field F.

Theorem 4.2. The inverse matrix ℜ−1 of a nonsingular factor block circulant matrix ℜ over D

is also a factor block circulant matrix of the same type.

Proof From representation (9), we have ℜ = C1+C2πA+. . .+Cmπm−1

A . and the inverse matrix
ℜ−1 of a nonsingular factor block circulant matrix ℜ over D is also a factor block circulant matrix
of the same type if and only if there exists B1, B2, . . . , Bm over D such that

ℜ−1 = B1 + B2πA + . . . + Bmπm−1

A . (12)

Since ℜℜ−1 = I and πm+k
A = Aπk

A, then

ℜℜ−1 = (C1 + C2πA + . . . + Cmπm−1

A )(B1 + B2πA + . . . + Bmπm−1

A )

= D1 + D2πA + . . . + Dmπm−1

A = I.

if and only if










Dm = C1Bm + C2Bm−1 + . . . + Cm−1B2 + CmB1 = 0,
Dm−1 = ACmBm + C1Bm−1 + . . . + Cm−2B2 + Cm−1B1 = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . ,
D2 = AC3Bm + AC4Bm−1 + . . . + C1B2 + C2B1 = 0,
D1 = AC2Bm + AC3Bm−1 + . . . + ACmB2 + C1B1 = In,
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if and only if ℜ(Bm, . . . , B2, B1)
T = (0, . . . , 0, In)T . Since ℜ is nonsingular, so

(Bm, . . . , B2, B1)
T = ℜ−1(0, . . . , 0, In)T . (13)

By the above system of equations (11), the existence of B1, B2, . . . , Bm in the system of equations
(10) has been proved.

Theorem 4.3. Let ℜ be a factor block circulant matrix over D , then ℜ is nonsingular if and

only if ℜ = ℜ0−iℜ1−jℜ2−kℜ3 is nonsingular, where ℜ0,ℜ1,ℜ2,ℜ3 are all factor block circulant

matrices over the field F.

Proof By computing, it is easy to prove that ℵ0 + iℵ1 + jℵ2 + kℵ3 is the inverse of ℜ if and
only if ℵ0 − iℵ1 − jℵ2 − kℵ3 is the inverse of ℜ, where ℵ0,ℵ1,ℵ2,ℵ3 are all factor block circulant
matrices over the field F.

Theorem 4.4. If matrices ℜ0,ℜ1,ℜ2,ℜ3 are all factor block circulant matrices over the field

F, then ℜ = ℜ0 + iℜ1 + jℜ2 + kℜ3 over D is nonsingular if and only if ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3 is

nonsingular. Furthermore, if ℜ is nonsingular, then

ℜ−1 = (ℜ0 − iℜ1 − jℜ2 − kℜ3)(ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3)
−1.

Proof If ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3 is nonsingular, then

ℜ[(ℜ0 − iℜ1 − jℜ2 − kℜ3)(ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3)
−1] = I.

Hence ℜ is nonsingular, and

ℜ−1 = (ℜ0 − iℜ1 − jℜ2 − kℜ3)(ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3)
−1.

If ℜ is nonsingular,and suppose that ℵ = ℵ0 + iℵ1 + jℵ2 + kℵ3 is the inverse of ℜ. So ℵ is also
a factor block circulant matrix over D such that ℜℵ = ℵℜ = I . Hence we have the following
system of equations:













ℜ0 −ℜ1 −ℜ2 −ℜ3

ℜ1 ℜ0 −ℜ3 ℜ2

ℜ2 ℜ3 ℜ0 −ℜ1

ℜ3 −ℜ2 ℜ1 ℜ0

ℜ1 ℜ0 ℜ3 −ℜ2

ℜ2 −ℜ3 ℜ0 ℜ1

ℜ3 ℜ2 −ℜ1 ℜ0

















ℵ0

ℵ1

ℵ2

ℵ3



 =













I
0
0
0
0
0
0













(14)

By solving the system of equations (12), we have the following system of equations:











ℵ0(ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3) = ℜ0

ℵ1(ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3) = −ℜ1

ℵ2(ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3) = −ℜ2

ℵ3(ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3) = −ℜ3

Therefore

ℵ(ℜ2
0 + ℜ2

1 + ℜ2
2 + ℜ2

3) = ℜ0 − iℜ1 − jℜ2 − kℜ3 (15)

Since ℜ is nonsingular, we know that ℜ0 − iℜ1 − jℜ2 − kℜ3 is nonsingular by Theorem 4.3. So
ℜ2

0 + ℜ2
1 + ℜ2

2 + ℜ2
3 is nonsingular by equation (13).
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In the following, let D = F[i, j, k] = {a + bi + cj + dk|a, b, c, d ∈ C} be a quaternion division
algebra over the complex field C, we give another algorithm for the inverse of ℜ = ℜ0 + iℜ1 +
jℜ2 + kℜ3.

Suppose that ℵ = ℵ0 + iℵ1 + jℵ2 + kℵ3 is the inverse of ℜ . Then we have the following
system of equations which is equivalent to the system of equations (12)





ℜ0 −ℜ1 −ℜ2 −ℜ3

ℜ1 ℜ0 −ℜ3 ℜ2

ℜ2 ℜ3 ℜ0 −ℜ1

ℜ3 −ℜ2 ℜ1 ℜ0









ℵ0

ℵ1

ℵ2

ℵ3



 =





I
0
0
0



 (16)

Let

A =
(

Ω −W
W Ω

)

where

Ω =
( ℜ0 −ℜ1

ℜ1 ℜ0

)

, W =
( ℜ2 ℜ3

ℜ3 −ℜ2

)

.

Then ℜ is nonsingular if and only if A is nonsingular. If Ω is nonsingular, then
(

I 0
−WΩ−1 I

)(

Ω −W
W Ω

) (

I Ω−1W
0 I

)

=
(

Ω 0
0 Ω + WΩ−1W

)

, (17)

where I is an 2 × 2 identity matrix. Hence A is nonsingular if and only if Ω + WΩ−1W and Ω
are both nonsingular.

We now introduce the following algorithm for the inverse of ℜ = ℜ0 + iℜ1 + jℜ2 + kℜ3.

• Step 1. If Ω is singular, stop. Otherwise, go to step 2.

• Step 2. By equation (6), we have

Ω−1 =
(

℘0 ℘1−℘1 ℘0

)

= ℘. (18)

• Step 3. Calculate

Ω + WΩ−1W =

(

(ℜ2
2 + ℜ2

3)℘0 −(ℜ2
2 + ℜ2

3)℘1

(ℜ2
2 + ℜ2

3)℘1 (ℜ2
2 + ℜ2

3)℘0

)

.

If Ω + WΩ−1W is singular, stop. Otherwise, go to step 4.

• Step 4. By equation (6), we have

(Ω + WΩ−1W )−1 = ℑ (19)

• Step 5. By equations (15), (16) and (17), we have

A−1 =
(

I −℘W
0 I

) (

℘ 0
0 ℑ

) (

I 0
W℘ I

)

. (20)

• Step 6. By the system of equations (14) and equation (18), we have




ℵ0

ℵ1

ℵ2

ℵ3



 =
(

I −℘W
0 I

) (

℘ 0
0 ℑ

) (

I 0
W℘ I

)





I
0
0
0



 .

The ℜ−1 = ℵ = ℵ0 + iℵ1 + jℵ2 + kℵ3 is then obtained.
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5 Factor block retrocirculant matrices over C

Definition 5.1. Let C1, C2, . . . , Cm, A be square matrices each of order n over C. We assume
that A is nonsingular and that it commutes with each of the Ck’s. By an A- factor block
retrocirculant matrix of type (m, n) is meant an mn × mn matrix of the form

ℑ = retrocircA(C1, C2, . . . , Cm) =











C1 C2 . . . Cm−1 Cm
C2 C3 . . . Cm AC1

C3 C4 . . . AC1 AC2

...
... . . .

...
...

Cm AC1 . . . ACm−2 ACm−1











.

The factor retrocirculants of type(m, 1) will be referred to as scalar factor retrocirculants. In
this case the matrix A reduces to a scalar that we shall denote by a. When A is the identity
matrix I, we drop the word “factor” in the above definition. This kind of matrices are just block
retrocirculants. Further, when C1, C2, . . . , Cm are scalar c1, c2, . . . , cm, this kind of matrices are
as in [10–12].

Lemma 5.1. We have Γ−1

A = ΓA−1 , where

ΓA = retrocicA(In, 0, . . . , 0), ΓA−1 = retrocicA−1(In, 0, . . . , 0).

Lemma 5.2. Let ℜ = circA−1(C1, C2, . . . , Cm) be an A−1- factor block circulant and let ℑ =
retrocircA(C1, C2, . . . , Cm) be an A- factor block retrocirculant. Then ΓAℜ = ℑ.

Theorem 5.1. Let ℑ = retrocircA(C1, C2, . . . , Cm) be a nonsingular A-factor block retrocirculant

matrix over the complex field C. Then

ℑ−1 = retrocircA−1(B1, A
−1Bm, . . . , A−1B3, A

−1B2),

where

Bj+1 =
1

m

m−1
∑

k=0

(ωkK)−j[F(ωkK)]−1, j = 0, 1, . . . , m − 1 (21)

and ω = exp(2πi/m),F(z) =
∑m−1

k=0
Ck+1z

k and K denotes the principal mth root of the non-

singular matrix A−1.

Proof By Lemma 5.2, Lemma 5.1 and Theorem 2.2, we have

ℑ−1 = [circA−1(C1, C2, . . . , Cm)]−1Γ−1

A = circA−1(B1, B2, . . . , Bm)ΓA−1

=











B1 B2 . . . Bm−1 Bm

A−1Bm B1 . . . Bm−2 Bm−1

...
... . . .

...
...

A−1B3 A−1B4 . . . B1 B2

A−1B2 A−1B3 . . . A−1Bm B1





















In 0 . . . 0 0
0 0 . . . 0 A−1

0 0 . . . A−1 0
...

... . . .
...

...
0 A−1 . . . 0 0











=













B1 A−1Bm . . . A−1B3 A−1B2

A−1Bm A−1Bm−1 . . . A−1B2 A−1B1

...
... . . .

...
...

A−1B3 A−1B2 . . . A−1(A−1B5) A−1(A−1B4)
A−1B2 A−1B1 . . . A−1(A−1B4) A−1(A−1B3).













= retrocircA−1(B1, A
−1Bm, . . . , A−1B3, A

−1B2),
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where

Bj+1 =
1

m

m−1
∑

k=0

(ωkK)−j [F(ωkK)]−1, j = 0, 1, . . . , m − 1.

This implies the validity of Theorem 5.1.

Let ℑ = retrocircA(C1, C2, . . . , Cm) be a nonsingular A-factor block retrocirculant matrix
over the complex field C, by Theorem 5.1, we have the following algorithm which can find the
inverse of the matrix ℑ :

• Step 1. Find out the inverse matrix A−1 of the nonsingular matrix A.

• Step 2. Find out the principal mth root K of A−1 .

• Step 3. By F(z) =
∑m−1

k=0
Ck+1z

k for computing F(ωkK), k = 0, 1, . . . , m−1, respectively.

• Step 4. By Step 2 for computing [F(ωkK)]−1, k = 0, 1, . . . , m − 1, respectively.

• Step 5. By Equation(19) for computing Bj+1, j = 0, 1, . . . , m − 1, respectively, we have

ℑ−1 = retrocircA−1(B1, A
−1Bm, . . . , A−1B3, A

−1B2).

References

[1] Claeyssen J C R, Leal L A S. Diagonalization and spectral decomposltion of factor block circulant
matrices. Linear Algebra and its Appl., 1988, 99: 41-61.

[2] Claeyssen J R, Davila M, Tsukazan T. Factor block circulant and periodic solutions of undamped
matrix differential equations. Mat. Appl. Comput., 1983, 3(1):

[3] Wilde A. Differential equations involving circulant matrices. Rocky Mount. J. Math., 1983, 13(1):
1-13.

[4] Zhang F Z. Quaternions and matrices of quaternions. Linear Algebra and its Appl., 1997,251: 21-57.
[5] Jiang Z L, Zhou Z X. Circulant Matrices. Chengdu: Chengdu Technology University Publishing

Company, 1999.
[6] Jeffrey L S. Diagonally scaled permutations and circulant matrices. Linear Algebra and its Appl.,

1994, 212/213: 397-411.
[7] Horn R A, Johnson C R. Matrix Analysis. New York: Cambridge University Press, 1985.
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