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Abstract. A class of nonlinear parabolic equation on a polygonal domain Ω ⊂ R
2 is inves-

tigated in this paper. We introduce a finite element method on overlapping non-matching
grids for the nonlinear parabolic equation based on the partition of unity method. We give
the construction and convergence analysis for the semi-discrete and the fully discrete finite
element methods. Moreover, we prove that the error of the discrete variational problem
has good approximation properties. Our results are valid for any spatial dimensions. A
numerical example to illustrate the theoretical results is also given.

Key words: Nonlinear parabolic equation; finite element method; overlapping non-matching grids;
partition of unity.

AMS subject classifications: 65F10, 65N30, 65N15

1 Introduction

Since Huang and Xu [1] proposed a finite element method for overlapping non-matching grids
based on partition of unity, the new finite element method has been attracting many authors’
interest. Recently, there have been some studies of applying the finite element method to over-
lapping grids. These studies are within the framework of mortar finite elements or Lagrange
multipliers [4-6]. The partition of unity method that has its roots in Babǔska and Melenk in
[2,3], has been used for the numerical solutions of the parabolic problems [7-9]. Both linear
elliptic and parabolic problems are studied [1,11]. However, the discrete case of the nonlinear
parabolic problem has not been investigated when overlapping grids and non-matching grids are
involved. In this paper, following the ideas of Huang and Xu, we propose a finite element method
by introducing a conforming finite element space and by using an argument of the partition of
unity type for a class of nonlinear parabolic problem.
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The rest of this paper is organized as follows. In Section 2, we give a brief description for
the continuous nonlinear parabolic problem and the discretization of overlapping sub-domains.
We also construct a globally conforming finite element space based on partition of unity. In
Section 3, we give a few examples of the partition of unity function. We give the main results of
the paper in Sections 4 and 5. They include the convergence analysis of the semi-discrete finite
element solution based on partition of unity and the fully discrete finite element solution for the
nonlinear parabolic problem. In Section 6, a numerical example is presented.

2 Construction of a global conforming subspace using the

partition of unity

Let Ω ⊂ R
2 be a bounded polygonal domain with smooth boundary ∂Ω, Γ be a closed subset of

∂Ω. By H1
0 (Ω; Γ), we denote the closure in H1 − topology of C∞(Ω) functions that vanish in a

neighborhood of Γ. Consider the following initial-boundary value problem for a class of nonlinear
parabolic differential equation:





∂tu−∇ · (a(u)∇u) = f(u), for x ∈ Ω, t ∈ (0, T ],
u(x; t) = 0, for x ∈ ∂Ω, t ∈ (0, T ],
u(x; 0) = g(x), for x ∈ Ω,

(1)

where a and f are smooth functions defined on R such that

0 < µ ≤ a(u) ≤M, |a′(u)| + |f ′(u)| ≤ B, for u ∈ R. (2)

Assume that the above problem admits a unique solution which is smooth enough for our pur-
poses.

Now we begin our discussion of overlapping grids. We consider an overlapping domain de-
composition of Ω, namely, we take Ω1,Ω2, ...,Ωs to be overlapping sub-domains satisfying

Ω =

s⋃

i=1

Ωi.

We assume that each Ωi is partitioned by a quasi-uniform finite element triangulation (or quadri-
lateral) Jhi of maximal mesh size hi, which are different from each other. Assume di is the
minimal overlapping size of Ωi with its neighboring sub-domains. Denote

Jh =
s⋃

i=1

Jhi , h = max
1≤i≤s

{hi}, d = min
1≤i≤s

{di}.

We shall use the notation <∼ and >∼, i.e., when we write x1
<∼ y1, x2

>∼ y2, we mean that there

exist constants c1, c2, such that

x1 ≤ c1y1, x2 ≥ c2y2,

where ci (i = 1, 2) are constants independent of mesh size h.
For every sub-domain Ωi and partition Jhi(i = 1, 2, ..., s), we have the corresponding station-

ary finite element space:

V hi(Ωi) = {v ∈ H1
0 (Ωi; ∂Ω ∩ ∂Ωi); v|e ∈ Pmi+r−1, e ∈ Jhi ,mi ≥ 1, r ≥ 1} ⊂ H1(Ω),



Q. S. Wang, K. Deng, Z. G. Xiong and Y. Q. Huang 3

where Pmi+r−1 denotes the set of polynomials in two variables of degree at most mi + r−1. The
variational formulation of the problem (1) on Ω is: Find a u(t) ∈ H1

0 (Ω; ∂Ω), t ∈ (0, T ], such that

{
(∂tu(t), v) + (a(u(t))∇u,∇v) = (f(u(t)), v), ∀v ∈ H1

0 (Ω; ∂Ω),
u(x; 0) = g(x), for x ∈ Ω,

(3)

where

(a(u)∇u,∇v) =

∫

Ω

a(u)∇u∇vdx, (f(u), v) =

∫

Ω

f(u)vdx.

The semi-discrete approximate formulation of the problem (1) on Ω is: Find a uh(t) ∈ V h(Ω), t ∈
(0, T ], such that

{
(∂tuh(t), v) + (a(uh(t))∇uh,∇v) = (f(uh(t)), v), ∀v ∈ V h(Ω),

uh(x; 0) = gh(x) ∈ V h(Ω), for x ∈ Ω,
(4)

where gh is the certain discrete approximation of g. Usually, by taking gh = Ihg (the interpolation
function of g in V h(Ω)), we may assume

||g − gh||l,Ω ≤
s∑

i=1

||g − gh||l,Ωi
<∼

s∑

i=1

hmi+r−l
i ||g||mi+r,Ωi

, l = 0, 1. (5)

Consider the discretization of time variable on (0, T ] : t0 = 0 < t1 < ... < tN = T . Define
Ij = (tj−1, tj), kj = tj − tj−1, k = max1≤j≤N{kj}, and assume U j ≈ u(tj), U

j
h ≈ uh(tj), ∂tU

j ≈
∂tU

j , kj ≥ Ck (the constant C is independent of j and k). Then, the fully discrete finite element

approximation of the problem (1) on Ω is: Find U j
h ∈ V h(Ω), such that

{
(∂tU

j
h, v) + (a(U j

h)∇U j
h,∇v) = (f(U j

h), v), ∀v ∈ V h(Ω),

U0
h(x; 0) = gh(x) ∈ V h(Ω), j = 1, 2, ..., N, for x ∈ Ω.

(6)

The main question which attracts our interest is how to put these local finite element sub-
spaces V hi(Ωi) together to construct a global finite element subspaces of H1

0 (Ω). We would like
to emphasize here that a new technique based on the partition of unity, unlike existing techniques
such as Lagrange multiplier methods or mortar finite element methods, will be used to construct
a globally conforming finite element space.

The main ingredient in our analysis and construction below is a partition of unity {ϕi}s
i=1

associated with the overlapping sub-domains {Ωi}s
i=1. It is easy to see that we can choose this

partition of unity functions ϕi to satisfy the properties





0 ≤ ϕi(x) ≤ 1, x ∈ Ω,
s∑

i=1

ϕi ≡ 1, x ∈ Ω,

supp(ϕi) ⊂ Ωi, ϕi ∈ W r,∞(Ω),

|∇kϕi| <∼ d−k
i , 1 ≤ k ≤ r,

(7)

where di is the minimal overlapping size of Ωi with its neighboring subdomains.
Let Qi ⊆ H1

0 (Ωi; ∂Ω ∩ ∂Ωi) be given. Then the space

Q =

s∑

i=1

ϕiQi =

{
s∑

i=1

ϕivi, vi ∈ Qi

}
(8)
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is called the PUFEM space (partition of unity finite element method).
By Theorem 2 of [1], and using the partition of unity described in (7), we can glue all the

local subspaces V hi(Ωi) together. Then the space

V h(Ω) =

s∑

i=1

ϕiV
hi(Ωi) =

{
s∑

i=1

ϕivi, vi ∈ V hi(Ωi)

}
(9)

is called the PUFEM space of the nonlinear parabolic problem (1). Therefore, the semi-discrete
and fully discrete partition of unity finite element solution (or PUFEM solution) of the problem
(1) can be represented as follows:

uh(t) =

s∑

i=1

ϕiu
i
h(t), ui

h(t) ∈ V hi(Ωi), (10)

and

U j
h =

s∑

i=1

ϕiU
j
hi
, U j

hi
∈ V hi(Ωi). (11)

3 Examples of the partition of unity functions

For simplicity and concreteness, we restrict our attention to the situation of two overlapping
sub-domains with polygonal shapes. The analysis for many sub-domain cases is similar. Let
Ω1,Ω2 be the overlapping sub-domains of Ω satisfying Ω = Ω1 ∪ Ω2 and Ω0 = Ω1 ∩ Ω2 6= ∅.
Furthermore, we assume that Ω1,Ω2 are partitioned by quasi-uniform finite element triangulation
(or quadrilateral) Jh1 and Jh2 of maximal mesh sizes h1 and h2 (may not match on Ω0). Again,
just for the sake of simplicity, we assume that Ω0 is a stripe-type domain of width d = O(h1)
and h1 ≥ h2.

Example 3.1. (The one dimensional case.) Let Ω = (0, 1),Ω1 = (0, x1),Ω2 = (x2, 1), and
0 < x2 < x1 < 1, d = h = h1 = x1 − x2. Choose

ϕ1
1(x) =





1, for 0 < x ≤ x2,
x1 − x

x1 − x2

, for x2 < x ≤ x1,

0, for x1 < x < 1,

(12a)

ϕ1
2(x) =





0, for 0 < x ≤ x2,
x− x2

x1 − x2

, for x2 < x ≤ x1,

1, for x1 < x < 1.

(12b)

Then {ϕ1
i (x)}2

i=1 are a piecewise linear hat-functions which form a partition of unity.
Generally, let

ψ1(x) =





1, for 0 < x ≤ x2,
α1(x), for x2 < x ≤ x1,

0, for x1 < x < 1,
ψ2(x) =





0, for 0 < x ≤ x2,
α2(x), for x2 < x ≤ x1,

1, for x1 < x < 1,

where α1(x), α2(x) are smooth functions satisfying
{
α1(x2) = 1, α1(x1) = 0, α2(x2) = 0, α2(x1) = 1,

α′
1(x) < 0, α′

2(x) > 0, x2 < x < x1.



Q. S. Wang, K. Deng, Z. G. Xiong and Y. Q. Huang 5

Then the normalization

ϕi(x) =
ψi(x)∑2

j=1
ψj(x)

, i = 1, 2, (13)

yields a partition of unity subordinate to the cover {Ωi}2
i=1. In particular, let

α1(x) =
(x1 − x)(x1 + x− 2x2)

(x1 − x2)2
, α2(x) =

(x− x2)(2x1 − x2 − x)

(x1 − x2)2
.

Then the normalization functions

ϕ2
1(x) =





1, for 0 < x ≤ x2,
(x1 − x)(x1 + x− 2x2)

(x1 − x)(x1 + x− 2x2) + (x − x2)(2x1 − x2 − x)
, for x2 < x ≤ x1,

0, for x1 < x < 1,

(14a)

and

ϕ2
2(x) =





0, for 0 < x ≤ x2,
(x− x2)(2x1 − x2 − x)

(x1 − x)(x1 + x− 2x2) + (x − x2)(2x1 − x2 − x)
, for x2 < x ≤ x1,

1, for x1 < x < 1,

(14b)

are the partition of unity functions.

Example 3.2. (The two dimensional case of triangulation partition.) Let Ω = (0, 1)×(0, 1),Ω1 =
(0, x1)×(0, 1),Ω2 = (x2, 1)×(0, 1), and 0 < x2 < x1 < 1, d = x1−x2, J

h1 be a member of a family
of uniform triangulations of Ω1 with maxe∈Jh1

diam{e} = h1 =
√

2d. Assume Ω2 is partitioned

by uniform triangulation (or quadrilateral) Jh2 of maximal mesh sizes h2. Furthermore, we
assume h1 ≥ h2, and denote

Γ1 : x = x1 (0 ≤ y ≤ 1); Γ2 : x = x2 (0 ≤ y ≤ 1),

Mj = (x1, yj), Nj = (x2, yj), yj = jd, j = 1, 2, ..., n, n = 1

d
. Namely, Γ1 = M0M1...Mn,Γ2 =

N0N1...Nn. On the element e1j = MjNjNj−1, let the functions α1j , α2j , α3j (j = 1, 2, ..., n)
be the basic function (area coordinates) of nodes Mj, Nj , Nj−1, respectively. On the element
e2j = Nj−1Mj−1Mj, let the functions β1j , β2j , β3j (j = 1, 2, ..., n) be the basic function (area
coordinates) of nodes Nj−1,Mj−1,Mj, respectively. On the overlapping sub-domain Ω0, we have

n∑

j=1

3∑

i=1

(αji + βji)(x, y) ≡ 1, for (x, y) ∈ Ω0. (15)

Then the functions

ϕ1(x, y) =





1, for (x, y) ∈ Ω \ Ω2,
n∑

j=1

(β1j + α2j + α3j)(x, y), for (x, y) ∈ Ω1 ∩ Ω2,

0, for (x, y) ∈ Ω \ Ω1,

(16a)

and

ϕ2(x, y) =





0, for (x, y) ∈ Ω \ Ω2,
n∑

j=1

(α1j + β2j + β3j)(x, y), for (x, y) ∈ Ω1 ∩ Ω2,

1, for (x, y) ∈ Ω \ Ω1,

(16b)

are the partition of unity functions.
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Example 3.3. (The two dimensional case of quadrilateral partition.) Let Ω = (0, 1)×(0, 1),Ω1 =
(0, x1)×(0, 1),Ω2 = (x2, 1)×(0, 1), and 0 < x2 < x1 < 1, d = h = h1 = x1−x2, J

h1 be a member
of a family of uniform quadrilateral of Ω1 with maxe∈Jh1

diam{e} = h1. Assume Ω2 is partitioned

by uniform triangulation (or quadrilateral) Jh2 of maximal mesh sizes h2. Furthermore, we
assume h1 ≥ h2. Similar to Example 3.2, Γ1 = M0M1...Mn and Γ2 = N0N1...Nn. On the
element ej = Nj−1NjMjMj−1, the basic functions of the four nodes Nj−1, Nj ,Mj,Mj−1 can be
expressed as 




ψ1
ej

(x, y) =
1

h2
(x1 − x)(yj − y), for (x, y) ∈ ej ,

ψ2
ej

(x, y) =
1

h2
(x1 − x)(y − yj−1), for (x, y) ∈ ej ,

ψ3
ej

(x, y) =
1

h2
(x− x2)(y − yj−1), for (x, y) ∈ ej ,

ψ4
ej

(x, y) =
1

h2
(x− x2)(yj − y), for (x, y) ∈ ej ,

(17)

respectively. On the overlapping sub-domain Ω0, we have

n∑

j=1

4∑

i=1

ψi
ej

(x, y) ≡ 1, for (x, y) ∈ Ω0. (18)

Then the functions:

ϕ1(x, y) =





1, for (x, y) ∈ Ω \ Ω2,
n∑

j=1

2∑

i=1

ψi
ej

(x, y), for (x, y) ∈ Ω1 ∩ Ω2,

0, for (x, y) ∈ Ω \ Ω1,

(19a)

and

ϕ2(x, y) =





0, for (x, y) ∈ Ω \ Ω2,
n∑

j=1

4∑

i=3

ψi
ej

(x, y), for (x, y) ∈ Ω1 ∩ Ω2,

1, for (x, y) ∈ Ω \ Ω1,

(19b)

are the partition of unity functions.

4 Error estimate for the semi-discrete PUFEM solution

For every local sub-domain Ωi, we may express the error as:

ui
h(t) − u(t) = (ui

h(t) − ũi
h(t)) + (ũi

h(t) − u(t)) = θi(t) + ρi(t), ∀t ∈ (0, T ], (20)

where ũi
h(t) is an elliptic projection of the exact solution u(t) in V hi(Ωi), defined by

a(u(t)) · ∇(ũi
h(t) − u(t)),∇vi) = 0, ∀vi ∈ V hi(Ωi). (21)

Therefore,

uh(t) − u(t) =
s∑

i=1

ϕi(u
i
h(t) − u(t))

=

s∑

i=1

ϕi(u
i
h(t) − ũi

h(t)) +

s∑

i=1

ϕi(ũ
i
h(t) − u(t)) = θ(t) + ρ(t),
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where

θ(t) =

s∑

i=1

ϕi(u
i
h(t) − ũi

h(t)), ρ(t) =

s∑

i=1

ϕi(ũ
i
h(t) − u(t)).

Now, we may show the following result for ρ(t) and ρt(t) under some appropriate regularity
assumptions for u. In the rest of this paper, we will refrain the dependence of the constants in
the error estimates of the regularity of the exact solution.

Lemma 4.1. Assume ρ(t) =
∑s

i=1
ϕi(ũhi

(t) − u(t)). Then under the appropriate regularity

assumptions for u, we have

||ρ(t)||0,Ω + h||∇ρ(t)||0,Ω
<∼ hr

s∑

i=1

Ci(u)h
mi

i , for t ∈ (0, T ], (22)

||ρt(t)||0,Ω + h||∇ρt(t)||0,Ω
<∼ hr

s∑

i=1

Ci(u)h
mi

i , for t ∈ (0, T ], (23)

where ũi
h(t) is defined by (21), r ≥ 1,mi ≥ 1 (i = 1, 2, ..., s) are integers.

Proof According to Lemma 13.2 in [7], we have

||ρi(t)||0,Ωi
+ hi||∇ρi(t)||0,Ωi

<∼ Ci(u)h
mi+r
i , for t ∈ (0, T ],

||∂tρi(t)||0,Ωi
+ hi||∇∂tρi(t)||0,Ωi

<∼ Ci(u)h
mi+r
i , for t ∈ (0, T ].

Noting |ϕi| ≤ 1, and |∇ϕi| <∼ d−1
i

<∼ h−1
i , we obtain

||ρ(t)||0,Ω ≤
s∑

i=1

||ϕiρi(t)||0,Ωi
≤

s∑

i=1

||ρi(t)||0,Ωi

<∼
s∑

i=1

Ci(u)h
mi+r
i ≤ hr

s∑

i=1

Ci(u)h
mi

i , (24)

and

||∇ρ(t)||0,Ω ≤
s∑

i=1

||∇ϕi · ρi(t)||0,Ωi
+

s∑

i=1

||ϕi · ∇ρi(t)||0,Ωi

<∼
s∑

i=1

h−1
i ||ρi(t)||0,Ωi

+

s∑

i=1

||∇ρi(t)||0,Ωi

<∼
s∑

i=1

Ci(u)h
mi+r−1

i ≤ hr−1

s∑

i=1

Ci(u)h
mi

i . (25)

By combining (24) and (25), it is easy to show that (22) hold.
Note that ρt(t) =

∑s

i=1
ϕi∂tρi(t) and ∇ρt(t) =

∑s

i=1
ϕi · ∂t∇ρi(t) +

∑s

i=1
∇ϕi · ∂tρi(t). We

can obtain two inequalities for ρt similar to (24) and (25), which can lead to (23). The proof is
then complete.

Lemma 4.2. Assume ũi
h(t) is defined by (21), and ũh(t) =

∑s

i=1
ϕiũ

i
h(t). Then

||∇ũh(t)||L∞,Ω ≤ C(u), for t ∈ (0, T ]. (26)
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Proof By ∇ũh(t) =
∑s

i=1
∇ϕi · ũhi

(t) +
∑s

i=1
ϕi · ∇ũhi

(t), we obtain

||∇(ũh(t)||L∞,Ω ≤
s∑

i=1

|∇ϕi| · ||ũhi
(t))||L∞,Ωi

+

s∑

i=1

|ϕi| · ||∇ũhi
(t)||L∞,Ωi

<∼
s∑

i=1

h−1
i ||ũhi

(t))||L∞,Ωi
+

s∑

i=1

||∇ũhi
(t)||L∞,Ωi

.

Using the inverse estimate, we have

h−1
i ||ũhi

(t)||L∞,Ωi
≤ h−2

i ||ũhi
(t)||0,Ωi

≤ h−2
i (||ũhi

(t) − Ihi
u(t)||0,Ωi

+ ||Ihi
u(t)||0,Ωi

) <∼ Ci(u),

and

||∇ũhi
(t)||L∞,Ωi

≤ h−1
i ||∇ũhi

(t)||0,Ωi

≤ h−1
i (||∇(ũhi

(t) − Ihi
u(t))||0,Ωi

+ ||∇Ihi
u(t)||0,Ωi

) <∼ Ci(u),

where Ci(u) is independent of hi (i = 1, 2, ..., s) and t ∈ (0, T ]. Let C(u) =
∑s

i=1
Ci(u). It is

obvious that (26) hold. The proof is complete.

For the given initial function g(x) on overlapping non-matching grids, the approximation of
the partition of unity can be expressed as follows

gh(x) =

s∑

i=1

ϕighi
(x),

where ghi
(x) is an approximation of g(x) in V hi(Ωi). Similar to the proof of (24) and (25), we

can obtain

||g − gh||l,Ω <∼
s∑

i=1

hmi+r−l
i ||g||mi+r,Ωi

<∼ hr−l

s∑

i=1

hmi

i ||g||mi+r,Ωi
, l = 0, 1.

(27)

We are now ready to provide the error estimate for the semi-discrete PUFEM solution of (1).

Theorem 4.1. Assume uh(t) =
∑s

i=1
ϕiu

i
h(t) is the semi-discrete PUFEM solution of (1), and

u(t) is an exact solution of (1). Then

||uh(t) − u(t)||0,Ω + h||∇(uh(t) − u(t))||0,Ω
<∼ hr

s∑

i=1

Ci(u)h
mi

i , for t ∈ (0, T ], (28)

where r ≥ 1,mi ≥ 1 (i = 1, 2, ..., s) are integers.

Proof According to Lemma 4.1, we only need to prove

||θ(t)||0,Ω + h||∇θ(t)||0,Ω
<∼ hr

s∑

i=1

Ci(u)h
mi

i , for t ∈ (0, T ]. (29)
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On every sub-domain Ωi, according to the definition of the elliptic projection in (21), for
∀vi ∈ V hi(Ωi), we have

(∂tθi, vi) + (a(uhi
)∇θi,∇vi)

= (∂tuhi
, vi) + (a(uhi

)∇uhi
,∇vi) − (∂tũhi

, vi) − (a(uhi
)∇ũhi

,∇vi)

= (f(uhi
), vi) − (a(u)∇ũhi

,∇vi) + ((a(u) − g(uhi
))∇ũhi

,∇vi) − (∂tρi, vi) − (∂tu, vi)

= ((f(uhi
) − f(u)), vi) + ((a(u) − a(uhi

))∇ũhi
,∇vi) − (∂tρi, vi).

Choose vi = θi. It follows from Lemma 4.2 and Cauchy’s inequality that

1

2

d

dt
||θi||20,Ωi

+ µ||∇θi||20,Ωi

<∼ ||uhi
− u||0,Ωi

(||θi||0,Ωi
+ ||∇θi||0,Ωi

) + ||∂tρi||0,Ωi
· ||θi||0,Ωi

<∼ µ||∇θi||20,Ωi
+ ||θi||20,Ωi

+ ||ρi||20,Ωi
+ ||∂tρi||20,Ωi

.

Integrating both sides of the above gives

||θi(t)||20,Ωi
<∼ ||θi(0)||20,Ωi

+

∫ t

0

(||θi||20,Ωi
+ ||ρi||20,Ωi

+ ||∂tρi||20,Ωi
)dτ.

It follows from Gronwall’s lemma that

||θi(t)||20,Ωi
<∼ ||θi(0)||20,Ωi

+

∫ t

0

(||ρi||20,Ωi
+ ||∂tρi||20,Ωi

)dτ.

Observe

||θi(0)||0,Ωi
≤ ||ghi

− g||0,Ωi
+ ||ũhi

(0) − g||0,Ωi

<∼ hmi+r
i ||g||mi+r,Ωi

.

According to Lemma 4.1 and using the inverse estimate, we obtain

||θi(t)||0,Ωi
+ hi||∇θi(t)||0,Ωi

<∼ hmi+r
i (||g||mi+r,Ωi

+ C̃i(u)) = Ci(u)h
mi+r
i , (30)

where Ci(u) = ||g||mi+r,Ωi
+ C̃i(u). Note that θ =

∑s

i=1
ϕiθi,∇θ =

∑s

i=1
∇ϕi ·θi +

∑s

i=1
ϕi ·∇θ.

Therefore,

||θ||0,Ω ≤
s∑

i=1

||ϕiθi||0,Ωi
≤

s∑

i=1

||θi||0,Ωi
<∼

s∑

i=1

hmi+r
i Ci(u); (31)

and

||∇θ||0,Ω ≤
s∑

i=1

||∇ϕi · θi||0,Ωi
+

s∑

i=1

||ϕi · ∇θi||0,Ωi

<∼
s∑

i=1

h−1
i ||θi||0,Ωi

+

s∑

i=1

||∇θi||0,Ωi
<∼

s∑

i=1

hmi+r−1

i Ci(u).

(32)

The desired estimate (29) follows by combining (31) and (32). The proof is complete.
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5 Error estimate for the fully discrete PUFEM solution

We now consider the fully discrete schemes. We shall consider the backward Euler and the
Crank-Nicolson Galerkin scheme. We first use the backward Euler Galerkin scheme:

{
(∂tU

j
h, v) + (a(U j

h)∇U j
h,∇v) = (f(U j

h), v), ∀v ∈ V h(Ω),
U0

h = gh(x) ∈ V h(Ω), j = 1, 2, ..., N, for x ∈ Ω,
(33)

where U j
h is the approximation of u(tj) in the subdomain Ω, and ∂tU

j
h = (U j

h−U
j−1

h )/τ, tj = jτ, τ
is the time step (i = 1, 2, ..., s; j = 1, 2, ..., N).

The above method has the disadvantage that a nonlinear system of algebraic equations has to
be solved at each time step. To avoid the presence of a(U j

h) and f(U j
h) in (33), we shall consider

a linearized modification of the method by replacing U j
h by U j−1

h in these two places. This gives
{

(∂tU
j
h, v) + (a(U j−1

h )∇U j
h, v) = (f(U j−1

hi
), vi), ∀vi ∈ V hi(Ωi),

U0
h = gh(x) ∈ V h(Ω), j = 1, 2, ..., N, for x ∈ Ω.

(34)

The following theorem presents an error estimate for the linearized fully discrete PUFEM
solution.

Theorem 5.1. Assume U j
h =

∑s

i=1
ϕiU

j
h is a linearized fully discrete PUFEM solution of (34)

at t = tj. Let u(tj) be the solution of (1) at t = tj. Then

||U j
h − u(tj)||0,Ω + h||∇(U j

h − u(tj))||0,Ω
<∼

s∑

i=1

Ci(u)(h
mi+r
i + τ), (35)

where r ≥ 1,mi ≥ 1 (i = 1, 2, ..., s; j = 1, 2, ..., N) are integers.

Proof Similar to (20), we may express the error as a sum of two terms:

U j
h − uj = (U j

h − ũj
h) + (ũj

h − uj) = θj + ρj , ∀tj ∈ (0, T ],

where ũj
h is an elliptic projection in V h(Ω) of the exact solution u(tj) defined in (21). Set

θj =
∑s

i=1
ϕiθ

j . Based on Lemma 4.1, we only need to prove

||θj ||0,Ω + h||∇θj ||0,Ω
<∼

s∑

i=1

Ci(u)(h
mi+r
i + τ). (36)

Observe that

(∂tθ
j
i , v) + (a(U j−1

h )∇θj ,∇v)
= (f(U j−1

h ) − f(u(tj)), v) − ((a(U j−1) − a(u(tj)))∇ũh(tj),∇v)
−(∂tρ

j ,∇v) − (∂tu(tj) − ∂tu(tj),∇v), (37)

and
||f(U j−1

h ) − f(u(tj))||0,Ω
<∼ ||U j−1

h − u(tj)||0,Ω

<∼ ||θj−1||0,Ω + ||ρj−1||0,Ω + τ ||∂̃tu(tj)||0,Ω.

Similarly, we can bound the term in ||a(U j−1

h ) − a(u(tj))||0,Ω. Choose v = θj in (37). Using
Friedrich’s inequality, we have

1

2
∂t||θj ||20,Ω + µ||∇θj ||20,Ω

<∼ (||θj−1||0,Ω + ||ρj−1||0,Ω + τ ||∂tu(tj)||0,Ω

+||∂tρ
j ||0,Ω + ||∂tu(tj) − ∂tu(tj)||0,Ω) · ||∇θj ||0,Ω.
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Using Lemma 4.1 and Cauchy’s inequality, we obtain

∂t||ϕiθ
j ||20,Ωi

<∼ ||ϕiθ
j−1||20,Ωi

+ Ci(u)(h
mi+r
i + τ)2,

which leads to
||ϕiθ

j ||20,Ωi
<∼ (1 + τ)||ϕiθ

j−1

i ||20,Ωi
+ Ci(u)(h

mi+r
i + τ)2.

By repeated application, it follows

||ϕiθ
j ||20,Ωi

<∼ ||ϕiθ
0||20,Ωi

+ Ci(u)(h
mi+r
i + τ)2.

Consequently,

||ϕiθ
j ||0,Ωi

<∼ ||ϕiθ
0||0,Ωi

+ Ci(u)(h
mi+r
i + τ) <∼ Ci(u)(h

mi+r
i + τ);

hi||∇(ϕiθ
j)||0,Ωi

<∼ Ci(u)(h
mi+r
i + τ),

which yields
||ϕiθ

j ||0,Ωi
+ hi||∇(ϕiθ

j)||0,Ωi
<∼ Ci(u)(h

mi+r
i + τ).

Since θj =
∑s

i=1
ϕiθ

j , ∇θj =
∑s

i=1
∇(ϕiθ

j), we have

||θj ||0,Ω ≤
s∑

i=1

||ϕiθ
j ||0,Ωi

<∼
s∑

i=1

hmi+r
i (Ci(u) + τ), (38)

and

||∇θj ||0,Ω ≤
s∑

i=1

||∇(ϕiθ
j)||0,Ωi

<∼
s∑

i=1

h−1
i ||θj

i ||0,Ωi
+

s∑

i=1

||∇θj
i ||0,Ωi

. (39)

Combining (38) and (39) gives (36). The proof is complete.

Now, we consider the Crank-Nicolson Galerkin scheme:
{

(∂tU
j
h, v) + (a(Û j

h)∇Û j
h,∇v) = (f(Û j

h), v), ∀v ∈ V h(Ω),
U0

h = gh(x) ∈ V h(Ω), j = 1, 2, ..., N, for x ∈ Ω,
(40)

where Û j
h = (U j

h + U j−1

h )/2 is the approximation of u(tj), and ∂tU
j
h = (U j

h − U j−1

h )/τ . This
equation is symmetric around the point t = tj− 1

2

, however, according the first backward Euler

method discussed above, the equation (40) is a nonlinear system. Thus, we shall consider it’s
modified linearized form:

{
(∂tU

j
h, v) + (a(Ŭ j

h)∇Û j
h,∇v) = (f(Ŭ j

h), v), ∀v ∈ V h(Ω),
U0

h = gh(x) ∈ V h(Ω), j = 1, 2, ..., N, for x ∈ Ω,
(41)

where Ŭ j
h = 3

2
U j−1

h − 1

2
U j−2

h , j ≥ 2, tj = jτ ∈ (0, T ].
This method will require a separate prescription for calculating U1

h . For the first approximate

value U1,0
h determined by the case j = 1 of equation (41) with Ŭ1

h replaced by U0
h , we can obtain

the final approximate result of the same equation by using Ŭ1
h replaced by (U1,0

h +U0
h)/2. Thus,

our starting procedure is to first let
U0

h = gh, (42)

and then (
U1,0

h − U0
h

τ
, v

)
+

(
a(U0

h)∇
(
U1,0

h + U0
h

2

)
,∇v

)
= (f(U0

h), v). (43)
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Table 1: The error and relative error of PUEFM solution at t = π.

E,Er x1 x2 x3 x4
π
12

0.6972e-5 0.5055e-5 0.4355e-5 0.4863e-5
0.3243e-3 0.2275e-3 0.1897e-3 0.2853e-3

π
14

0.6977e-5 0.5069e-5 0.4377e-5 0.4864e-5
0.3249e-3 0.2282e-3 0.1907e-3 0.2054e-3

π
16

0.6979e-5 0.5075e-5 0.4383e-5 0.4868e-5
0.3250e-3 0.2284e-3 0.1910e-3 0.2056e-3

π
18

0.6980e-5 0.5077e-5 0.4382e-5 0.4876e-5
0.3252e-3 0.2285e-3 0.1909e-3 0.2059e-3

Finally,

(∂tU
1
h , v) +

(
a

(
U1,0

h + U0
h

2

)
∇Ŭh,∇v

)
=

(
f

(
U1,0

h + U0
h

2

)
, v

)
. (44)

Theorem 5.2. Assume U j
h be a solution of (41) at t = tj, U

0
h and U1

h are defined by (42)-(44).

Let U j =
∑s

i=1
ϕiU

j
h be a linearized fully discrete PUFEM solution, and u(tj) be the solution of

(1). Then

||U j
h − u(tj)||0,Ω + h||∇(U j

h − u(tj))||0,Ω
<∼

s∑

i=1

Ci(u)(h
mi+r
i + τ2), (45)

where r ≥ 1,mi ≥ 1 (i = 1, · · · , s; j = 1, · · · , N) are integers.

Proof Our main observation is

Ŭ j
h =

3

2
U j−1

h − 1

2
U j−2

h = U
j− 1

2

h + O(τ2), as τ → 0. (46)

The rest of the proof is similar to that of Theorem 5.1, which will be omitted here.

6 Numerical example

Consider the following nonlinear parabolic initial-boundary value problem




∂u

∂t
− ∂2u

∂x2
= −u3 + e−3t sin3 x, 0 < x < π, 0 < t < T,

u(0, t) = 0, u(π, t) = 0, 0 ≤ t ≤ T,
u(x, 0) = sinx, 0 ≤ x ≤ π,

(47)

where Ω = [0, π],Ω1 = [0, 3π
5

],Ω2 = [π
2
, π],Ω0 = Ω1 ∩ Ω1 = [π

2
, 3π

5
]. Assume Ω1 is partitioned by

a uniform mesh of size h1 = π
10

, Ω2 is partitioned by a uniform mesh of size h2 = π
12
, π

14
, π

16
, π

18

respectively. The error E = |u− uh| and the relative error Er = E/|u| are computed at the four
sample points in Ω0 : x1 = 0.52π, x2 = 0.54π, x3 = 0.56π, x4 = 0.58π, and at t = π, t = 5π,
respectively (see Tables 1 and 2). In Tables 1 and 2, u = e−t sinx is the exact solution of (47),

uh =
∑2

i=1
ϕiu

i
h is the PUFEM solution of the semi-discrete problem, ui

h ∈ V hi(Ωi) is linear
finite element solution of the semi-discrete problem. The partition of unity function is similar to
the formulas (12a) and (12b) of Example 3.1.

It is observed in Tables 1 and 2 that the error function E of the PUFEM solution has good
approximation properties, and the relative error function Er of the PUFEM solution has good
stability properties.
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Table 2: The error and relative error of PUEFM solution at t = 5π.

E,Er x1 x2 x3 x4
π
12

0.2435e-10 0.1748e-10 0.1501e-10 0.1692e-10
0.3252e-3 0.2256e-3 0.1875e-3 0.2048e-3

π
14

0.2438e-10 0.1756e-10 0.1515e-10 0.1696e-10
0.3255e-3 0.2266e-3 0.1893e-3 0.2054e-3

π
16

0.2439e-10 0.1760e-10 0.1523e-10 0.1698e-10
0.3257e-3 0.2272e-3 0.1902e-3 0.2056e-3

π
18

0.2440e-10 0.1763e-10 0.1524e-10 0.1701e-10
0.3258e-3 0.2275e-3 0.1903e-3 0.2060e-3
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