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Abstract. A class of nonlinear parabolic equation on a polygonal domain Q C R? is inves-
tigated in this paper. We introduce a finite element method on overlapping non-matching
grids for the nonlinear parabolic equation based on the partition of unity method. We give
the construction and convergence analysis for the semi-discrete and the fully discrete finite
element methods. Moreover, we prove that the error of the discrete variational problem
has good approximation properties. Our results are valid for any spatial dimensions. A
numerical example to illustrate the theoretical results is also given.
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1 Introduction

Since Huang and Xu [1] proposed a finite element method for overlapping non-matching grids
based on partition of unity, the new finite element method has been attracting many authors’
interest. Recently, there have been some studies of applying the finite element method to over-
lapping grids. These studies are within the framework of mortar finite elements or Lagrange
multipliers [4-6]. The partition of unity method that has its roots in Babuska and Melenk in
[2,3], has been used for the numerical solutions of the parabolic problems [7-9]. Both linear
elliptic and parabolic problems are studied [1,11]. However, the discrete case of the nonlinear
parabolic problem has not been investigated when overlapping grids and non-matching grids are
involved. In this paper, following the ideas of Huang and Xu, we propose a finite element method
by introducing a conforming finite element space and by using an argument of the partition of
unity type for a class of nonlinear parabolic problem.
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2 Partition of Unity for a Class of Nonlinear Parabolic Equation on Overlapping Non-Matching Grids

The rest of this paper is organized as follows. In Section 2, we give a brief description for
the continuous nonlinear parabolic problem and the discretization of overlapping sub-domains.
We also construct a globally conforming finite element space based on partition of unity. In
Section 3, we give a few examples of the partition of unity function. We give the main results of
the paper in Sections 4 and 5. They include the convergence analysis of the semi-discrete finite
element solution based on partition of unity and the fully discrete finite element solution for the
nonlinear parabolic problem. In Section 6, a numerical example is presented.

2 Construction of a global conforming subspace using the
partition of unity

Let Q C R? be a bounded polygonal domain with smooth boundary 9, I" be a closed subset of
09Q. By H}(;T), we denote the closure in H' — topology of C°°(Q2) functions that vanish in a
neighborhood of I". Consider the following initial-boundary value problem for a class of nonlinear
parabolic differential equation:

Ou — V - (a(u)Vu) = f(u), for x € Q,t € (0,71,
u(z;t) =0, for x € 09Q,t € (0,T], (1)
u(z;0) = g(x), for z € Q,

where a and f are smooth functions defined on R such that
0<p<alu) <M, |dw)|+|f(u)]<B, forueR. (2)

Assume that the above problem admits a unique solution which is smooth enough for our pur-
poses.

Now we begin our discussion of overlapping grids. We consider an overlapping domain de-
composition of ), namely, we take 1,€s, ..., to be overlapping sub-domains satisfying

0= U Q.
=1

We assume that each ; is partitioned by a quasi-uniform finite element triangulation (or quadri-
lateral) J hi of maximal mesh size h;, which are different from each other. Assume d; is the
minimal overlapping size of €2; with its neighboring sub-domains. Denote

Jh = U J", h= max{h;}, d= 1211125{@}
i=1 ==

1<i<s

We shall use the notation < and 2, i.e., when we write 1 < y1,22 2 Y2, we mean that there

~)

exist constants ¢y, ¢, such that
x1 < a1y, T2 = Caya,

where ¢; (i = 1,2) are constants independent of mesh size h.
For every sub-domain §; and partition J" (i=1,2,...,s), we have the corresponding station-
ary finite element space:

Vhi(Q) = {v e H} Q5000 09);v]e € Pmyr_1,e € J" m; >1,r>1} c HY(Q),
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where P,,,+,_1 denotes the set of polynomials in two variables of degree at most m; +r —1. The
variational formulation of the problem (1) on Q is: Find a u(t) € H}(92;99),t € (0,71, such that

(Oru(t),v) + (a(u(t))Vu, Vo) = (f(u(t)),v), Yo € H(Q;00), 3)
u(z;0) = g(z), for z € Q,

where

(a(u)Vu, VU):/Qa(u)VuVde, (f(u),v):/ﬂf(u)vdac.

The semi-discrete approximate formulation of the problem (1) on Q is: Find a uy(t) € V*(Q),t €
(0,T], such that

{ (Oeun(t),v) + (a(un(t))Vun, Vo) = (f(un(t),v), Vv € V(Q), (@)
up(x;0) = gn(x) € VI(Q), for z € 9,

where gy, is the certain discrete approximation of g. Usually, by taking g, = Ijg (the interpolation
function of g in V*(£2)), we may assume

s s
lg = gnllie <> llg = gnllues S DA lgllnirron 1=0,1. (5)

i=1 i=1

Consider the discretization of time variable on (0,7] : to = 0 < t; < ... < ty = T. Define

Ij = (tjfl,tj), k]' = tj — tjfl,k’ = I’Ila,XlngN{kj}, and assume Uj ~ u(t]’), Uij ~ Uh( ) 8tUJ ~

0:U7, k; > Ck (the constant C' is independent of j and k). Then, the fully discrete ﬁmte element
approximation of the problem (1) on Q is: Find Uj € V"(Q), such that

(gtU}{’ U) ( (UJ VU}JN VU) (f(UZ),U), Vv e Vh(Q)a 6

{ U9(@:0) = gn(z) € VI(Q),j = 1,2, - N, forz € Q. (6)

g Ly eeny

The main question which attracts our interest is how to put these local finite element sub-
spaces V"i(£);) together to construct a global finite element subspaces of H}(2). We would like
to emphasize here that a new technique based on the partition of unity, unlike existing techniques
such as Lagrange multiplier methods or mortar finite element methods, will be used to construct
a globally conforming finite element space.

The main ingredient in our analysis and construction below is a partition of unity {v;}{_;
associated with the overlapping sub-domains {§;}7_;. It is easy to see that we can choose this
partition of unity functions ¢; to satisfy the properties

0<gi(z) <1, zeq,

Z pi=1, xe€Q,

i=1 _

supp(pi) C Q;, @i € WH™(Q),
VFeil Sd7% 1<k<r,

where d; is the minimal overlapping size of €); with its neighboring subdomains.
Let Q; C HY(Q4:;00 N 09;) be given. Then the space

Q=) »iQi= {Z%%Uz‘ GQz} (8)
i=1

i=1
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is called the PUFEM space (partition of unity finite element method).
By Theorem 2 of [1], and using the partition of unity described in (7), we can glue all the
local subspaces V"i(Q;) together. Then the space

Vh(Q) = Z (in}” (Qz) = {Z ViV, Vi € Vh7’ (Qz)} (9)

i=1

is called the PUF EM space of the nonlinear parabolic problem (1). Therefore, the semi-discrete
and fully discrete partition of unity finite element solution (or PUF EM solution) of the problem
(1) can be represented as follows:

up(t) = Z ok (t),  ul(t) € Vi), (10)
=1
and .
Ul => U, Uil €V"(). (11)
=1

3 Examples of the partition of unity functions

For simplicity and concreteness, we restrict our attention to the situation of two overlapping
sub-domains with polygonal shapes. The analysis for many sub-domain cases is similar. Let
Q1,95 be the overlapping sub-domains of  satisfying Q = Q; U Qs and Qp = Q1 N Qs # 0.
Furthermore, we assume that €, 25 are partitioned by quasi-uniform finite element triangulation
(or quadrilateral) J" and J"2 of maximal mesh sizes h; and hy (may not match on §g). Again,
just for the sake of simplicity, we assume that Qg is a stripe-type domain of width d = O(h,)
and h,l Z hg.

Example 3.1. (The one dimensional case.) Let Q = (0,1),Q = (0,21),Q2 = (z2,1), and
0<zy <z <1l,d=h=hy =x1 — x5. Choose

1, for 0<x <o,
1 1 — T
1(z) = , for m <z <a, (12a)
T1 — T2
0, for 1 <z <1,
0, for 0<a <o,
1 T — T2
pa(x) = , for zo <z <, (12b)
X1 — T2
1, for z1<x<l1.

Then {p}(x)}7_, are a piecewise linear hat-functions which form a partition of unity.
Generally, let

1, for 0<x < xg, 0, for 0<ax < xo,
P1(z) =< ai(x), for za <z <z, Po(x) =1 ao(x), for a2 <z <u,
0, for z1<z<1, 1, for 1 <z<1,

where aq (), az(z) are smooth functions satisfying

ai(z2) =1, ar(z1) =0, as(z2) =0, as(z1) =1,
af(x) <0, abh(z) >0, =z <<y,



Q. S. Wang, K. Deng, Z. G. Xiong and Y. Q. Huang 5

Then the normalization
vi(z) = f’i i=1,2, (13)
> =1 ¥5(@)

yields a partition of unity subordinate to the cover {Q;}2_,. In particular, let

(1 — z)(x1 + 2 — 222) (x — x2) (221 — 22 —x)'

041(1') = (1,1 — x2)2 ’ 042(1‘) = (581 7 1,2)2
Then the normalization functions
1, for 0< 2 <y,
9 (1 — z)(x1 + 2 — 222)
x) = , for xo <z <y, 14a
#i(2) (x1 —x)(z1 + 2 — 222) + (z — x2) (221 — 22 — ) 2 =t (14a)
0, for 1 <z<1,
and
0, for 0<a < ao,
5 (x —x2)(221 — 22 — )
xT) = , for xo <z <, 14b
#2() (x1 —x)(z1 + o — 2x2) + (z — x2) (221 — 22 — ) 2 ! (14)
1, for =1 <z<1,

are the partition of unity functions.

Example 3.2. (The two dimensional case of triangulation partition.) Let Q = (0,1)x(0,1),; =
(0,21)%(0,1),Q9 = (22,1)x(0,1), and 0 < x5 < 71 < 1,d = 21—, J"* be a member of a family
of uniform triangulations of ; with maxee ., diam{e} = hy = V2d. Assume Q5 is partitioned
by uniform triangulation (or quadrilateral) J"2 of maximal mesh sizes hy. Furthermore, we
assume hj > ho, and denote

Miz=21 (0<y<1); TIp:rz=z2(0<y<1),

M; = (Il,yj),Nj = (xg,yj),yj = jd,_j = 1,2,...,71,77, = é Namely, Fl = MOMI...Mn,FQ =
NoN;...N,. On the element eq; = M;N;N;_1, let the functions aij, asj,as3; (j = 1,2,...,n)
be the basic function (area coordinates) of nodes M;, N;, N;_1, respectively. On the element
eaj = Nj_1M;_1Mj, let the functions Bi1j, 825,035 (j = 1,2,...,n) be the basic function (area
coordinates) of nodes N;_1, M;_1, Mj, respectively. On the overlapping sub-domain €y, we have

n 3
(aji + Bji)(z,y) =1, for (z,y) € Qo. (15)
j=1i=1
Then the functions
1, for (z,y) € Q\ Qo,
pi(z,y) = Y (Biy+az +ag)(w,y), for (z,y) €Ny, (16a)
j=1
0, for (z,y) € Q\ Q,
and
0, for (z,y) € Q\ Qq,
n
pa(z,y) =& (@ + Baj + Ba)(w,y), for (w,y) € 2Ny, (16b)
j=1
1, for (z,y) € Q\ Qq,

are the partition of unity functions.
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Example 3.3. (The two dimensional case of quadrilateral partition.) Let Q@ = (0,1)x(0,1), =
(0,21) % (0,1),Q5 = (22,1)x(0,1), and 0 < 29 < 71 < 1,d = h = hy = 1 —x2, J" be a member
of a family of uniform quadrilateral of Q; with maxce s, diam{e} = hi. Assume (2 is partitioned
by uniform triangulation (or quadrilateral) J"2 of maximal mesh sizes hs. Furthermore, we
assume hi > ho. Similar to Example 3.2, I'y = MyM;...M,, and I's = NyN;i...N,. On the
element e; = N;_1N;M;M;_1, the basic functions of the four nodes N;_1, N;, M;, M;_, can be
expressed as

L) = sl -2y —y), for (ey) €c,
wi(w,y)Z%(xl—x)(y—yj—l), for (z,y) € ej, a7
P (x,y) = 5@ —x2)(y—yj-1), for (z,y) €ey,

L) = =) — ), for () € e,

respectively. On the overlapping sub-domain 2y, we have

n 4
ZZW% (z,y) =1, for (x,y) € No. (18)

j=11:=1
Then the functions:
1, for (z,y) € Q\ Qa,
n 2
cpl(:E,y) = Zfﬁij (.ﬁ,y), for (Iay) € Ql HQQ; (19(1)
j=1i=1
0, for (z,y) € Q\ Q,
and
0, for (z,y) € Q\ Qa,
n 4
pa(zy) = DD W (wy), for (z,y) € U Ny, (190)
j=1i=3
1, for (z,y) € Q\ Q,

are the partition of unity functions.

4 Error estimate for the semi-discrete PUFEM solution

For every local sub-domain €2;, we may express the error as:
up (t) = u(t) = (uh (8) = W, (1) + (@, (1) — u(t)) = 0:(t) + pit), Vvt € (0,T], (20)
where U (t) is an elliptic projection of the exact solution u(t) in V" (Q;), defined by
a(u(t)) - V(@ (t) —u(t)), Vo) =0, Vo, € Vi(Q,). (21)

Therefore,

up(t) —u(t) = Z i (u (t) — u(t))

= Z i (1) — (1)) + Z i (1) — u(t)) = 0(t) + p(t),
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where .
0 t):ZSDi(UZ( _Uh Z‘Pz Uh u(t)).
i=1

Now, we may show the following result for p(t) and pt( ) under some appropriate regularity
assumptions for u. In the rest of this paper, we will refrain the dependence of the constants in
the error estimates of the regularity of the exact solution.

Lemma 4.1. Assume p(t) = >.;_, pi(un,(t) — u(t)). Then under the appropriate regularity
assumptions for u, we have

llp()llo.c + IV p(t ||on<h’“ZC )b, for te (0,1, (22)
=1

||Pt()||09+h||VPt()||OQ<hTZC )i, for t e (0,T], (23)
=1

where U}, (t) is defined by (21), 7 > 1,m; > 1(i = 1,2,...,s) are integers.
Proof According to Lemma 13.2 in [7], we have
1pi(®)l[o.0: + hal[Vpi(D)lo,0; S Ci(w)h™*7, for ¢ € (0,T],

10epi()llo,0, + hillVOepi(D)lo.0. S Cilwh™ ™", for t e (0,T).

Noting |¢;| < 1, and |V, <d; ' < h; ', we obtain

llp®)lo.0 < ZII%ﬂi(t)llo,m < lepi(t)llo,szi

< Zc YRt <hTZC Yhi, (24)
=1
and
I9olloa < Y196 mblloa, + 3 llee- Totlog,
=1 =1
S S In@lon + X 190l
< ZC YT < B IZC Vhi. (25)

i=1

By combining (24) and (25), it is easy to show that (22) hold.

Note that p¢(t) = >25_; @i0ipi(t) and Vp,(t) = Y271 i - 0V pi(t) + Y271 Veoi - dypi(t). We
can obtain two inequalities for p; similar to (24) and (25), which can lead to (23). The proof is
then complete. |

Lemma 4.2. Assume Ui (t) is defined by (21), and up(t) =Y ;_, piui(t). Then

[|Van(t)||oe..0 < C(u), forte (0,T]. (26)
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Proof By Vu,(t) =>"7_, Vi - un, (t) + >.i_; @i - Vi, (t), we obtain

A

V@ ®)lzee < D 1Veil-llan O)lzwsa + Y il - 1IVan, 0|20
=1

=1

S S
S Db ) b0 + VR (D] 0
=1 i=1

Using the inverse estimate, we have

h"_z”ﬂi“ (@)llo.0,
hi “(lin, (8) = Inu(®)lo.0: + [[Tnu(®)llo.0;) S Cilu),

hi |ln, ()| 2. 2,

IAINA

and

[[Vain, ()L, hi M|V, ()]0,

hi (1Y @, (1) = Inu() o, + [V Inu®llo.e,) < Ciu),

ININ

where C;(u) is independent of h; (i = 1,2,...,s) and t € (0,7]. Let C(u) = >.7_, Ci(u). Tt is
obvious that (26) hold. The proof is complete. W

For the given initial function g(z) on overlapping non-matching grids, the approximation of
the partition of unity can be expressed as follows

gn(z) = Z ©ign, (),

where gp,, (z) is an approximation of g(x) in V"¢ (€);). Similar to the proof of (24) and (25), we

can obtain
S

lg=gnlle < DR lgllmitro
= (27)
5 hrt Z hzmng”miJrT,in l=0,1.

i=1
We are now ready to provide the error estimate for the semi-discrete PUFEM solution of (1).

Theorem 4.1. Assume up(t) =Y ;_, piul,(t) is the semi-discrete PUFEM solution of (1), and
u(t) is an exact solution of (1). Then

[lun(t) — w()llo.c + AlIV(un(t) — ult))lloa S A" Z Ci(wh;™, for te(0,T],  (28)

where r > 1,m; > 1 (i =1,2,...,8) are integers.

Proof According to Lemma 4.1, we only need to prove

16(®)]o.0 + hl[VOB)lo.0 S A" Ci(u)h™,  for t € (0,T). (29)

i=1
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On every sub-domain €2;, according to the definition of the elliptic projection in (21), for
Vo, € Vhi(€,;), we have

Obi,v;) + (a(up,)VO;, Vv;)

Orun;,v;) + (alup, )Vup,, Vo;) — (Ostn,, v;) — (a(up, )V, Vo;)

fun,),vi) = (a(w)Vip,, Vo;) + ((a(u) ( NVn,, Vi) — (Orpisvi) — (9w, vi)
(f(un,) = f(w)),vi) + ((a(u) — alun,))Vin,, Vi) — (Orpi, vi).

~ o~~~

Choose v; = 6;. It follows from Lemma 4.2 and Cauchy’s inequality that

1d
5|6l g, + V6 g,

S un: = allo,.([10:llo.0; + [[VOillo.a.) +[10:pillo,0. - [16illo,0;
S HlIVOlE o, + 1015 ., + 11eill5 o, + 10epil[5 o,

Integrating both sides of the above gives
t
2 2
[16:()113.0, S 116:(0)[13.0, + /O (116:116., + 11pill5., + 10ep3l[§ 0, )dT

It follows from Gronwall’s lemma that

t
10: (01150, < 116: ()3 0, +/O (loill3 0 + 0epil[§ o, )dr

Observe

110:(0)[]o.02: llgn; — gllo.a; + [[un; (0) = gllo,e,

<
S Rl

mi+r,Q; -
According to Lemma 4.1 and using the inverse estimate, we obtain

1:(®)llo.c; + hal [ VO: (1) 0.0 S BT ( Ci(w)) = Cy(w)h}™ 7, (30)

where C;(w) = ||g]|mi+r. +C;(u). Note that 6 = S il VO =" Vi -0;+> 0 ;- V0.
Therefore,

S

S S
161100 <D lleibilloo: <X [0illo0: S Y hi* Ci(w); (31)
=1 =1

i=1
and

[IV6]]o,0

IN

Z [IVei - Oillo,0; + Z i - VOillo,0
< Zh 16i] 0.0, +Z||ve||m S RETIC (w)
=1

=1

The desired estimate (29) follows by combining (31) and (32). The proof is complete. W
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5 Error estimate for the fully discrete PUFEM solution

We now consider the fully discrete schemes. We shall consider the backward Euler and the
Crank-Nicolson Galerkin scheme. We first use the backward Euler Galerkin scheme:

{ (0:U3,v) + (a(U})VU}, Vv) = (f(U}),v), Yo e VHQ),

U9 = gu(a) € VA(Q),j = 1.2, .., N, for z € Q, (33)

where Ug is the approximation of u(¢;) in the subdomain 2, and gtUg = (Ug*U}{il)/T, ty =g, 7
is the time step (1 = 1,2, ...,5;7 = 1,2,..., N).

The above method has the disadvantage that a nonlinear system of algebraic equations has to
be solved at each time step. To avoid the presence of a(Uj) and f(Uj) in (33), we shall consider
a linearized modification of the method by replacing U fL by U Z_l in these two places. This gives

{ @:U},v) + (a(UL VUL, ) = (FUL1),v), Yo, € VIi(Qy), (34)

UY =gn(z) e VH(Q),j=1,2,..., N, for = € Q.

The following theorem presents an error estimate for the linearized fully discrete PUFEM
solution.

Theorem 5.1. Assume U,Z =37, @iU,Z is a linearized fully discrete PUFEM solution of (34)
att =t;. Let u(t;) be the solution of (1) at t =1t;. Then

1U7, = u(t)llo. + Rl VU, = ut;)lloe $ D Cilu) (B +7), (35)
i=1

wherer > 1,m; > 1(i=1,2,...,8;5 = 1,2,..., N) are integers.
Proof Similar to (20), we may express the error as a sum of two terms:
Ul —ud = (U] — @)+ (@, —u?) =6+, Vit; € (0,T),

where ) is an elliptic projection in V*(Q) of the exact solution u(t;) defined in (21). Set
67 =37 | ¢if7. Based on Lemma 4.1, we only need to prove

167]10.2 + hl[VE[lo.0 S Ci(w) (R + 7). (36)

i=1
Observe that
(00, v) + (a(U] 1)V, Vo)
= (fU71) = flulty),v) = (a(U7") = a(u(t)) Van(t;), Vo)
7(815/)]7 V’U) - (atu(tj) - atu(tj)a vv)v (37)
and . .
FUR) = flulloe SIUL™ —ult;)llo.c N
S0 oo + 1P~ Hlo.o + Tll0wu(t;)llo.g-
Similarly, we can bound the term in ||a(U} ") — a(u(t;))||o.o. Choose v = 67 in (37). Using
Friedrich’s inequality, we have
1— . _ , _
SOl 5.0+mlIVO 50 < (107 oo + [P~ Hlog + 7lIdut)loo
+H0p llo. + [[9rult;) — Sru(t;)llo.o) - [V lo.q-
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Using Lemma 4.1 and Cauchy’s inequality, we obtain
Alleit’ 1[5 0, S @it G 0, + Cilw) (R +7)2,
which leads to
it |3 0, S @+ 7|0l 3., + Cilu) (R +7)2
By repeated application, it follows
it |3 o, S i3 q, + Cs(u) (R + 7).

Consequently,

i [0, S ||<Pz‘90||o,ni + C’i(u)(h;”””' +7) < C’i(u)(h;”””' 7);

hil|V(:0) 0.0 < Ci(u) (R + 1),

which yields 4 4
i ]l0,0 + hillV(@i6")llo,0, S Ci(w) (A + 7).

Since 7 = Y7, 007, VO =377 | V(p;i07), we have

S

167[o.0 < Z b’ [lo,00 S D b (Ci(u) +7), (38)
=1 =1
and
IV8[[o,0 < ZIIV ¢it")lo0: S Zh 167110, +Z|IV9JIIOQ (39)
=1

Combining (38) and (39) gives (36). The proof is complete. W

Now, we consider the Crank-Nicolson Galerkin scheme:

{ @, 0) + (@(U)VU], Vo) = (F(T]),0), Yo eVhQ), (40)

U =gn(z) e VH(Q),j=1,2,..,N, for z € Q,

where ﬁsz = (U} +UJ™")/2 is the approximation of u(t;), and 8;U] = (U} — U}~')/7. This
equation is symmetric around the point ¢t = tJ__, however, according the first backward Euler
method discussed above, the equation (40) is a nonlinear system. Thus, we shall consider it’s
modified linearized form:

@.U7,v) + (a(U)VU?, V) = (f({U),v), Yo € Vi(Q),
Ug_gh( ) eVRQ),j=1,2,..,N, for z €,

where U’fb = %qu — ;U,Zd,j >2,t; =47 € (0,T].
This method will require a separate prescription for calculating U}. For the first approximate
value U ;’0 determined by the case j = 1 of equation (41) with (V],{ replaced by U}? , we can obtain

(41)

the final approximate result of the same equation by using U, + replaced by (Ui 04 U}? )/2. Thus,
our starting procedure is to first let

U;? = gh, (42)

1,0 1,0
(u,v> + (a(U,?)V (M) ,Vv) = (f(U),v). (43)

and then
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Table 1: The error and relative error of PUEFM solution at ¢ = .

E, B, Z1 €2 x3 T4
0.6972e-5 0.5055e-5 0.4355e-5 0.4863e-5
0.3243e-3 0.2275e-3 0.1897e-3 0.2853e-3

Sl

11 0.6977e-5 0.5069e-5 0.4377e-5 0.4864e-5
0.3249e-3 0.2282e-3  0.1907e-3  0.2054e-3
16 0.6979e-5 0.5075e-5 0.4383e-5 0.4868e-5
0.3250e-3  0.2284e-3  0.1910e-3  0.2056e-3
18 0.6980e-5 0.5077e-5 0.4382e-5 0.4876e-5

0.3252e-3  0.2285e-3  0.1909e-3  0.2059e-3

1,0 0 1,0 0
@t (o5 wnw) < (o (B L)

Theorem 5.2. Assume Ug be a solution of (41) at t = t;, Up and U}l are defined by (42)-(44).
Let U7 =377 | @;Ujl be a linearized fully discrete PUFEM solution, and u(t;) be the solution of
(1). Then

Finally,

107, = u(t;)llog + RV (U7 —ultiDllo.e S D Cilw) (b +77), (45)
i=1
wherer > 1,m; >1(i=1,---,8j=1,---,N) are integers.

Proof Our main observation is
3
2
The rest of the proof is similar to that of Theorem 5.1, which will be omitted here. |

o ) 1 . 1
U, =350l = U7 =Uy * +0(r%),  as 70 (46)

6 Numerical example

Consider the following nonlinear parabolic initial-boundary value problem

ou  0%*u . 3t .
—7—2:7u3+e*3tsm3:c, O<z<m0<t<T,

ot x
u(0,t) = 0,u(m,t) =0, 0<t<T,
u(z,0) =sinz, 0<zx <,

(47)

where Q = [0, 7], = [0, %“],Qg =[5,7,Q =% N =[5, ‘%“] Assume 2 is partitioned by
a uniform mesh of size hy = {5, (22 is partitioned by a uniform mesh of size ha = {5, {7, 755 75
respectively. The error E = |u — uy| and the relative error E, = E/|u| are computed at the four
sample points in Qg : 1 = 0.527, 292 = 0.547, 23 = 0.567m, x4 = 0.587, and at ¢t = «w,t = 5w,
respectively (see Tables 1 and 2). In Tables 1 and 2, u = e *sinz is the exact solution of (47),
up, = o, piul is the PUFEM solution of the semi-discrete problem, uj, € V" () is linear
finite element solution of the semi-discrete problem. The partition of unity function is similar to
the formulas (12a) and (12b) of Example 3.1.

It is observed in Tables 1 and 2 that the error function E of the PUFEM solution has good
approximation properties, and the relative error function E, of the PUFEM solution has good

stability properties.
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Table 2: The error and relative error of PUEFM solution at ¢t = 5.

E. FE,. 1 X2 x3 T4

15 0.2435e-10  0.1748e-10  0.1501e-10  0.1692e-10
0.3252e-3  0.2256e-3  0.1875e-3  0.2048e-3
11 0.2438e-10  0.1756e-10  0.1515e-10 0.1696e-10
0.3255e-3  0.2266e-3  0.1893e-3  0.2054e-3
16 0.2439e-10  0.1760e-10  0.1523e-10 0.1698e-10
0.3257e-3  0.2272e-3  0.1902e-3  0.2056e-3
18 0.2440e-10  0.1763e-10  0.1524e-10 0.1701e-10
0.3258e-3  0.2275e-3  0.1903e-3  0.2060e-3
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