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Abstract. A modification of the Slater’s atomic orbital theory (AOT) is presented in
this paper and applied to the calculation of energies for (1sns)1Se, (1snp)1Po, (1snd)1De

and (ns2)1Se, (np2)1De, (nd2)1Ge, (n f 2)1 Ie, (ng2)1Ke, (nh2)1Me excited states of He-like
ions up to Z = 12. The inadequacy of Slater’s AOT for excited states of the atomic
systems is discussed. The results obtained in the present work are in good agreement
with available experimental and theoretical results.
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1 Introduction

Since the early experiment of Madden and Codling [1] and others [2] and theoretical ex-
planation of Cooper, Fano and Prats [3], doubly-excited states (DES) of helium-like ions
have been the intention of several studies. Greatest attention has been concentrated on
the study of symmetric DES (nl2) where the electronic correlation effects may be pre-
dominant as shown by Fano [4]. Some of these symmetric DES in two-electron systems
have been identified in the solar flare [5] and in the solar corona [6] and, revealed experi-
mentally by the studies of double Rydberg resonances in negative ions of rare gases [7,8].
Besides, higher-energy Rydberg envelopes contain doubly-excited states which are gen-
erally labelled in the usual spectroscopic notation (Nl,nl)2S+1Lπ with n = N, N+1 [9]. In
this notation, N and n denote respectively the principal quantum numbers of the inner
and the outer electron, l and l′ there respective orbital quantum numbers, S the total
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spin, L the total angular momentum and π the parity of the system. The lowest-energy
envelope (N = 1) contains the singly-excited states (1s,nl)2S+1Lπ approaching the first
ionization threshold which have been over the years, the intention of some computa-
tions [10–12].

As concern the methods applied in the treatment of the helium-like atoms’ properties
in excited states, several techniques of computation have been performed. Among these
methods are the hyperspherical close-coupling method [11], the method of computing
double sums over the complete hydrogen spectrum [12], the diagonalization approxi-
mation [13–16] the variational method using the Hylleraas-type wave function [17, 18],
the time-dependent variation perturbation theory [19], the variational method using the
Pekeris-type electronic wavefunctions [20], the density-functional theory [21], the com-
plex rotation method [22]. In all these ab initio methods, energies for excited states of
He-like ions can’t be expressed in a simple analytical formula. However, most of the
preceding methods require large basis-set calculations involving a fair amount of mathe-
matics complexity. But, it is widely believed that there are distinct advantages to viewing
problems of physics within the framework of simple analytical models. Such analytical
procedures have been performed successfully in the case of the ground -state of helium
-like ions by Bethe and Salpeter [22] who express an excellent semi-empirical expansion
for the first ionization energy of two-electron systems whereas Slater [24] developed his
atomic orbital theory in the framework of a general semi-empirical approach and ex-
presses analytical the total energy of an electronic configuration given containing several
electrons.

Recently, Sakho [25] presents screening constant by unit nuclear charge analytical
method very suitable for ground-state [26] and doubly excited states [25,27,28] of the he-
lium isoelectronic sequence. Besides, if single-exponent Slater function [29] and complex-
exponent Slater-orbitals [30] are employed in the study of the properties of atoms and
molecules, the AOT as presented by Slater [24] is not suitable for excited states of atomic
systems.

As AOT of Slater [24] is a suitable analytical approach for the ground state of atoms
and isoelctronic ions, it will be interesting to present a modification of the Slater’s AOT
for excited states of atoms -like ions. Such study is the intention of this paper considering
the particularly case of helium -like systems. In Section 2 we present our modification of
the atomic orbital theory of Slater [24] after discussing its inadequacy for excited states
of atomic systems. In Section 3, the presentation and the discussion of our results in the
case of (1sns)1Se, (1snp)1Po, (1snd)1De and (ns2)1Se, (np2)1De, (nd2)1Ge, (n f 2)1 Ie, (ng2)1Ke,
(nh2)1Me excited states of He-like ions up to Z = 12 are made. All our results are com-
pared to available theoretical and experimental data.
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2 Theory

2.1 Inadequacy of atomic orbital theory of Slater for excited states

In 1930, J. C. Slater [24] proposed an approached method of calculation of the energy and
the ionic radius of atomic systems containing several electrons by the determination of
the effective charge number Z∗

Z∗= Z−∑
j

σij = Z−σi, (1)

where σij denotes the screening coefficient of the j electron on the i electron and σi repre-
sents the screening coefficient relative to the i electron.

The AOT of Slater uses special hydrogenic wave-functions of type

Ψnlm = Nn

(
r
a0

)n∗−1

exp
(
−ζ

r
a0

)
Ylm(Θ,ϕ), (2)

where Nn =(2ζ)n+1/2[(2n)!]−1/2 is the normalisation factor; ζ =
Z−σi

n∗
denotes the expo-

nent orbital; n∗ designs the effective quantum number linked to the principal quantum
number n by an empirical rule established by Slater [24], Y(Θ,ϕ) are the spherical har-
monics.

The wave-functions of Slater are solution of the Schrödinger’s equation where the
Hamiltonian operator is in the form

Ĥ =− h̄2

2m
4+V̂(r). (3)

In this equation, the potential energy operator V̂(r) is in the shape

V̂(r)=−e2 (Z−σi)
r

+
h̄2

2m
n∗(n∗−1)

r2 . (4)

The eigenvalue corresponding to the eigenfunctions given by Eq.(2) is in the form

E=−me4

2h̄2
(Z−σi)2

(n∗)2 . (5)

In rydbergs, this result can be written as follows

E=− (Z−σi)2

(n∗)2 . (6)

For two-electron systems which interest our study, total energy in the view point of
Slater’s AOT is given by

E=−2
(Z−σi)2

(n∗)2 . (7)
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On the other hand, the parameters σi and n∗ are evaluated by using the Slater’s rules.
The value of n∗ is linked to that of the principal quantum number n along these lines

n.............1 2 3 4 5 6
n∗...........1 2 3 3.7 4 4.2 (8)

The screening coefficient σi are determined by dividing the atomic orbital in groups: (1s)
(2s2p) (3s3p) (3d) (4s4p) (4d) (4 f ) (5s5p) and so on. Then, the value of σi is evaluated like
so

(1s)=0.30(1s−1),
(2p)=(2s)=0.85(1s)+0.35(2s+2p−1),
(3p)=(3S)=1.00(1s)+0.85(2s+2p)+0.35(3s+3p−1),
(4p)=(4s)=1.00(1s+2s+2p)+0.85(3s+3p+3d)+0.35(4s+4p−1),
(3d)=1.00(1s+2s+2p+3s+3p)+0.85(2s+2p)+0.35(3d−1). (9)

For the calculation of the screening coefficient for a given configuration, one must re-
place 1s, 2s, 2p, 3d, etc., in the second members of the above relations, by the number of
electrons occupying the corresponding orbital. For example, in the particularly case of
the ground state, σ=0.30(2−1)=0.30. Although the AOT of Slater is an approach analyt-
ical method, it permits to put into evidence the successive ionization energies of atoms,
the energetical classification of the different AO (the most stable electronic configuration cor-
responds to that of the lowest energy) and also permits to justify the Klechkowsky’s rule with
respect to the filling’s order of the 1s, 2s, 2p, 3s, 3p, 4s, 3d..., electronic configurations.

But, the AOT in its original formalism is not suitable for the study of excited states of
atoms for mainly two reasons: Firstly, for excited states with n>3, the effective quantum
number n∗ stills not a whole number (for n = 4, n∗ = 3.7 and for n = 6, n∗ = 4.2) as
revealed by Eq. (8). This will influence for example in the energy value of symmetric DES
(nl2) where n is a whole number; Secondly, for excited states, the screening coefficient σ
conserves the same value for all orbitals. Using Eq. (9) one can see that: σ(2p) = σ(2s) =
σ(3s) = σ(3p) = ......= σ(4s) = σ(4p) = σ(3d) = 0.35. This indicates that the orbitals (2p) and
(2s) have the same value of total energy. The predictions for (3s), (3p), (3d) and (4s), (4p),
(4d), (4 f ) are of similar.

2.2 Modification of atomic orbital theory

The preceding observations show that, to formulate a modification of Slater’s AOT for ex-
cited states, one must only reconsider the values of n∗ and σ. In this purpose, we replace
in the Slater’s orbital wave-functions given by Eq.(2) and in the potential energy operator
given by Eq.(4), the effective quantum number n∗ by the principal quantum number n.
Considering separately the atomic orbital noted here (νl), ν a principal quantum number,
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the eigenvalue energy for (νl) is using Eq.(6)

E(νl)=− [Z−σ(l)]2

ν2 . (10)

For an atomic system of several electrons N, the total energy is given by (in rydbergs)

E=−
N

∑
i=1

[Z−σi(l)]2

ν2
i

. (11)

2.3 Applications

Application 1: Total energies for (1s,nl)1Lπ singly excited states of helium-like ions
For two-electron systems, we obtain from Eq. (11)

E=− [Z−σ1(l)]2

ν2
1

− [Z−σ2(l)]2

ν2
2

.

In this equation, the first term in the right hand side corresponds to the energy of the 1s-
orbital (then ν1 = 1) whereas the second term gives the energy of the nl-orbital (so ν2 =n).
In that case total energy for (1s,nl)1Lπ singly excited states of helium-like ions is in the
form

E(1s,nl)=−[Z−σ(l)]2− 1
n2 [Z−σ′(l)]2, (12)

where the screening constants σ and σ′ are evaluated empirically. For (1s,nl)2, Eq. (12)
gives respectively when l ranges between 0 and 2

E(1s,ns;1 Se)=−[Z−σs]2− 1
n2 [Z−σ′s]

2, (13)

E(1s,np;1 Po)=−[Z−σp]2− 1
n2 [Z−σ′p]

2, (14a)

E(1s,nd;1 De)=−[Z−σd]2− 1
n2 [Z−σ′d]

2. (14b)

In these equations, we have done the changes σ(l = 0) = σs, σ′(l = 0) = σ′s; σ(l = 1) = σp, σ′(l
= 1) = σ′p and σ(l = 2) = σd, σ′(l = 2) = σ′d.

By use of experimental total energy [10] of (1s2p)1Po, (1s3p)1Po, and that of (1s3d)1De,
(1s4d)1De-levels of the helium atom, Eq.(14) give for σp and σd negative values (see Ap-
pendix).

As the σ-screening constant is essentially positive, total energies for (1snp)1Po and
(1snd)1De excited states are expressed as follows

E(1s,np;1 Po)=−Z2− 1
n2 [Z−σp]2, (15)

E(1s,nd;1 De)=−Z2− 1
n2 [Z−σd]2. (16)
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Using the experimental energy values (in atomic units) of the helium atom E(1s2s;1 Se)
= -2.145 97 and E(1s3s;1 Se) = -2.061 27 [10], Eq.(13) expressed in rydbergs (1a.u. = 2Ryd.)
gives for He 




(2−σs)2+
1
4
(2−σ′s)

2 =4.29194,

(2−σs)2+
1
9
(2−σ′s)

2 =4.12254.

Resolving these equations, one obtains σs = 0.003 247 636 and σ′s = 0.895 608 765.
In the same way, form Ref. [10] we pull the experimental energy E(1s4p;1 Po) = -2.031

10 and E(1s4d;1 De) = -2.031 31 of the helium atom. Using these values, Eqs. (15) and (16)
yield respectively 




E(1s,4p;1 Po)=4+
1

16
[2−σp]2 =4.0622,

E(1s,4d;1 De)=4+
1
16

[2−σd]2 =4.06262.

The resolution of these equations gives σp = 1.002402887 and σd = 0.999040460.
The total energy of (1s,nl)1Lπ excited states (l= 0-2) in He-like ions are expressed with

a good approximation as follows (in rydbergs)

E(1s,ns;1 Se)=−[Z−0.003247636]2− 1
n2 [Z−0.895608765]2, (17)

E(1s,np;1 Po)=−Z2− 1
n2 [Z−1.002402887]2, (18)

E(1s,nd;1 De)=−Z2− 1
n2 [Z−0.999040460]2. (19)

Application 2: Total energies for (nl2)1Lπ symmetric doubly excited states of helium-like
ions

Following the idea of Slater [24], we divide the atomic orbital into two groups: (ns2;
np2); (nd2; n f 2), and so on. In these two groups, the screening constant is assumed to
vary as follows

For (ns2;np2):
σ(l)= al+b. (20)

For(nd2;n f 2):
σ(l)=−a·(nlow/l)+2b. (21)

In Eq.(21), nlow denotes the principal quantum number of the lowest level of the consid-
ered atomic orbital. For nd2, the lowest level is 3d2, then nlow = 3; for n f 2 the lowest level
is 4 f 2, then nlow = 4.

Using Eqs.(20) and (21), total (nl2) DES of helium-like ions are expressed in the form
(in rydbergs)

For(ns2;np2):

E(nl2)=− 2
n2×[Z−(al+b)]2. (22)



I. Sakho / J. At. Mol. Sci. 1 (2010) 103-117 109

Table 1: Experimental and theoretical values of total energy in singly excited states (1sns)1Se, n≤4 of He-like
systems up to Z = 12. All energies are reported in eV (1 Ryd = 13.605698 eV).

Z
States 2 3 4 5 6 7 8 9 10 11 12

1s2s

Ea 58.395 137.249 250.118 397.001 577.898 792.810 1041.736 1324.676 1641.630 1992.598 2377.581
Eb 58.395 137.176 249.972 396.781 577.605 792.444 1041.296 1324.163 1641.044 1991.939 2376.848
Ec 58.528 137.255 249.997 396.753 577.527 790.307 1041.106 1323.919 1640.746 1991.587 2376.442
Ed 58.395 577.481 1640.721

1s3s

Ea 56.090 128.881 231.907 365.168 528.663 722.394 946.359 1200.559 1484.995 1799.665 2144.569
Eb 56.090 128.805 231.756 364.941 528.361 722.016 945.906 1200.030 1484.390 1798.985 2143.814
Ec 56.078 128.801 231.759 364.952 528.380 722.042 945.940 1200.072 1484.440 1799.042 2143.879
Ed 56.090 528.386 1484.443

1s4s

Ea 55.283 125.952 225.533 354.026 511.431 697.748 912.977 1157.118 1430.172 1732.138 2063.015
Eb 55.307 125.920 225.445 353.882 511.232 697.493 912.667 1156.752 1429.751 1731.661 2062.483
Ec 55.238 125.976 225.536 354.009 511.394 697.690 912.899 1157.020 1430.053 1731.999 2062.856
Ee 55.337

a Present work, values calculated using Eq. (17).
b Ref. [25].
c Ref [12].
d Ref. [20].
e Experimental data [10].

For(nd2;n f 2):

E(nl2)=− 2
n2×[Z−{−a·(nlow/l)+2b}]2. (23)

Using experimental data [31] of total energy of the helium atom for (2s2) equals to
- 21.19 eV and that of (2p2) equals to - 19.12 eV, the coefficients a and b in Eq.(18) are
determined by resolving the following equations (using 1Ryd = 13.605698 eV)





E(2s;1 Se)=
2
4
[2−b]2 =1.557435716,

E(2p;1 De)=
2
4
[2−a−b]2 =1.405293576.

We find then: b = 0.235 100 163 and a = 0.088 419 251.
Using these results, Eqs. (22) and (23) give respectively
For (ns2;np2):

E(nl2)=− 2
n2×[Z−(0.088419251l+0.235100163)]2. (24)

For (nd2;n f 2):

E(nl2)=− 2
n2×[Z−{−0.088419251·(nlow/l)+0.470200327}]2. (25)
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Table 2: Experimental and theoretical values of total energy in singly excited states (1snp)1Po, n≤4 of He-like
systems up to Z = 12. All energies are reported in eV (1 Ryd = 13.605698 eV).

Z
States 2 3 4 5 6 7 8 9 10 11 12

Ea 57.808 136.024 248.255 394.500 574.759 789.032 1037.320 1319.622 1635.938 1986.268 2370.613
Eb 57.793 135.995 248.212 394.442 574.687 788.946 1037.219 1319.506 1635.808 1986.124 2370.454

1s2p Ec 58.158 136.122 248.100 394.093 574.100 788.121 1036.157 1318.206 1634.270 1984.348 2368.440
Ed 57.793
Ee 57.793

1s3p

Ea 55.927 128.484 231.275 364.301 527.562 721.058 944.789 1198.755 1482.956 1797.391 2142.062
Eb 55.924 128.477 231.265 364.288 527.546 721.039 944.766 1198.729 1482.926 1797.359 2142.026
Ec 56.068 128.627 231.421 364.288 527.714 721.213 944.947 1198.916 1483.119 1797.558 2142.231
Ed 55.923
Ee 55.924

1s4s

Ea 55.269 125.845 225.332 353.732 511.044 697.268 912.404 1156.452 1429.412 1731.284 2062.069
Eb 55.270 125.844 225.332 353.732 511.043 697.267 912.403 1156.451 1429.411 1731.284 2062.068
Ec 55.275 125.831 225.299 353.679 510.972 697.176 912.293 1156.322 1429.263 1731.116 2061.881
Ee 55.268

a Present work, values calculated using Eq. (18).
b Ref. [25].
c Ref. [12].
d Ref. [20].
e Experimental data [10].

Table 3: Experimental and theoretical values of total energy in singly excited states (1snd)1De, n≤4 of He-like
systems up to Z = 12. All energies are reported in eV (1 Ryd = 13.605698 eV).

Z
States 2 3 4 5 6 7 8 9 10 11 12

1s3d

Ea 55.937 128.504 231.306 364.342 527.613 721.119 944.860 1198.836 1483.047 1797.493 2142.173
Eb 55.979 128.538 231.332 364.361 527.626 721.124 994.858 1198.827 1483.031 1797.469 2142.142
Ec 55.937
Ed 55.937

1s4d

Ea 55.275 125.856 225.349 353.755 511.072 697.302 912.443 1156.490 1429.452 1731.341 2062.131
Eb 55.282 125.872 225.361 353.755 511.072 697.302 912.443 1156.497 1429.463 1731.341 2062.131
Ec 55.275
Ed 55.275

a Present work, values calculated using Eq. (19).
b Ref. [12].
c Ref. [11].
d Experimental data [10].

3 Results and discussion

Results obtained in the present study for total energies are displayed in Tables 1-7. Cal-
culations using Eqs.(17), (18) and (19), give the results of total energies for (1sns)1Se,
(1snp)1Po and (1snd)1De singly excited states of He isoelectronic series with n≤ 4 and
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Figure 1: Comparison of atomic orbital theory of Slater and it new version with some other results for 2s2-
energy level. The influence of the screening constant σ is observed.

Figure 2: Comparison of atomic orbital theory of Slater and it new version with some other results for 4s2-
energy level. The influence of both screening constant σ and effective quantum number n∗ is observed.

Z≤ 12. The results obtained are listed in Tables 1-3 compared with theoretical results
quoted in Refs. [11, 12, 20, 25] and with experimental data [10]. Comparison shows that
the semi-empirical expressions given by Eqs. (17) and (18) reproduce with a good accu-
racy experimental data [10] of total energy for (1s4s)1Se, (1s2p)1Po and (1s3p)1Po excited
states of the helium atom. The relative errors (as compared to the experimental values)
are respectively about 0.09%, 0.02% and 0.005% respectively. For the (1s3d)1De - level,
Eq. (18) gives exactly the experimental value [10] for the helium atom. As regards He-
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Table 4: Total energies for (ns2)1Se, n≤7 symmetric doubly excited states of He - like ions up to Z = 12. All
energies are reported in eV (1 Ryd = 13.605698 eV).

Z
States 2 3 4 5 6 7 8 9 10 11 12

2s2

Ea 21.19 52.00 96.43 154.45 226.09 311.32 410.17 522.62 648.67 788.33 841.60
Eb 21.17 51.86 96.15 154.05 225.53 310.63 409.33 521.64 647.55
Ec 20.77 51.11 96.45 156.10 227.23 312.14 410.37 523.04 649.16 790.38 845.50
Ed 21.19 51.76 95.93 153.71 225.09 310.08 408.68 520.88 646.68
Ee 18.52 47.77 90.63 147.09 217.16 300.84 398.12 509.01 633.50 771.60 923.30
E f 51.98

3s2

Ea 9.42 23.11 42.86 68.65 100.48 138.37 182.30 232.27 288.30 350.37 418.49
Eb 9.63 23.41 43.24 69.11 101.03 138.99 183.01 233.07 289.18
Ec 9.21 23.41 44.11 71.38 105.23 145.65 192.65 246.24 306.41 373.16 446.48
Ed 9.42 23.00 42.63 68.31 100.04 137.81 181.63 231.50 287.41
Ee 8.23 21.23 40.28 65.37 96.52 133.71 176.94 226.22 281.55 342.93 410.35

4s2

Ea 5.30 13.00 24.11 38.61 56.52 77.83 102.54 130.65 162.17 197.08 235.40
Eb 5.47 13.23 24.45 39.04 57.03 78.43 103.21 131.41 162.01
Ec 4.89 12.24 22.94 37.02 54.50 75.37 99.54 127.31 158.39 192.88 230.77
Ed 5.30 12.94 23.98 38.43 56.27 77.52 102.17 130.22 161.67
Ee 5.41 13.96 26.48 42.98 63.45 87.90 116.32 148.72 185.10 225.45 269.77

5s2
Ea 3.39 8.32 15.43 24.71 36.17 49.81 65.63 83.62 103.79 126.13 150.66
Ed 3.39 8.28 15.35 24.59 36.01 49.61 65.39 83.34 103.47
Ee 4.63 11.94 22.66 36.77 54.29 75.21 99.53 127.25 258.37 192.90 230.82

6s2 Ea 2.35 5.78 10.71 17.16 25.12 34.59 45.57 58.07 72.07 87.59 104.62
7s2 Ea 1.73 4.24 7.87 12.61 18.46 25.41 33.48 42.66 52.95 64.35 76.86
a Present work, values calculated using Eq. (24).
b Ref. [22].
c Ref. [17].
d Ref. [25].
e AOT results according to Slater, values calculated form Eq. (7).
f Experimental data [31].

like ions with 3≤ Z≤ 12, it can be seen that our results are in good agreement as well
as with hyperspherical close-coupling computations of Tang et al. [11], double sums over
the total hydrogen spectrum of product of radials integrals computations of Ivanov and
Safronova [12], analytical calculations of Arias de Saavedra et al. [20] than with screening
constant by unit charge calculations of Sakho [25]. The agreement between the present
calculations for 1s3d and 1s4d levels and that of Ivanov and Safronova [12] it seen to be
very satisfactory for Z = 2-12. Tables 4-7 list total energies for symmetric DES (ns2)1Se,
(np2)1De, (nd2)1Ge and (n f 2)1 Ie with n≤7 for He-like ions up to Z = 12. For these states,
only the experimental value of Li+ and that of He used for the evaluation of the empirical
constants a and b in Eq.(22) are found in the literature. In the experimental side, compar-
ison indicates that, our total energies calculated from Eq.(24) for (2s2)1Se and (2p2)1De

levels agree well with available experimental result of Li+ obtained by Diehl et al. [31].

The relative errors (as compared again to the experimental data) are respectively
about 0.04% and 1.18%. Besides, for theoretical results, a good agreement is observed
comparing our total energies for (ns2)1Se and (np2)1De, n≤ 5 to those of the available
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Table 5: Total energies for (np2) 1De, n≤ 7 symmetric doubly excited states of He - like ions up to Z = 12.
All energies are reported in eV (1 Ryd = 13.605698 eV).

Z
States 2 3 4 5 6 7 8 9 10 11 12

2p2

Ea 19.12 48.73 91.95 148.77 219.20 303.24 400.88 512.13 636.98 775.44 927.50
Eb 19.18 48.39 91.15 147.49 217.41 300.94 398.06 508.78 633.11 771.05 922.58
Ec 19.12 48.19 90.87 147.15 217.03 300.53 397.63 508.33 632.64
Eg 19.41 48.39 90.97 147.16 216.95 300.35 397.35 507.97 632.18
Eh 48.18 90.82 147.04
Ei 47.77 90.54 146.91
Ee 48.16e

3p2

Ea 8.50 21.66 40.87 66.12 97.42 134.77 178.17 227.61 283.10 344.64 412.22
Eb 8.67 21.81 41.03 66.38 97.85 135.45 179.20 229.08 285.10 347.27 415.58
Ec 8.50 21.42 40.38 65.40 96.46 133.57 176.72 225.92 281.17
Eg 8.99 22.11 41.28 66.50 97.76 135.07 178.43 227.83 283.29
Eh 21.67 40.79 65.94
Ei 21.83 41.09 66.41

4p2

Ea 4.78 12.18 22.99 37.19 54.80 75.81 100.22 128.03 159.24 193.86 231.87
Eb 4.89 12.24 22.94 37.02 54.50 75.37 99.64 127.31 158.39 192.88 230.77
Ec 4.78 12.05 22.72 36.79 54.26 75.13 99.41 127.08 158.16
Ei 12.38 23.26 37.54

5p2
Ea 3.06 7.80 14.71 23.80 35.07 48.52 64.14 81.94 101.92 124.07 148.40
Ec 3.06 7.71 14.54 23.54 34.72 48.08 63.62 81.33 101.22
Ei 7.95 14.93 24.08

6p2 Ea 2.12 5.41 10.22 16.53 24.36 33.69 44.54 56.90 70.77 86.16 103.06
7p2 Ea 1.56 3.98 7.51 12.14 17.89 24.75 32.72 41.81 52.00 63.30 75.71
a Present work, values calculated using Eq. (24).
b Ref. [17].
c Ref. [25].
g Ref. [12].
h Ref. [31].
i Ref. [21].
e Experimental data [30].

theoretical values quoted in Tables 4-7. For (6s2)1Se, (7s2)1Se, (6p2)1De and (7p2)1De no
literature values have been found. As regards the (nd2)1Ge -levels, comparison shows
also a good agreement with variational Hylleraas results of Biaye et al [17], density-
functional-theory results of Roy et al. [21] and time-dependant perturbation theory results
of Ray and Mukherjee [19]. A very good agreement is also noted between our results and
that of Sinanoglu and Herrick [32] for 3d2-level of the helium atom. For (n f 2)1 Ie no
experimental data and theoretical results are available when n≥ 5. For 4 f 2-level, com-
parison with available results of Biaye et al. [17] indicates a satisfactory agreement. But,
for (ng2)1Ke and (nh2)1Me levels, no experimental and theoretical results are available.
On the other hand, the results quoted in Table 4 show the inadequacy of AOT in the
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Table 6: Total energies for (nd2) 1Ge, n≤ 7 symmetric doubly excited states of He - like ions up to Z = 12.
All energies are reported in eV(1 Ryd = 13.605698 eV).

Z
States 2 3 4 5 6 7 8 9 10 11 12

3d2

Ea 8.35 21.43 40.55 65.72 96.94 134.21 177.52 226.87 283.28 343.73 411.23
Eb 8.58 21.55 40.49 65.46 96.44 133.46 176.51 225.60 280.73 341.91 409.13
Ei 7.96 20.74 39.57 64.44
Ej 8.49 21.15 39.84 64.56
Ek 8.35

4d2

Ea 4.70 12.05 22.81 36.97 54.53 75.49 99.85 127.62 158.78 193.35 231.32
Eb 4.89 12.24 22.94 37.02 54.50 75.36 99.63 127.31 158.38 192.87 230.76
Ei 4.70 12.06 22.82 36.98
Ej 5.31 12.52 23.33 37.55

5d2 Ea 3.01 7.71 14.60 23.66 34.90 48.31 63.91 81.67 101.62 123.74 148.04
Ei 3.07 7.81 14.74 23.84

6d2 Ea 2.09 5.36 10.14 16.43 24.23 33.55 44.38 56.72 70.57 85.93 102.81
Ei 2.15 5.46 10.28 16.61

7d2 Ea 1.53 3.94 7.45 12.07 17.80 24.65 32.60 41.67 51.85 63.13 75.53
Ei 1.59 4.02 7.57 12.23

a Present work, values calculated using Eq. (25).
b Ref. [17].
i Ref. [21].
j Ref. [19].
k Ref. [31]

Table 7: Total energies for (n f 2)1 Ie, (ng2)1Ke, and (nh2)1 Me, n≤7 symmetric doubly excited states of He -
like ions up to Z = 12. All energies are reported in eV (1 Ryd = 13.605698 eV).

Z
States 2 3 4 5 6 7 8 9 10 11 12

4 f 2 1 Ie Ea 4.62 11.92 22.63 36.74 54.25 75.16 99.47 127.18 158.30 192.81 230.73
Eb 4.89 12.22 22.90 36.95 54.38 75.19 99.40 126.99 157.98 192.37 230.15

5 f 2 1 Ie Ea 2.95 7.63 14.48 23.51 34.72 48.10 63.66 81.40 101.31 123.40 147.67
6 f 2 1 Ie Ea 2.05 5.30 10.06 26.33 24.11 33.40 44.21 56.53 70.35 85.69 102.55
7 f 2 1 Ie Ea 1.51 3.89 7.39 11.99 17.71 24.54 32.48 41.53 51.69 62.96 75.34

5g2 1Ke Ea 2.93 7.59 14.42 23.44 34.63 47.99 63.54 81.26 101.16 123.23 147.48
6g2 1Ke Ea 2.03 5.27 10.02 16.27 24.05 33.33 44.12 56.43 70.25 85.58 102.42
7g2 1Ke Ea 1.49 3.87 7.36 11.96 17.67 24.49 32.42 41.46 51.61 62.87 75.25

6h2 1 Me Ea 2.02 5.25 9.99 16.24 24.01 33.28 44.07 56.37 70.18 85.51 102.34
7h2 1 Me Ea 1.48 3.86 7.34 11.93 17.64 24.45 32.38 41.42 51.56 62.82 75.19
a Present work, values calculated using Eq. (25).
b Ref. [17].
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Figure 3: Comparison of atomic orbital theory of Slater and it new version with some other results for 5s2-
energy level. Specific influence of effective quantum number n∗ is observed.

view point of Slater [24] for excited states of helium-like ions and then for atomic sys-
tems. For (2s2)-level for example, discrepancies between first version AOT results and
accurate results reported in [22,25] increase when the charge number Z increases. Theses
discrepancies are due to the definition of σ -screening constant which has not been de-
fined by Slater [24] for excited states. This is clearly observed considering Fig. 1. Theses
discrepancies are most accentuated in the case of 4s2 and 5s2 levels due to both influence
of σ -screening constant and effective quantum number n∗ as shown in Figs. 2 and 3. This
may be generalized to any excited states where n∗1 6=n.

4 Conclusions

In this work, we have shown that atomic orbital theory in the view point of Slater’s first
formalism is not suitable for excited states of atomic systems. This confirms that AOT
have been developed by Slater [24] only for total ground-state energies of atomic systems
of several electrons. In addition, it has been demonstrated in this paper, the possibilities
to formulate a modification of the first Slater’s atomic orbital theory for the investigations
of excited states of helium-like ions. The good accuracy obtain in this work for (nl2)1Lπ

and (1s,nl)1Lπ excited states in the framework of a nonrelativistic semi-empirical proce-
dure, point out that, the present Modification of Atomic Orbital Theory may be extended
as well as to singly triplet (1s,nl)3Lπ excited states than to doubly excited states with
mixing configurations of type (Nl,nl′) for two-electron systems and extended to excited
states of other atomic systems like lithium isoelectronic series. Such investigations will
present atomic orbital theory of Slater [24] as a complete theory suitable as well as for the
ground -state than for excited states of atoms and there isoelectronic ions.
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5 Appendix

We intend in this section to demonstrate the reasons that lead to Eqs. (15) and (16). Let
us in this purpose, consider Eq. (14) remind below

E(1s,np;1 Po)=−[Z−σp]2− 1
n2 [Z−σ′p]

2, (14a)

E(1s,nd;1 De)=−[Z−σd]2− 1
n2 [Z−σ′d]

2. (14b)

From Ref. [10], experimental total energies of (1s2p)1Po, (1s3p)1Po, (1s3d)1De and (1s4d)1De-
levels of the helium atom are respectively (in atomic units) -2.123 87; -2.055 17,-2.055 65
and -2.031 31. Using these values Eq. (14) yield (knowing that 1a.u. = 2Ryd)





(2−σp)2+
1
4
(2−σ′p)

2 =4.24774

(2−σp)2+
1
9
(2−σ′p)

2 =4.11034
,





(2−σp)2+
1
9
(2−σ′d)

2 =4.11130

(2−σd)2+
1
16

(2−σ′d)
2 =4.06262

.

Solving these equations we find respectively σp = -0.000 104 997; σ′p = 1.005 374 442; and
σd = -0.000 007 857; σ′d = 0.999 291 679.

Physically, the effective charge Z∗=Z−σ<Z. that means σ>0. Then, in the view point
of physical aspect, the results σp=−0.000104997 and σd=−0.000007857 are not acceptable.
To viewing the problem, one can see that the absolute value |σp|=0.000104997≈0.000 and
|σd|= 0.000007857≈ 0.000. these remarks permit to express total energies of (1snp) and
(1snd) singlet excited states of He-like ions by putting into Eq. (14) σp = σd = 0. We
find then for total energies of (1snp)1Po and (1snd)1De singly excited states in helium
isoelectronic sequence Eqs. (15) and (16) respectively reminded below

E(1s,np;1 Po)=−Z2− 1
n2 [Z−σp]2,

E(1s,nd;1 De)=−Z2− 1
n2 [Z−σd]2.
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