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Abstract. We have studied the model for interaction of two trapped ions in a trap
with a laser beam in the intermediate excitation regime. By applying unitary trans-
formations, the system can be transformed into the Tavis-Cummings model. The en-
tanglement dynamics of two trapped ions in this system has been investigated. With
computation of the concurrence, unlike that in Tavis-Cummings model, we find that
the entanglement of two ions in our model undergoes periodic death and revivals.

PACS: 03.65Yz, 03.67Mn

Key words: trapped ion, entanglement sudden death, concurrence

1 Introduction

The entanglement in quantum systems has received great attentation not only because it
is of fundamental interest in quantum mechanics but also because it plays very impor-
tant role in processing of quantum information such as quantum cryptography [1], quan-
tum key distribution [2], quantum superdense coding [3], quantum teleportation [4] and
quantum computation [5]. The entanglement of two particles has been demonstrated
experimentally using ultra cold trapped ions [6] and cavity quantum electrodynamics
schemes [7].However, one has found that the entanglement of the bipartite system be-
ing open to environment will be decay exponentially as similar as quantum decoherence.
This kind of decay is called as the loss of entanglement. Quite recently, one found that
the entanglement between the bipartite coupled with independent reservoirs terminates
abruptly in finite time, which is called the entanglement sudden death (ESD). It has been
shown that ESD effect is not only sensitive to the initial states of systems, but also is de-
pendent on property of noise [8–11]. For a special initial state, the entanglement of two
particles will disappear and then revive.
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There is growing interest in the entanglement of trapped ions. On the one hand, it has
been realized that the trapped ions can be located at a known and controllable distance
from one another. On the other hand, it was discovered that the trapped ions can be
prepared in maximally entangled states that are isolated from its environment [12]. In
Ref. [13], the authors show that ESD can be influenced by the Stark shift and long-lived
entanglement can be produced between the two trapped ions that are driven by a classical
light field in the weak excitation region.

In this paper, we investigate the dynamics of the entanglement between two trapped
ions in the intermediate excitation regime. We find that the entanglement of two ions
undergoes periodic death and revives. An explicit connection between the entanglement
dynamics of two trapped ions and their initial states is presented.

2 Theoretical model

We consider two two-level ions trapped in a harmonic potential traps, which interacts
with a laser field with frequency ω.We restrict our consideration to the quantum me-
chanical motion of the ion in the x direction and omit the breathe mode of the ions. The
Hamiltonian of system is given by [14]

H = Ht+ h̄
∆
2

Jz+
h̄Ω
2

(eiη(a+a+) J++eiη(a+a+) J−), (1)

where Ht = h̄νa+a,

Jz =
2

∑
i=1

σ
(i)
z , J+ =

2

∑
i=1

σ
(i)
+ , J−=

2

∑
i=1

σ
(i)
−

and a(a+) is the annihilation (creation) operator of the center-of-mass vibrational mode
of the ion, ∆ = ωa−ω is the detuning of the ionic transition from the laser frequency,
which is set ∆ = 0, the Lamb-Dick parameter η = πa0/λ, with a0 the amplitude of the
ground state of the trap and the optical wavelength, σ

(i)
z , σ

(i)
+ and σ

(i)
− are pseudospin

inversion, raising, lowering operators of the ith ion and set η¿ 1. Applying the Lamb-
Dicke approximation, neglecting the higher order terms on η, Eq.(1) can be represented
in the form of the matrix as (h̄=1)

H = Ht+ h̄
∆
2

Jz+
Ω
2

Jx− η2Ω
4

(a+a+)2 Jx+
ηΩ
2

(a+a+)Jy, (2)

where Jx = J++ J−, Jy =−i(J++ J−). In order to investigate entanglement dynamics of
two trapped ions in the intermediate excitation regime (Ω¤ν), we cannot make directly
rotating wave approximation. We firstly make a unitary transformation H′ = THT+ =
eiπ Jy/4He−iπ Jy/4. The transformed Hamiltonian reads

H′= Ht+
Ω
2

Jz− η2Ω
4

(a+a+)2 Jz−i
ηΩ
2

(a+a+)(J+− J−). (3)



270 Z. J. Wang and C. Y. Fan / J. At. Mol. Sci. 1 (2010) 268-274

Furthermore we perform a rotating wave approximation, Eq.(3) is then turned into

H′= Ht+
Ω
2

Jz− η2Ω
4

(ae−iνt+a+eiνt)2 Jz−i
ηΩ
2

(ae−iνt+a+eiνt)(J+eiΩt− J−e−iΩt). (4)

We set the parameter Ω = ν (so called intermediate excitation regime) and neglect the
rapidly oscillating terms, we then obtain the transformed interaction Hamiltonian as

H′= Ht+
Ω
2

Jz− η2Ω
4

(2a+a+1)Jz−i
ηΩ
2

(aJ+−a+ J−). (5)

It is seen that The Hamiltonian (5) is similar to the two atoms Jaynes-Cummings model.
In the Hamiltonian (5), the third term denotes Stark effect. In order to solve the evolution
operator, we define the dressed states as basic vectors

|1>(n)= |1>⊗|n>, (6a)

|2>(n)= |2>⊗|n+1>, (6b)

|3>(n)= |3>⊗|n+2>, (6c)

|4>(n)= |4>⊗|n+1>, (6d)

where

|1> |e1e2 >, |2>=
1√
2
(|e1g2 >+|g1e2 >), |3>= g1g2 >, |4>=

1√
2
(|e1g2 >−|g1e2 >)

are the ionic state vectors. In the subspace spanned by the basic vectors |l>(n)(l=1,2,3,4),
the Hamiltonian (5) is represented as

H′=ν(n+1)l+λ0




−(2n+1) 0 0 0
0 0 0 0
0 0 2n+5 0
0 0 0 0


−ig




0
√

n+1 0 0
−√n+1 0

√
n+1 0

0 −√n+2 0 0
0 0 0 0


,

(7)

where λ0 =η2Ω/4, g=ηΩ/2.

3 The entanglement between ions

Supposing above ions system only has the phase decoherence induced by laser intensity
and phase fluctuation, the master equation of the system can be written in the form [13]

dρ(t)
dt

=−i[H,ρ]− γ

2
[H,[H,ρ]], (8)
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where γ is the phase decoherence rate. The first term on the righ-hand of Eq. (8) gener-
ates a coherent unitary evolution of density operator, while the second term denotes the
decoherence effect of the environment on the system. Owing to H′= THT+, the master
Eq. (8) is rewritten as

dρ′(t)
dt

=−i[H′,ρ′]− γ

2
[H′,[H′,ρ′]], (9)

where ρ′=TρT+. The solution to this master equation can be expressed as follows [13]

ρ′(t)=
∞

∑
m=0

(γt)m

m!
Mm(t)ρ′(0)M+m(t), (10a)

Mm(t)= Hm exp(−iHt)exp(−γtH2/2), (10b)
ρ′(0)= Tρ(0)T+. (10c)

The density operator ρ′(t) can also be represented as follows

ρ′(t)=∑
r

∑
i,j

ρ
′(r)
i,j (t)|i>(r)(r)< j|, (11)

where ρ
′(r)
i,j (t) are matrix elements of ρ′(t) in the dressed state subspace. The reduced

density operator of ionic system can be represented as

ρa(t)= Tr f {T+ρ′(t)T}, (12)

where Tr f {} indicates the trace operation on the vibrational motion of the trapped ions.
We now present a study of the entanglement properties of our model. We choose the
initial state

ρ(0)=(|1>−|3)(<1|−<3|)/2⊗|α><α|,
in which |α> is the coherence state for the quantized center-of mass mode of the ions and
the ion is maximum entanglement state. The reduced density matrix ρa(t) for the ionic
system can be computed numerically using Eq. (10a) and Eq. (11). If the matrix elements
ρ
′(r)
i,j (t) are computed, we can obtain the matrix elements ρa

i,j(t) of the reduced density
ρa(t) as follows

ρa
1,1(t)=

1
4 ∑

r

(
ρ
′(r)
1,1 (t)+2ρ

′(r+1)
2,2 (t)+ρ

′(r+2)
3,3 (t)

)
, (13a)

ρa
1,2(t)=

1
4 ∑

r

(√
2ρ
′(r)
1,1 (t)−

√
2ρ′r+2

3,3 (t)
)

, (13b)

ρa
1,3(t)=

1
4 ∑

r

(√
2ρ′(r)1,1(t)−

√
2ρ′(r+2)3,3(t)

)
, (13c)

ρa
1,4(t)=

√
2

2 ∑
r

ρ
′(r+1)
2,4 (t), (13d)

ρa
2,1(t)=

1
4 ∑

r

(√
2ρ
′(r)
1,1 (t)−

√
2ρ
′(r+2)
3,3 (t)

)
, (13e)
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ρa
2,2(t)=

1
2 ∑

r

(
ρ
′(r)
1,1 (t)+ρ

′(r+2)
3,3 (t)

)
, (13f)

ρa
2,3(t)=

√
2

4 ∑
r

(
ρ
′(r)
1,1 (t)+ρ

′(r+2)
3,3 (t)

)
, ρa

2,4(t)=0, (13g)

ρa
3,1(t)=

1
4 ∑

r

(
ρ′(r)1,1(t)−2ρ

′(r+1)
2,2 (t)+ρ

′(r+2)
3,3 (t)

)
, (13h)

ρa
3,2(t)=

√
2

4 ∑
r

(
ρ
′(r)
1,1 (t)−ρ

′(r+2)
3,3 (t)

)
, (13i)
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1
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)
, (13j)
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2
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2,4 (t), (13k)
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√
2
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2
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Figure 1: The evolution of the concurrence with the scaled time for the different parameter n̄ with γ=0, η=0.2,
(a)n̄=10, (b)n̄=30, (c)n̄=40, (d)n̄=50.
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Figure 2: The evolution of the concurrence with the scaled time for the different parameter γ, n̄ with η =0.2,
γ=0.001, solid line: n̄=5, dashed line: n̄=10, dotted line: n̄=20.

In order to study the dynamics of entanglement in our model, we employ the concur-
rence as a entanglement measure. The concurrence is defined as [15]

C(ρ)=max(0,λ1−λ2−λ3−λ4), (14)

where λi (λ1≥λ2≥λ3≥λ4) are the eigenvalues of the time-dependent operator ρ(σy⊗
σy)ρ∗(σy⊗σy). The concurrence ensures the scale between 0 and 1. In particular, C(ρ)=1
indicates maximum entanglement between the two qubits, whereas C(ρ)= 0 represents
disentanglement. It should be pointed out that before computing the concurrence by
Eq.(11), we must represent the matrix elements ρa

i,j4(t) in the basic ionic state vectors |ī>
(|1̄>= |e1e2 >, |2̄>= |e1g2 >, |3̄>= |g1e2 > and |4̄>= |g1g2 >). This can made by a simple
unitary transformation.

We firstly investigate entanglement dynamics of two trapped ions without the phase
damping (i.e., γ=0). The time evolution of the concurrence for different average photon
number (average vibrational quanta number) n̄=< a+a> has been calculated, as shown
in Fig. 1. The feature of the periodic collapses and revivals of the concurrence is observed.
With the increase of the average photon number, the revival periodic of the concurrence
does not change basically, but the amplitude of the concurrence becomes smaller. In other
hand, When n̄is small, the entanglement of two ions can be collapsed to zero. When n̄ is
large, the entanglement of two ions cannot be collapsed to zero. This makes clear that the
entanglement of two ions is much influenced by the Stark effect (which is dependence on
the average photon number).

In the condition of the phase damping (i.e., γ 6= 0), the entanglement of two trapped
ions will decay rapidly (see Fig. 2). When the average photon number n̄ = 5, the en-
tanglement will decay into zero suddenly, but for the large average photon number, the
entanglement will decay into zero exponentially. The more average photon number is,
the faster the entanglement will decay.
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4 Conclusions

We have investigated that the entanglement of two trapped ions with a radiation field
in the intermediate regime. The entanglement of two trapped ions undergoes periodic
fluctuation. When the phase damping is absent, the larger the average photon number
is, the smaller the maximal entanglement we can obtain is. When the phase damping
is present, the larger the average photon number is, the more rapid the entanglement
decays. These denote that the entanglement of two ions much influenced by the Stark
effect.
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