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Abstract. A quantum stationary wave has been examined in an exchange field, which
induces the force of the form F(r)= f2(1/r2− f1/r). For the Coulomb attraction in hy-
drogen atom, the inexplicable discrepancy (0.0023 MHz) between the theoretical and
experimental frequencies for its 1S1/2 has been verified. It is found that the tiny f1 is
7.45×10−12a1

−1(a1 is the 1st Bohr radius). Meanwhile, when such an f1 is considered
in the n = 2 Lamb shift, it causes -0.034 MHz difference, which is in good agreement
with the deviation of -0.039 MHz between the experimental and one of the theoretical
predictions. Similar of searchings are made for the Lande g factor for the Hβ spectrum.
This f1 contributes a ratio ∆g/g = 5.58×10−11 and makes both the experiment and
theory well agreed within the experimental relative uncertainty ±4×10−12. In other
words, these phenomena can be treated as the reliable physical evidences for the exis-
tence of the same repulsion. More importantly, they consistently and strongly imply
that the maximum radius for the Coulomb attraction in hydrogen atom can not exceed
7.11 m (if extrapolated). In addition, this analysis prompts us similar cases probably
occur in the gravitation because it is also an exchange field, and the repulsion at remote
distance may be one kind of dark energy that may have been ignored.

PACS: 67.63.Cd
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1 Introduction

Hydrogen atom has been well studied as the simplest quantum system. However, there
still exist deviations between the carefully corrected quantum electrodynamics (QED)
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predictions and the most precise experiments. The remarkable issues might be the inex-
plicable frequency discrepancy on the HFS spectrum for the state 1S1/2 (at 21cm), and the
n=2 Lamb shift (2S1/2−2P1/2) as well as the Lande g factor for electron. This paper will
discuss the electromagnetic interaction and try to find out some new results.

2 The prompt from a quantum stationary wave

The Coulomb interaction belongs to an exchange field. Typically, two electrons interact
via exchanging the virtual particle (γ) and scattered, as illustrated in Fig. 1.

Figure 1: The Feynman diagram for the scattering of electrons in time-space (t-X) plot. The waved line
represents the virtual particle γ, which is radiated at A and absorbed at B.

Consider the mode and the number distribution of the exchanger (the virtual particle
γ). First, the exchanger is a wave, probably, the simplest mode may correlate to the quan-
tum stationary wave, and each component has an energy hνn (h is the Planck constant).
Second, for a stable stationary wave, as we have known, their wavelengths λn for the
possible components keep the integer relationship: λn =λmax/n, in which λmax =λ1 =2L
and n=1, 2, 3, ···. Therefore, the frequencies νn = c/λn must be ν1, 2ν1, 3ν1, ···, nν1, ···

Consider the ratio of the nth component ρn, with ∑n ρn = 1. Note that a transverse
wave has two degrees of freedom. So the interactive energy may be written as

E(L)=2∑
n

ρnhνn =2∑
n

ρnh(nν1)=2hν1∑
n

nρn

=2hν1〈n〉 (1)

where 〈n〉= ∑n nρn is the average number. Noticing the minimum frequency νmin = ν1 =
c/2L, we may have

E(L)= 〈n〉hc/L. (2)

By considering a particular distribution (e.g., the classical, or Fermi - Dirac, or Bose -
Einstein distribution), we can still get a similar relation. As it is valid for arbitrary length
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Figure 2: Schematic of the stable stationary wave modes (L, the distance)

and direction, it is better to label L as the spatial distance r. In addition, the internal
energy V(r) will be taking as minus in the physical convention

V(r)=−〈n〉hc/r. (3)

In a conservative system, the interactive force will be F=−∇V(r), which gives

F=−∇[−〈n〉hc/r]

=−〈n〉hc/r2r0+hc·(δ〈n〉/δr)·1/rr0, (4)

where r0 is the unit vector. We point out that preferring to take the variation δ〈n〉/δr may
refer to the property of the system, other than the kinetic behaviour of d〈n〉/dr (noticing
the possible term δc/δr being omitted).

Obviously, if δ〈n〉/δr=0, then we have the square-inverse force

F=−∇V(r)=−〈n〉hc/r2r0. (5)

However, we can get more information from Eq. (4). When the system is in motion,
i.e., the distance r increases, it is naturally expected that the average number 〈n〉 would
increase, which it means the space may contain more wave components. This will cause
δ〈n〉/δr 6=0. Thus, an additional force Fa will occur

Fa =hc·(δ〈n〉/δr)·1/rr0. (6)

Generally speaking, as the distance r is increasing, the average number 〈n〉 will in-
crease, i.e., δ〈n〉/δr>0. Therefore, the direction of Fa will be opposite to the former term.
It is very useful to realize this point.

3 The correlations

As lacking the knowledge of the quantum stationary wave, it needs to build up the cor-
relation. In the case of Coulomb attraction in atoms, F = −kZe2/r2 (K = 1/4πε0, the
Coulomb constant, e, the electric charge), so it will lead to

−kZe2 =−〈n〉hc. (7)
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It is easy to see that the electric charge e, has now the new physical meaning − it charac-
terizes the wave properties (〈n〉, h, and c).

In addition, when correlated to the Newtonian gravitation F =−GmM/r2, we may
have

−GmM=−〈n〉hc. (8)

Also, the gravitational mass becomes a new measurement of the wave properties.

4 The form of the force and the critical radius rc

For easy of discussions, we let

F=−〈n〉hc/r2+hc(δ〈n〉/δr)·1/r

≡ f2 ·(1/r2− f1/r), (9)

where, f2≡−〈n〉hc, and f1≡1/ f2 ·δ f2/δr≡1/〈n〉·(δ〈n〉/δr). This leads to the following
forms for atoms and gravitation, respectively,

Fatom≡−Ze2/4πε0 ·(1/r2− f1/r), (10a)

Fgrav.≡−GmM·(1/r2− f1/r). (10b)

We consider the special case of 1/r2− f1/r=0. It occurs at the critical radius rc =1/ f1.
i.e., in the range 0<r<rc, the square-inverse force f2/r2 will dominate the behaviour, but
out of the range, the additional force Fa = f2 f1/r will dominate it.

Up to now, such an analysis is just a correlation, no more than a prompt, because
many phenomena can be well described by the square-inverse force. It is expected that f1
may be very small, even not zero. However, it may provide a new clue to some interesting
issues.

5 The hyperfine structure (HFS) spectrum of hydrogen 1S1/2

The hydrogen atom is a pure two-body system, which is an extremely relevant issue
to check the main idea. Moreover, we have accumulated much of the most intensive
spectrum data both in experiments and theory.

More precisely, the issue is the inexplicable discrepancy between the most precise
QED theoretical and experimental frequencies. This spectrum comes from the transition
of the HFS 1S1/2 substates F = 1 to F = 0 (Fig. 3). The experimental frequency νexp. =
1.4204057517667(10) GHz, and its relative uncertainty σexp =±0.7×10−12. In fact, it is
the frequency standard in the hydrogen atom clock, also one of the most precise data in
atomic physics, and a very important spectrum in radio astronomy (21cm).
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Figure 3: The energy levels of HFS 1S1/2 spectrum for hydrogen, in which, as, the splitting interval, and
νtheory = as/h, the theoretical frequency.

The problem is so happened to the most precise theory. Though all efforts have been
made (including the corrections up to the motion and the charge distribution of the pro-
ton), however, the best QED modification is νtheory = 1.4204034(13) GHz [1–3]. The fre-
quency νexp. is still higher than νtheory; their discrepancy is given by νexp.−νtheory = 0.002
3(13) MHz.

By noting the relative deviation σ=(νexp.−νtheory)/νexp.=1.66×10−6, it seems not bad
at the first look. However, comparing with the experimental precision 0.7×10−12, this
relative error is 2.37×106 times bigger.

It is really an incredible deviation for the carefully corrected QED prediction, but a
good chance to check the f1 term.

6 Determining the repulsion f1

Now it may become a little clear − it is not an issue of the calculation precision but
probably a matter unconscious of the tiny repulsion. Completely describing the details
requires a little space, here we will explain it.

The potential has changed as the existence of f1. Its zero point can be only at a finite
critical radius rc. For simplification, we start the discussion from the force, and take f2
and f1 as constants. This gives

V(r)=−
r∫

rc

F·dr=−
r∫

rc

(
−Ze2/4πε0[1/r2− f1/r]

)
·dr

=−Ze2/4πε0 ·1/r+−Ze2/4πε0 · f1 ·[Ln(r/rc)−1]≡V0(r)+∆V(r), (11)

where V0 =−Ze2/4πε0 ·1/r, and ∆V(r)=−Ze2/4πε0 · f1 ·[Ln(r/rc)−1].
Secondly, we use the perturbation theory to deal with HFS 1S1/2 spectrum for deter-

mining the energy E
[H0(r)+∆V(r)]Ψn,l,F,M f = EΨn,l,F,M f . (12)

Actually, it is equivalent to the Dirac equation. H0(r) is the 0th Hamilton operator, which
contains the kinetic, Coulomb potential, Darwin recoil, relativistic effect and other neces-
sary corrections of QED (including vacuum polarization, self energy of the electron, and
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the contributions from the proton). Ψn,l,F,M f represents the wave function, and n, l, F and
M f are a group of good quantum numbers in describing the HFS substates of 1S1/2 (F=1,
M f =−1,0,1 and F=0, M f =0, respectively).

Expecting f1 very tiny, and approximately expressing the perturbed wave function
Φ on the bases of F = 1 and F = 0 [4], we may simply link them to the existing relative
deviation σ

Φ= c1Ψ1+c0Ψ0 (13)

By so doing, the perturbed energy levels are obtained

E±=
1
2
·(E1+V11+E0+V00)± 1

2
·
√

(E1−E0+v11−V00)2+4V2
10, (14)

where E1 and E0 are the QED theoretical energy levels (F = 1 and F = 0), respectively.
Symbols V11 =〈Ψ1|∆V|Ψ1〉, V00 =〈Ψ0|∆V|Ψ0〉, and V10 =V01

∗=〈Ψ1|∆V|Ψ0〉 represent the
integrals to the wave functions.

Note that ∆V(r)=−Ze2/4πε0 · f1 ·[Ln(r/rc)−1] is only the function of the spatial dis-
tance r, and take the 0th order spatial wave function R1,0(r) in the calculation. Its precision
(R−R1,0)/R1,0 would be of the order of α2 (α≈1/137, the fine structure constant) as the
main errors coming from the relativistic effects. We may get

V10 =V00 =V10 = 〈R1,0(r)|−Ze2/4πε0 · f1 ·[Ln(r/rc)−1]|R1,0(r)〉
because both basic functions Ψ1 and Ψ0 have the same spatial parts R1,0(r). By using the
approximation (1+x2)1/2≈1+1/2·x2, the new energy levels will be

E±=
1
2
·(E1+E0)+V10± 1

2
·
√

(E1−E0)2+4V2
10

≈1
2
·(E1+E0)+V10± 1

2
·
(
(E1−E0)·[1+2V2

10/(E1−E0)2]
)

, (15)

or equivalently,

E+ = E1+V00+
(
(E1−E0)·V2

10/(E1−E0)2
)

, (16a)

E−= E1+V00−
(
(E1−E0)·V2

10/(E1−E0)2
)

. (16b)

Therefore, the new energy difference ∆E for the substates of 1S1/2 is

∆E= E+−E−=∆E0 ·
(

1+2V2
10/∆E2

0

)
. (17)

Here, ∆E=E+−E− represents the actual splitting hνexp., and ∆E0 =E1−E0 =hνtheory is the
QED prediction without counting the repulsion. Noticing the ratio

σ≈ νexp.−νtheory

νtheory
=

∆E−∆E0

∆E0
=

2V2
10

∆E2
0

. (18a)

Thus we may have

V10 = 〈R1,0(r)|−Ze2/4πε0 · f1 ·[Ln(r/rc)−1]|R1,0(r)〉=±
√

(σ/2)∆E0. (18b)
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Table 1: The determination f1 by using the relative deviation σ between the experimental and the theoretical
frequencies (a.u.: atomic unit, 1 a.e.u.= 27.2eV, 1a1 =0.529×10−10m).

State Relative deviation σ 〈|Ln(r/rc)−1| V10 =V11 =V00 f1 =1/rc ∆ν=σ∆EHFS/h

1S1/2 1.66×10−6 -26.41 1.97×10−10 5.35×10−9 7.45×10−12 0.0023

Note: the 0th order spatial wave function R10(r)=2(Z/a1)3/2exp(−Zr/a1), for hydrogen atom, Z=1.

Obviously, −√
(σ/2) inducing Ln(−| f1|r), which is meaningless. This f1 must be

positive as r<rc and [Ln(r/rc)−1]<0. The above equation needs a numerical calculation.
We have already known σ=1.66×10−6 and ∆E0/h=∆EHFS/h=1.42 GHz for 1S1/2. The
calculation indicates when f1 =1/rc =7.45×10−12(a1)−1, the integral

〈|Ln(r/rc)−1|〉≡
∫

[Ln(r/rc)−1]R2
1,0(r)·r2dr=−26.41,

and Eq. (18b) gets satisfied (Table 1).
Therefore, based on the HFS 1S1/2 spectrum of hydrogen, the force between a proton

and an electron should be

F(r)=− 1
r2 +

7.45×10−12

r
, (19a)

or in the form of the potential

Vr =−
(1

r
+7.45×10−12 ·[Ln(7.45×10−12 ·r)−1]

)
. (19b)

That is to say, if the repulsion does really exist, its ratio to the Coulomb attraction will
be 7.45×10−12 at the 1st Bohr radius (r = a1 = 1). It is, indeed, too tiny to be detected in
common experiments.

The 1S1/2 frequency difficulty, therefore, is completely solved by confirming such an
f1 term. However, such an analysis provides a new clue - the electromagnetic interaction
what we have understood might be an approximation with the high precision (early,
Lundeen and Pipkin proposed their doubt [7]), but this approximation is not in the form
of 1/r(2±n) once widely worried about. Also, it implies the Coulomb attraction (at least,
between an electron and a proton in hydrogen atom) maybe not of long range, and the
extrapolated critical radius is rc =1/ f1 =1.30×1011(a1)=7.11 M. If really so, there must
exist other inexplicable deviations because we have never corrected similar effect in QED
predictions before.

7 Another case − the frequency deviation of the Lamb Shift in
hydrogen, n=2, 2S1/2(F=0)−2P1/2(F=1) transition

The n = 2 Lamb shift (Fig. 4), though divided into the range of fine structure(FS) spec-
troscopy [5.6], is significant to QED theory - it was this Lamb shift that promoted the
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development of the concepts such as the vacuum polarization and the self energy of the
electron.

Figure 4: Repulsion induced the frequency difference in the n=2 Lamb shift (2S1/2−2P1/2).

The deviation still exists. The most precise experimental frequency is 1057.845(9)
MHz [7], but the best modified theoretical results were obtained by Erickson [8] and
Mohr [9], they are 1057.930(10) MHz and 1057.884(13) MHz, respectively. Their devi-
ations from the experiment are 0.085 MHz and 0.039 MHz, remarkably larger than the
experimental uncertainty ±0.009 MHz. But this time, unlike the 1S1/2 spectrum, the the-
oretical frequencies are systematically higher than the experiment. Of course, there is still
a later reported QED prediction reached to 1057.855(14) MHz [3], it seemed to be solved
(at least, it is so in appearance).

Logically, if the f1 really exists, it will naturally affect other QED predictions. In other
words, the QED predictions before should contain the systematic uncertainties because
they omitted the f1 effect.

The succeeding analysis is something like an inverse process as used in 1S1/2. First,
we calculate the energy differences on 2S1/2 and 2P1/2 by using the obtained f1, then
determine the transition frequency from F=0→F=1.

Combining Eq. (16) and the data in Table 2, the variations of ∆E and ∆ν will be

∆E=E−Etheory≈∆
(

V00±1/2·(E1−E0)·∆[2V2
10/(E1−E0)2]

)
|2S
2P, (20a)

∆ν=∆E/h=
(

V00(2S1/2)−V00(2P1/2)
)

/h+1/2·
(
±∆ν(2P1/2)−±∆ν(2P1/2)

)

=(−0.008)+1/2·(±0.0168−±0.0511)MHz. (20b)

Such calculations provide some information on the substates. The HFS frequency
differences in the substates 2S1/2 and 2P1/2 will increase if the repulsion ignored. They
will reach to 0.0168MHz and 0.0511MHz, respectively (Table 2). i.e., their theoretical
HFS frequencies will be lower than those in experiments once again. In other words, the
repulsive effect will increase as the 〈r〉 increased.
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Table 2: The estimated relative uncertainties σ and frequency deviations ∆ν in the substates 2S1/2 and 2P1/2.

State f1 = 1
rc

: 10−12(a−1
1 )

〈∣∣∣Ln(r/rc)−1
∣∣∣
〉

V00 =V01 =V11 (eV) σ=2
(

V11
∆EHFS

)2
νHFS = ∆EHFS

h ∆ν= σ∆νHFS
h

2S1/2 7.45 -24.95 5.053×10−9 9.47×10−5 177.56 0.0168

2P1/2 7.45 -25.12 5.086×10−9 8.63×10−4 59.19 0.0511

Note: The spatial wave functions of the 0th order approximation

R2,0(r)=2(Z/2a1)3/2(1−Zr/2a1)·exp(−Zr/2a1),

R2,1(r)−1/
√

3(Z/2a1)3/2(Zr/a1)·exp(−Zr/2a1).

The n=2 Lamb shift, is just the transition (2S1/2, F =0→2P1/2, F =1). Arranging the
HFS energy differences to the F=1 and F=0 substates by the ratio 1/4·as, −3/4·as as in
the HFS theory, the estimated deviation ∆ν will be

∆ν=(−0.008)− 3
4
·0.0168− 1

4
·0.0511=−0.034 MHz (21)

Clearly, such a negative deviation is found in good agreement with one of the exist-
ing discrepancy −0.039 MHz (Mohr’s result [9]) within the experimental uncertainty ±
0.009MHz [7]. In other words, f1=7.45×10−12(a1

−1) is also valid for both substates 2S1/2
and 2P1/2 and the both mutually contribute −0.034 MHz in n=2 Lamb shift.

8 The precision of the Lande g factor for the electron

The anomalous magnetic moment (g-2) of the electron is with the same importance as the
Lamb shift in QED theory.

Similar deviation happened to the Lande g factor. A modern experimental value [2,3,
10] gexp. =2×(1+0.001159652193(4)), and its relative uncertainty is

σ=±∆gexp./gexp. =±4×10−12. (22a)
However, the best calculated result [1, 3] gtheory =2×(1+001159652140(28)).Their relati-

ve deviation σg

σg =(gexp.−gtheory)/gexp. =5.29×10−11. (22b)

It is one order higher than the experiment. And up to now, no further improved predic-
tion reported.

Unfortunately, considering f1 and recalculating the g factor will be an extremely hard
job. However, a physical viewpoint may simplify the consideration - starting from the
correspondence of the force, by comparing the following forms

F= e2
0/4πε0 ·1/r2, F= e2/4πε0 ·1/r2 ·(1− f1 ·r), (23)
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in which e0 and e are the electronic charges before and after considering the repulsion,
respectively. That is to say, the existence of f1 term will cause a little change of the electric
charge when measuring it by the force. The force, of course, is unique in the measurement
- it is not depending upon which formula we take, so the correlation will be

e2(1− f1r)= e2
0, (24)

namely, e≈ e0(1+1/2· f1r), as 1/(1− f1r)−
1
2 ≈ (1+1/2· f1r). Hence,

∆e/e≈ 1
2
· f1∆r. (25)

This clue is also helpful to improve the precision ∆e/e in measurements, but back to
the farm. The Lande g factor is two times of the average in the unit of the Bohr mag-
netic moment, i.e., g=〈µ〉/[〈s〉(eh̄/2m)], so the extra deviation induced by the electronic
charge e (actually by the existence of f1) will be

∆g=−〈µ〉/[〈s〉(eh̄/2m)]·∆e/e≈−g·(1/2· f1 ·∆r).

Taking the average 〈〉, it becomes

〈∆g〉/g=−1
2
· f1 ·∆〈r〉 (26)

This indicates the precision of g factor would be slightly depending upon the initial
and final states in transitions. Generally speaking, there will be ∆〈r〉> 0 in the photon
absorption, as well as ∆〈r〉<0 in the emission.

Hydrogen atom is still a good system. Examining its Hβ line (486.1 nm, n=4→n=2).
The theoretical average distance 〈r〉n,l = a1/2·[3n2−l(l+1)] (where l =0, 1, ···, n−1) and
the weight is (2l+1)/∑n−1

l=0 (2l+1). Hence

〈r〉n =
n−1

∑
l=0

a1

2
·[3n2−l(l+1)]· (2l+1)

n−1
∑

l=0
(2l+1)

. (27)

It is easy to get 〈r〉n=2 =5.25a1 and 〈r〉n=4 =20.25a1, so we have

∆〈r〉= 〈r〉n=2−〈r〉n=4 =−15a1, (28a)

〈∆g〉/g=15/2×7.45×10−12 =5.58×10−11 (28b)

The present deviation σg=(gexp.−gtheory)/gexp.=5.29×10−11, and f1 will contribute to the
theory 〈∆g〉/g=5.58×10−11. So the improved results will be

σ=5.29×10−11−5.58×10−11 =−2.87×10−12. (28c)

Once again, the f1 effect makes both the experiment and the theory in good agreement
within the experimental uncertainty ±4×10−12.
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9 Discussion and conclusion

Three different issues in appearance, now they are completely in good agreement within
the experimental precisions, and they consistently point to the same effect − the elec-
tromagnetic interaction between a proton and an electron occurs a deviation from the
Coulomb force. Its influences to higher HFS states 2S1/2 and 2P1/2, are estimated reach-
ing to 0.0168 MHz and 0.0511 MHz, respectively. They are much larger than the 0.0023
MHz at 1S1/2, hence, easier to be observed. Also, it is expecting that 2D and 3He+ could
further check the similar f1.

Although the repulsion seems tiny at 1st Bohr radius, however, it strongly implies that
the Coulomb attraction in hydrogen atom might be not of long range, and the extrapo-
lated critical radius rc = 1/ f1 = 1.30×1011(a1) = 7.11 M. As lacking data in the cases of
n>4, however, there exists the possibility that the f1 may slightly change with the states,
i.e., f1 = f1(r). If so, it would cause a smaller rc (a smaller atom).

Also, it would be very interesting to explore the probability that the f1 effect would
occur for the same kind electric charges (e.g., a proton vs. a proton, or an electron vs. an
electron). In these cases, it is expected to exhibit a tiny attraction.

In addition, for the gravitation, it is worthy noting the tiny repulsion would possibly
exist, too. The main problem is that it is difficult to find out a pure two-body system
in the gravitation, and the precisions for observation could not match up with those in
the hydrogen spectra. However, the features are interesting. First, a perturbation anal-
ysis indicates it would cause an extra but negative contribution to the precession of the
planet’s perihelion, and the precession angle per circle ∆≈−πa(1−e2) f1 (a and e, the
orbital parameters, f1 the repulsion). That is to say, the outer planet (e.g., Neptune, or
Pluto), with larger a, would behave larger anomalous but negative precession, hence,
easier to be checked. (on contrast, the general relativity effect is a positive contribution
to the precession and becomes smaller for outer planet, as the precession angle per circle
∆≈6πGM/[c2a(1−e2)] [11]). More important matter maybe the critical radius rc, because
within the scope, those celestial bodies attract each other, but out of such a distance, the
Solar system, or galaxies, maybe black holes, would exhibit their net repulsion. Perhaps,
it is such a repulsion that drives remote galaxies further apart. In other words, it may be
a kind of dark energy once we have ignored.
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