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Abstract. We present a novel tripartite scheme for remotely preparing an arbitrary
two-qubit state with two three-qubit entanglements. By using a proper positive
operator-valued measure (POVM), it is shown that the remote two-qubit preparation
can be realized in either distant ministrant’s place in a probabilistic manner via their
collaboration. We also explore its applications to six special ensembles of state in de-
tail. The extensive investigations show that the remote preparation can be achieved
with higher probability provided that the prepared state belongs to the six special en-
sembles.
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1 Introduction

Applying the theory of quantum mechanics in the field of information, many interesting
developments have been produced in last decades [1–15], such as quantum teleporta-
tion [1], quantum dense coding [2], quantum secret sharing [3], remote state preparation
[4], and so on. Quantum teleportation was first proposed by Bennett et al. [1] in 1993. It is
a method for interchanging quantum resources between different places. In 2000 Lo [4]
formally presented another interesting novel method to transmit pure quantum states.
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It also utilizes a prior shared entanglement and some classical communication. Conven-
tionally, this new communication protocol is termed as remote state preparation (RSP)
and viewed as ”teleportation of a known state”. In RSP the prepared state is assumed to
be completely known by the sender. In contrast, the teleported state is not required to be
known by the sender in quantum teleportation. Moreover, due to the prior knowledge
about the original state, to some extend the classical communication and entanglement
cost can be reduced in RSP process. For an example, Pati [12] showed that for a qubit
chosen from equatorial or polar great circles on a Bloch sphere, RSP requires only one
forward classical bit, exactly half that of quantum teleportation. However, for general
states RSP procedure requires as much communication cost as quantum teleportation.
The detailed trade-off between the classical communication cost and the required entan-
glement in RSP procedure can be studied distinctly in the protocol proposed by Bennett
et al. [13].

In the last decade, after Lo’s pioneering work [4], RSP has attracted much atten-
tion [16–33]. Also some RSP schemes are investigated by using different entangled states
as quantum channel [34–42]. In terms of entanglements in quantum channel, these RSP
schemes can be classified into two types. One takes pure entangled states as the quan-
tum channel [34–38] while the other utilizes partly pure entangled states [39–42]. In the
latter case, usually people need to introduce one or more auxiliary qubits and then entan-
gle them with his/her original qubits. By performing proper measurements on his/her
qubits including the ancillas the prepared state can be collapsed to one of the eligible
states. Then conditioned on the measurement results on the auxiliary qubits, the receiver
performs an appropriate unitary operations on the eligible state to properly retrieve the
prepared state. Note that, the so-called proper measurements are projective measure-
ments in the latter type of existing RSP schemes [39–42]. As a matter of fact, there lies
another type of measurement named positive operator-valued measure (POVM) [43],
which was also called generalized measurement [44]. Since in the RSP schemes, the post-
measurement state of the auxiliary system is of little interest. In contrast, the main item of
interest is the probability of respective measurement results. Therefore, one may conjec-
ture that it is quite possible to use positive operator-valued measure (POVM) [43] instead
of usual projective measurement to realize RSP protocols. As a matter of fact, POVM has
already attracted much attention and been employed in various quantum information
processing [45–49].

However, to our best knowledge, so far there has been no proposal for remote prepa-
ration of an arbitrary two-qubit entangled state via positive operator-valued measure
and three-qubit entanglements. In this contribution we show that it is indeed possible
to construct such RSP protocol. That is, by using positive operator-valued measure, we
propose a tripartite scheme for symmetrically preparing an arbitrary two-qubit state via
two non-maximally entangled three-qubit states.

This paper is organized as follows: in Section 2, a symmetric tripartite RSP scheme is
amply presented. Then its applications to six special ensembles of states are investigated
in Section 3. At last, concise discussions and brief summaries are given in Section 4.
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2 Symmetric tripartite RSP scheme

Now let us present the symmetric RSP scheme. Suppose Alice is the state preparer, Bob
and Charlie are the two remote ministrants. Alice, Bob and Charlie share in priori two
non-maximally entangled three-qubit states

|Ψ〉123 = a|000〉123+b|111〉123(|a|2+|b|2 =1),

|Φ〉456 = c|000〉456+d|111〉456(|c|2+|d|2 =1), (1)

where a, b, c and d are nonzero real numbers, and satisfy |a| ≥ |b| and |c| ≥ |d|. Qubits
(1, 4) belong to Alice while qubits (2, 5) and (3, 6) to Bob and Charlie, respectively. Alice
wants to prepare remotely a state with the two ministrants’ help. The prepared state is

|V〉=α|00〉+β|01〉+γ|10〉+δ|11〉,

where α,β,γ,δ are arbitrary complex numbers and satisfy

|α|2+|β|2+|γ|2+|δ|2=1.

Alice knows it exactly while Bob and Charlie do not. Owing to the channel symmetry for
Bob and Charlie, each of them has the chance to construct the state |V〉 with another’s
assistance. Specifically, Charlie can retrieve it with Bob’s help and vice versa. Without
loss of generality, suppose Charlie is assigned to construct the prepared state. To fulfill
the state preparation, Alice carries out a two-qubit projective measurement on her qubits
1, 2 in a set of mutually orthogonal basis vectors {|λ1〉,|λ2〉,|λ3〉,|λ4〉}, which are given
as

|λ1〉=α|00〉+β|01〉+γ|10〉+δ|11〉,
|λ2〉=ηα|00〉+ηβ|01〉−η−1γ|10〉−η−1δ|11〉,
|λ3〉=β∗|00〉−α∗|01〉+δ∗|10〉−γ∗|11〉,
|λ4〉=ηβ∗|00〉−ηα∗|01〉−η−1δ∗|10〉+η−1γ∗|11〉, (2)

where

η=

√

1−p

1+p
, p= |α|2+|β|2−|γ|2−|δ|2.

This four non-maximally entangled basis states are related to the computation basis vec-
tor {|00〉,|01〉,|10〉,|11〉} and form a complete orthogonal basis set in a four-dimensional
Hilbert space, i.e., 〈λi|λj〉=δij.

Note that the entangled state |Ψ〉123|Φ〉456 in the basis {|λ1〉,|λ2〉,|λ3〉,|λ4〉} can be
written as

|Ψ〉123|Φ〉456 =(ac|000000〉123456+ad|000111〉123456+bc|111000〉123456+bd|111111〉123456)

=|λ1〉14⊗|Γ1〉2356+|λ2〉14⊗|Γ2〉2356+|λ3〉14⊗|Γ3〉2356+|λ4〉14⊗|Γ4〉2356, (3)
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Figure 1: a) Alice, Bob and Charlie each keeps two qubits from the two non-maximally entangled three-qubit
states. Alice makes a two-qubit projective measurements (PM) and then broadcasts her measurement results
(2 bits). b) Bob is assigned to measure his two qubits in the X bases (XM), respectively, and then tells Charlie
his measurement results (2 bits). Conditioned on Alice and Bob’s classical message, Charlie constructs the
prepared state by incorporating two auxiliary qubits and executing appropriate operations (U, CNOT, POVM).

where

|Γ1〉2356=α∗ac|0000〉2356+β∗ad|0011〉2356+γ∗bc|1100〉2356+δ∗bd|1111〉2356 ,

|Γ2〉2356=ηα∗ac|0000〉2356+ηβ∗ad|0011〉2356−η−1γ∗bc|1100〉2356−η−1δ∗bd|1111〉2356 ,

|Γ3〉2356=βac|0000〉2356−αad|0011〉2356+δbc|1100〉2356−γbd|1111〉2356 ,

|Γ4〉2356=ηβac|0000〉2356−ηαad|0011〉2356−η−1δbc|1100〉2356+η−1γbd|1111〉2356 . (4)

After this measurement, Alice broadcasts her measurement result in terms of a prior
agreements (shown in Fig. 1(a)), i.e., ”00” correspond to |λ1〉, ”01” to |λ2〉, ”10” to |λ3〉
and ”11” to |λ4〉, respectively. According to the above equation, one can see that Alice’s
measurement result should be one of the four states defined in Eq. (2). Without loss of
generality, suppose Alice measures |λ3〉14. So she sends two classical bits ”10” to publish
her measurement result. Then according to Eq. (3), it is known the joint state of qubit
pairs 2, 3 and 5, 6 will collapse to |Γ3〉2356. As mentioned just, Charlie is assigned to con-
struct the prepared state with Bob’s help. Hence, after Alice’s publication, Bob is asked to
measure his two qubits 2 and 5 in the X bases {|+〉=(|0〉+|1〉)/

√
2,|−〉=(|0〉−|1〉)/

√
2},

respectively. After Bob’s measurements, in order to construct the original state, Charlie
cooperates with Bob to get his help. Provided Bob agrees to cooperate with Charlie, he
will communicate his measurement results to Charlie over a public channel (shown in
Fig. 1(b)). To be specifical, Bob sends two one-bit classical message to Charlie corre-
sponding to his measurement results. Incidentally, Bob and Charlie agree in advance
that, the one classical bit ”0” corresponds to the state |+〉, ”1” to |−〉, respectively.
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In the X bases, the collapsed state |Γ3〉2356 can be reexpressed as

|Γ3〉2356=
1

2
|+〉2|+〉5(βac|00〉36−αad|01〉36+δbc|10〉36−γbd|11〉36)

+
1

2
|+〉2|−〉5(βac|00〉36+αad|01〉36+δbc|10〉36+γbd|11〉36)

+
1

2
|−〉2|+〉5(βac|00〉36−αad|01〉36−δbc|10〉36+γbd|11〉36)

+
1

2
|−〉2|−〉5(βac|00〉36+αad|01〉36−δbc|10〉36−γbd|11〉36). (5)

Naturally, Bob’s measurement result should be one of the two states |+〉 and |−〉. With-
out loss of generality, suppose further Bob’s measurement results are |+〉2|−〉5. So Bob
sends ’0’ and ’1’ to Charlie. After receiving the classical bits, according to Eq. (5), Charlie
knows the state of his qubits (3, 6) is

|∆1〉36=
1

2

(

βac|00〉36+αad|01〉36+δbc|10〉36+γbd|11〉36

)

. (6)

At this stage, Charlie performs U1= I3⊗σx
6 on her qubits 3 and 6, which transforms |∆1〉36

into

|Θ1〉36= I3⊗σx
6 |∆1〉36=

1

2

(

adα|00〉36+acβ|01〉36+bdγ|10〉36+bcδ|11〉36

)

. (7)

After this, Charlie introduces two auxiliary qubits m and n in the initial state |00〉mn,
and then performs two controlled-not (CNOT) operations with qubits 3 and 6 as the
controlled qubits while the auxiliary qubits m and n as the target ones, respectively. These
two CNOT operations transform the state |Θ1〉36|00〉mn into the following form

|T〉36mn =
1

2
(αad|0000〉36mn+βac|0101〉36mn+γbd|1010〉36mn+δbc|1111〉36mn)

=
1

8
(|K1〉36|Q1〉mn+|K2〉36|Q2〉mn+|K3〉36|Q3〉mn+|K4〉36|Q4〉mn), (8)

where

|K1〉36=α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 ≡|V〉,
|Q1〉mn= ad|00〉mn+ac|01〉mn+bd|10〉mn+bc|11〉mn,

|K2〉36=(α|00〉36+β|01〉36−γ|10〉36−δ|11〉36,

|Q2〉mn= ad|00〉mn+ac|01〉mn−bd|10〉mn−bc|11〉mn,

|K3〉36=α|00〉36−β|01〉36+γ|10〉36−δ|11〉36,

|Q3〉mn= ad|00〉mn−ac|01〉mn+bd|10〉mn−bc|11〉mn,

|K4〉36=α|00〉36−β|01〉36−γ|10〉36+δ|11〉36,

|Q4〉mn= ad|00〉mn−ac|01〉mn−bd|10〉mn+bc|11〉mn.
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From Eq. (8), one can see that, Charlie can get the state |Ki〉36 (i = 1,2,3,4) provided
that the states |Qi〉mn (i = 1,2,3,4) are distinguished. Note that |K1〉 is exactly the pre-
pared state. Readily, the prepared state can be further retrieved from |K2〉, |K3〉 and |K4〉.
Unfortunately, the four states |Qi〉mn (i = 1,2,3,4) are not orthogonal in general. As a
consequence, they can not be differentiated deterministically by using a usual projective
measurement. Nevertheless, the discrimination can be achieved in a probabilistic man-
ner by making an optimal POVM measurement [43, 44] on the ancillary qubits m and n
as follows

P1=
1

x
|M1〉〈M1|, P2=

1

x
|M2〉〈M2|, P3=

1

x
|M3〉〈M3|,

P4=
1

x
|M4〉〈M4|, P5= I− 1

x

4

∑
i=1

|Mi〉〈Mi|. (9)

Here

|M1〉=
1√
ξ

( 1

ad
|00〉+ 1

ac
|01〉+ 1

bd
|10〉+ 1

bc
|11〉

)

mn
,

|M2〉=
1√
ξ

( 1

ad
|00〉+ 1

ac
|01〉− 1

bd
|10〉− 1

bc
|11〉

)

mn
,

|M3〉=
1√
ξ

( 1

ad
|00〉− 1

ac
|01〉+ 1

bd
|10〉− 1

bc
|11〉

)

mn
,

|M4〉=
1√
ξ

( 1

ad
|00〉− 1

ac
|01〉− 1

bd
|10〉+ 1

bc
|11〉

)

mn
,

ξ=
1

(ad)2
+

1

(ac)2
+

1

(bd)2
+

1

(bc)2
=

1

(1−b2)b2(1−d2)d2
,

I is an identity operator, x is a coefficient relating to a, b, c and d, which satisfies 1≤ x≤4
and should be able to assure P5 to be a positive operator. To exactly determine x, we can
rewrite the five elements P1, P2, P3 and P4 in the matrix form

P1=
1

xξ













1
(ad)2

1
acad

1
adbd

1
acbd

1
acad

1
(ac)2

1
adbc

1
acbc

1
adbd

1
adbc

1
(bd)2

1
bcbd

1
acbd

1
acbc

1
bdbc

1
(bc)2













, P2=
1

xξ













1
(ad)2

1
acad − 1

adbd − 1
acbd

1
acad

1
(ac)2 − 1

adbc − 1
acbc

− 1
adbd − 1

adbc
1

(bd)2
1

bcbd

− 1
acbd − 1

acbc
1

bdbc
1

(bc)2













,

P3=
1

xξ













1
(ad)2 − 1

acad
1

adbd − 1
acbd

− 1
acad

1
(ac)2 − 1

adbc
1

acbc
1

adbd − 1
adbc

1
(bd)2 − 1

bcbd

− 1
acbd

1
acbc − 1

bdbc
1

(bc)2













, P4=
1

xξ













1
(ad)2 − 1

acad − 1
adbd

1
acbd

− 1
acad

1
(ac)2

1
adbc − 1

acbc
1

adbd − 1
adbc − 1

(bd)2
1

bcbd

− 1
acbd

1
acbc

1
bdbc − 1

(bc)2













, (10)
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Moreover, P5=diag(A,B,C,D), where

A=1− 4

xξ(ad)2
, B=1− 4

xξ(ac)2
,

C=1− 4

xξ(bd)2
, D=1− 4

xξ(bc)2
.

Obviously, the coefficient x should be chosen such that all the diagonal elements A,B,C,D
are nonnegative. Charlie performs this POVM operation on his auxiliary qubits m and
n. Then in terms of the POVM’s value Charlie can positively conclude the state of qubits
m and n. To be specifical, the element P1’s value corresponds to the state |Q1〉mn, P2’s
value to |Q2〉mn, P3’s value to |Q3〉mn and P4’s value to |Q4〉mn, respectively. After the
measurement, Charlie can obtain the value of Pi (i=1,2,3,4) with probability p, where

p= 36mn〈T|Pi|T〉36mn = mn〈Qi|Pi|Qi〉mn/64=
1

4xξ
, (i=1,2,3,4). (11)

However, if Charlie gets P5’s value (such probability is 1− 1
xξ ), then he can not infer which

state the qubits m and n are in. Once Charlie determines the |Qi〉mn (i = 1,2,3,4), this
means he also knows the state |Ki〉36 (i=1,2,3,4) of her qubits 3 and 6. As a consequence,
Charlie can construct the prepared state |V〉 on his qubits 3 and 6 by performing an
appropriate unitary operation (see Fig. 1(b)). Explicitly, if Charlie knows the state of
his qubits (3, 6) is |K1〉36(|K2〉36,|K3〉36,|K4〉36), he retrieves the prepared state |V〉 in his
place by performing the unitary operation I (σ3

z I6, I3σ6
z ,σ3

z σ6
z ). So far we have depicted the

case that Bob measures |+〉2|−〉5. As mentioned before Bob may get |+〉2|+〉5, |−〉2|+〉5

or |−〉2|−〉5. In each latter case, the RSP process is trivially similar to that in the former
one. Alternatively, Charlie can also construct the prepared state on his qubits (3, 6) with
the same success probability. All possible cases are listed in Table 1 and here we do not
depict them anymore. Thus, the total success probability of the tripartite RSP scheme is

4×4×p=
4

xξ
=

4

x
×(1−b2)(1−d2)b2d2. (12)

3 The application of the symmetric RSP scheme to six special

ensembles of states

It is already shown that the tripartite symmetric RSP scheme of an arbitrary two-qubit
state (demonstrated in Fig. 1). In this section, its applications to some special ensem-
bles of states will be explored. As depicted previously, it is possible that Alice measures
λ1〉14,λ2〉14 or λ4〉14. According to Eq. (3), the collapsed state of the qubit pairs 2, 3 and 5,
6 will be |Γ1〉2356, |Γ2〉2356 and |Γ4〉2356, respectively. Since Bob and Charlie have no knowl-
edge of the four coefficients α,β, γ and δ, they can not convert the above three states into
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Table 1: Bob’s measurement results (BM) and classical bits (CB), the unitary operation (U) on qubits (3, 6)
before Charlie’s CNOT operations. The collapsed states (CS) of qubits (3, 6) after Charlie’s POVM operation
and the succedent unitary operation (U′) performed on qubits (3, 6). See text for more details.

BM CB U CS U′

|+〉2|+〉5 00 I3σz
6 σx

6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|+〉5 00 I3σz
6 σx

6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|+〉2|+〉5 00 I3σz
6 σx

6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|+〉2|+〉5 00 I3σz
6 σx

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|+〉2|−〉5 01 I3σx

6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|−〉5 01 I3σx
6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|+〉2|−〉5 01 I3σx
6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|+〉2|−〉5 01 I3σx

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|+〉5 10 σz

3 σz
6 σx

6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|+〉5 10 σz
3 σz

6 σx
6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|−〉2|+〉5 10 σz
3 σz

6 σx
6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|−〉2|+〉5 10 σz

3 σz
6 σx

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|−〉5 11 σz

3 σx
6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|−〉5 11 σz
3 σx

6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|−〉2|−〉5 11 σz
3 σx

6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|−〉2|−〉5 11 σz
3 σx

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6

the prepared state |V〉 by performing certain unitary operations. Apparently, the sym-
metric tripartite RSP fails in the latter three cases. Nonetheless, it should be noted that
the coefficients α,β,γ,δ are assumed to be complex in the beginning. Then it is intriguing
to ask whether the conversion can be unitarily realized if α,β,γ,δ are some special values
in the latter three cases. After our extensive investigations we get the positive answer
and find out six special ensembles, which are given as:

Ensemble I: α, β, γ and δ are real

In this case, if Alice’s measurement result is |λ1〉14, then according to the Eq. (3), the
joint state of qubits 2, 3, 5, 6 will be

|Γ′
1〉2356=αac|0000〉2356+βad|0011〉2356+γbc|1100〉2356+δbd|1111〉2356 . (13)

Similarly, Alice then assigns Bob to measure his two qubits 2 and 5 in the X bases pro-
posed above, respectively. In the X bases, the collapsed state |Γ1〉2356 can be reexpressed



360 Z. Y. Wang and X. Q. Yang / J. At. Mol. Sci. 1 (2010) 352-368

as

|Γ′
1〉2356=

1

2
|+〉2|+〉5(αac|00〉36+βad|01〉36+γbc|10〉36+δbd|11〉36)

+
1

2
|+〉2|−〉5(αac|00〉36−βad|01〉36+γbc|10〉36−δbd|11〉36)

+
1

2
|−〉2|+〉5(αac|00〉36+βad|01〉36−γbc|10〉36−δbd|11〉36)

+
1

2
|−〉2|−〉5(αac|00〉36−βad|01〉36−γbc|10〉36+δbd|11〉36). (14)

After his measurements, Bob communicates his measurement results to Charlie over a
public channel. Without loss of generality, suppose Bob measures |−〉2|+〉5. Then two
classical bits ’1’ and ’0’ are sent to Charlie. After receiving the classical bits, according to
Eq. (14), Charlie knows the state of his qubits (3, 6) is

|∆2〉36=
1

2

(

αac|00〉36+βad|01〉36−γbc|10〉36−δbd|11〉36

)

. (15)

In order to retrieve the prepared state, Charlie first performs U2=σz
3 ⊗ I6 on her qubits 3

and 6, which transforms |∆2〉36 into

|Θ2〉36=σz
3⊗ I6|∆2〉36=

1

2

(

acα|00〉36+adβ|01〉36+bcγ|10〉36+bdδ|11〉36

)

. (16)

Charlie then introduces two auxiliary qubits m and n which are in the state |00〉mn and
performs two controlled-not (CNOT) operations with qubits 3 and 6 as the controlled
qubits while the auxiliary qubits m and n as the target ones, respectively. The two CNOT
operations transform the state of qubits (3, 6, m, n) into the following form

|R〉36mn =
1

2

(

αac|0000〉36mn+βad|0101〉36mn+γbc|1010〉36mn+δbd|1111〉36mn

)

=
1

8

(

|K1〉36|H1〉mn+|K2〉36|H2〉mn+|K3〉36|H3〉mn+|K4〉36|H4〉mn

)

, (17)

where

|H1〉mn= ac|00〉mn+ad|01〉mn+bc|10〉mn+bd|11〉mn,

|H2〉mn= ac|00〉mn+ad|01〉mn−bc|10〉mn−bd|11〉mn,

|H3〉mn= ac|00〉mn−ad|01〉mn+bc|10〉mn−bd|11〉mn,

|H4〉mn= ac|00〉mn−ad|01〉mn−bc|10〉mn+bd|11〉mn.

Obviously, if the non-orthogonal states |Hi〉mn (i=1,2,3,4) can be distinguished, Charlie
will know exactly the state |Ki〉36 (i=1,2,3,4). To achieve the goal, Charlie then performs
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an optimal POVM measurement [43, 44] on the ancillary qubits m and n, which takes the
following matrix form

W1=
1

xξ













1
(ac)2

1
acad

1
acbc

1
acbd

1
acad

1
(ad)2

1
adbc

1
adbd

1
acbc

1
adbc

1
(bc)2

1
bcbd

1
acbd

1
adbd

1
bdbc

1
(bd)2













, W2=
1

xξ













1
(ac)2

1
acad − 1

acbc − 1
acbd

1
acad

1
(ad)2 − 1

adbc − 1
adbd

− 1
acbc − 1

adbc
1

(bc)2
1

bcbd

− 1
acbd − 1

adbd
1

bdbc
1

(bd)2













,

W3=
1

xξ













1
(ac)2 − 1

acad
1

acbc − 1
acbd

− 1
acad

1
(ad)2 − 1

adbc
1

adbd
1

acbc − 1
adbc

1
(bc)2 − 1

bcbd

− 1
acbd

1
adbd − 1

bdbc
1

(bd)2













, W4=
1

xξ













1
(ac)2 − 1

acad − 1
acbc

1
acbd

− 1
acad

1
(ad)2

1
adbc − 1

adbd
1

acbc − 1
adbc − 1

(bc)2
1

bcbd

− 1
acbd

1
adbd

1
bdbc − 1

(bd)2













,

W5=diag(B,A,D,C). (18)

After this, in terms of the POVM’s value Charlie can positively conclude the state of
qubits m and n. The probability in either case is also p. Similarly, if Charlie gets W5’s
value, then he can not infer which state the qubits m and n are in. Consequently, the
remote preparation fails in this case and such probability is also 1− 1

xξ . Once Charlie de-

termines the |Hi〉mn (i = 1,2,3,4), according to Eq. (17), he also knows the state of her
qubits 3 and 6. In this way as above, Charlie constructs the prepared state |V〉 by per-
forming an appropriate unitary operation on his qubits (3, 6) (see Table 2). Analogously,
Bob’s measurement result may be |+〉2|+〉5, |+〉2|−〉5 or |−〉2|−〉5. In each latter case, the
RSP process is trivially similar to that in the former one. In other words, Charlie can also
construct the prepared state on his qubits (3, 6) with the same success probability. We
summarize all possible cases in Table 2 and do not depict them hereafter.

If Alice’s measurement result is |λ2〉14 or |λ4〉14 , then according to Eq. (3), the
joint state of qubits 2, 3, 5, 6 will be ηαac|0000〉2356+ηβad|0011〉2356−η−1γbc|1100〉2356−
η−1δbd|1111〉2356 and |Γ4〉2356, respectively. Apparently, the two states can not be unitar-
ily converted into the prepared state |V〉 via Bob and Charlie’s collaboration. Thus, the
total success probability of the tripartite RSP scheme in Ensemble I is

2× 4

x
×(1−b2)(1−d2)b2d2=

8

x
×(1−b2)(1−d2)b2d2. (19)

Ensemble II: α, β, γ and δ satisfy η=1

In this case, if Alice’s measurement result is |λ4〉14, then according to the Eq. (3), the
joint state of qubits 2, 3, 5, 6 will be

|Γ′
4〉2356=βac|0000〉2356−αad|0011〉2356−δbc|1100〉2356+γbd|1111〉2356

=σz
3 |Γ3〉2356. (20)
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Table 2: Same as Table 1.

BM CB U CS U′

|+〉2|+〉5 00 I3 I6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|+〉5 00 I3 I6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|+〉2|+〉5 00 I3 I6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|+〉2|+〉5 00 I3 I6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|+〉2|−〉5 01 I3σz

6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|−〉5 01 I3σz
6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|+〉2|−〉5 01 I3σz
6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|+〉2|−〉5 01 I3σz

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|+〉5 10 σz

3 I6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|+〉5 10 σz
3 I6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|−〉2|+〉5 10 σz
3 I6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|−〉2|+〉5 10 σz

3 I6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|−〉5 11 σz

3 σz
6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|−〉5 11 σz
3 σz

6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|−〉2|−〉5 11 σz
3 σz

6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|−〉2|−〉5 11 σz
3 σz

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6

According to the above equation, it can be concluded directly that while Alice gets |λ4〉14,
the whole process of realizing the tripartite RSP is nearly the same as the case that Alice’s
measurement result is |λ3〉14. In other words, Charlie can also retrieve the prepared state
with the same probability in Ensemble II while Alice’s measurement result is |λ4〉14. The
explicit correspondence relations among the measurement results, the unitary operations
and the collapsed state are listed in the Table 3.

If Alice’s measurement result is |λ1〉14 or |λ2〉14 , then according to the Eq. (3), the
joint state of qubits 2, 3, 5, 6 will be |Γ1〉2356 and |Γ′

2〉2356=α∗ac|0000〉2356+β∗ad|0011〉2356−
γ∗bc|1100〉2356−δ∗bd|1111〉2356 , respectively. Apparently, the two states can not be unitar-
ily converted into the prepared state |V〉 via Bob and Charlie’s collaboration. Conclu-
sively, the total success probability of the tripartite RSP scheme in Ensemble II is also

2× 4

x
×(1−b2)(1−d2)b2d2=

8

x
×(1−b2)(1−d2)b2d2. (21)

Ensemble III: α,β,γ,δ are real and satisfy η=1

In this case, if Alice measures |λ1〉14 or |λ4〉14, then according to the Eq. (3), the joint
state of qubits 2, 3, 5, 6 will be|Γ′

1〉2356 and |Γ′
4〉2356, respectively. In these two cases the

whole process of realizing the tripartite RSP is the same as that proposed in Ensemble

I and Ensemble II, respectively. While Alice measures |λ2〉14, then according to the Eq.
(3), the joint state of qubits 2, 3, 5, 6 will be |Γ′

2〉2356=σz
3 |Γ′

1〉2356. In like manner, the whole
process of realizing the tripartite RSP is nearly the same as that proposed in Ensemble

I. We also give out the the explicit correspondence relations among the measurement re-
sults, the unitary operations and the collapsed state in Table 4 when Alice’s measurement
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Table 3: Same as Table 1.

BM CB U CS U′

|+〉2|+〉5 00 σz
3 σz

6 σx
6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|+〉5 00 σz
3 σz

6 σx
6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|+〉2|+〉5 00 σz
3 σz

6 σx
6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|+〉2|+〉5 00 σz

3 σz
6 σx

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|+〉2|−〉5 01 σz

3 σx
6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|−〉5 01 σz
3 σx

6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|+〉2|−〉5 01 σz
3 σx

6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|+〉2|−〉5 01 σz
3 σx

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|+〉5 10 I3σz

6 σx
6 σx

6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|+〉5 10 I3σz
6 σx

6 σx
6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|−〉2|+〉5 10 I3σz
6 σx

6 σx
6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|−〉2|+〉5 10 I3σz

6 σx
6 σx

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|−〉5 11 I3σx

6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|−〉5 11 I3σx
6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|−〉2|−〉5 11 I3σx
6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|−〉2|−〉5 11 I3σx

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6

Table 4: Same as Table 1.

BM CB U CS U′

|+〉2|+〉5 00 σz
3 I6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|+〉5 00 σz
3 I6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|+〉2|+〉5 00 σz
3 I6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|+〉2|+〉5 00 σz

3 I6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|+〉2|−〉5 01 σz

3 σz
6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|−〉5 01 σz
3 σz

6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|+〉2|−〉5 01 σz
3 σz

6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|+〉2|−〉5 01 σz
3 σz

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|+〉5 10 I3 I6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|+〉5 10 I3 I6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|−〉2|+〉5 10 I3 I6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|−〉2|+〉5 10 I3 I6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|−〉5 11 I3σz

6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|−〉5 11 I3σz
6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|−〉2|−〉5 11 I3σz
6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|−〉2|−〉5 11 I3σz

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6

result is |λ2〉14 in this ensemble. As a result, Charlie can construct the prepared state |V〉
on his qubits (3, 6) in Ensemble IV, and the total success probability of the tripartite RSP
scheme is

4× 4

x
×(1−b2)(1−d2)b2d2 =

16

x
×(1−b2)(1−d2)b2d2. (22)
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Ensemble IV: |α|= |β|= |γ|= |δ|= 1
2 and αγ=βδ

In terms of |α|=|β|=|γ|=|δ|= 1
2 and αγ=βδ, it can be easily obtained η=1, (α∗)−1=4α,

(β∗)−1=4β, (γ∗)−1=4γ, (δ∗)−1=4δ and α∗γ∗=β∗δ∗. In this case, if Alice measures |λ4〉14,
then the four qubits 2, 3, 5 and 6 are left in |Γ′

4〉2356. Applying the same analysis method
proposed in Ensemble II, it can be known Charlie can construct the prepared state |V〉
with the probability 16p via Bob’s help.

If Alice gets |λ1〉14 or |λ2〉14, then the four qubits 2, 3, 5 and 6 are left in |Γ1〉2356 and
|Γ′

2〉2356 =σz
3 |Γ1〉2356. Evidently, the treatment of preparation in each case is very similar.

As enumerations, the case that Alice measures |λ2〉14 is taken to show the whole process
of preparation hereafter. In this case, the joint state of the four qubits 2, 3, 5 and 6 is

|Γ′
2〉2356=α∗ac|0000〉2356+β∗ad|0011〉2356−γ∗bc|1100〉2356−δ∗bd|1111〉2356

=β∗δ∗
( α∗

β∗δ∗
ac|0000〉2356+

1

δ∗
ad|0011〉2356−

γ∗

β∗δ∗
bc|1100〉2356−

1

β∗ bd|1111〉2356

)

=β∗δ∗
( 1

γ∗ ac|0000〉2356+
1

δ∗
ad|0011〉2356−

1

α∗ bc|1100〉2356−
1

β∗ bd|1111〉2356

)

=4β∗δ∗
(

γac|0000〉2356+δad|0011〉2356−αbc|1100〉2356−βbd|1111〉2356

)

. (23)

To construct the prepared state in Charlie’s place, Bob is asked to measure the qubits (2,
5) in the X bases and then tell Charlie his measurement results via a classical channel. In
the X bases, |Γ′

2〉2356 can be reexpressed as

|Γ′
2〉2356=2β∗δ∗|+〉2|+〉5(γac|00〉36+δad|01〉36−αbc|10〉36−βbd|11〉36)

+2β∗δ∗|+〉2|−〉5(γac|00〉36−δad|01〉36−αbc|10〉36+βbd|11〉36)

+2β∗δ∗|−〉2|+〉5(γac|00〉36+δad|01〉36+αbc|10〉36+βbd|11〉36)

+2β∗δ∗|−〉2|−〉5(γac|00〉36−δad|01〉36+αbc|10〉36−βbd|11〉36). (24)

Without loss of generality, suppose Bob measures |+〉2|+〉5. Then two classical bits ’0’
and ’0’ are broadcasted. According to the above equation, with Bob’s classical bits Charlie
knows his two qubits (3, 6) are left in the following state

|∆3〉36=2β∗δ∗
(

γac|00〉36+δad|01〉36−αbc|10〉36−βbd|11〉36

)

. (25)

Very similarly, to retrieve the prepared state, Charlie first performs the unitary oper-
ation U3=σx

3 σz
3 I6 on his qubits (3, 6), which transforms the state

|Θ3〉36=σx
3 σz

3 I6|∆3〉36=2β∗δ∗
(

αbc|00〉36+βbd|01〉36+γac|10〉36+δad|11〉36

)

. (26)

Charlie then introduces two auxiliary qubits m and n in the state |00〉mn, and then per-
forms two controlled-not (CNOT) gate operations with the qubits 3 and 6 as the con-
trolled qubits while the auxiliary qubits m and n as the target ones, respectively. The



Z. Y. Wang and X. Q. Yang / J. At. Mol. Sci. 1 (2010) 352-368 365

CNOT operations transform the state of the qubits (3, 6, m, n) into

|G〉36mn =2β∗δ∗(αbc|0000〉36mn+βbd|0101〉36mn+γac|1010〉36mn+δad|1111〉36mn)

=
1

2
β∗δ∗(|K1〉36|S1〉mn+|K2〉36|S2〉mn+|K3〉36|S3〉mn+|K4〉36|S4〉mn), (27)

where

|S1〉mn=bc|00〉mn+bd|01〉mn+ac|10〉mn+ad|11〉mn ,

|S2〉mn=bc|00〉mn+bd|01〉mn−ac|10〉mn−ad|11〉mn ,

|S3〉mn=bc|00〉mn−bd|01〉mn+ac|10〉mn−ad|11〉mn ,

|S4〉mn=bc|00〉mn−bd|01〉mn−ac|10〉mn+ad|11〉mn .

From Eq. (27), one can see if |Si〉mn, (i = 1,2,3,4) are distinguished, the state |V〉 can
be constructed via an appropriate unitary operation on qubits (3, 6). Likewise, the dis-
crimination of the states |Si〉mn, (i=1,2,3,4) can be achieved in a probabilistic manner by
making an optimal POVM measurement [43, 44]. Forasmuch, Charlie then performs an
optimal POVM measurement on the auxiliary qubits m and n, which takes the following
matrix form

Q1=
1

xξ













1
(bc)2

1
bcbd

1
acbc

1
acbd

1
bcbd

1
(bd)2

1
adbc

1
adbd

1
acbc

1
adbc

1
(ac)2

1
acad

1
acbd

1
adbd

1
adac

1
(ad)2













, Q2=
1

xξ













1
(bc)2

1
bcbd − 1

acbc − 1
acbd

1
bcbd

1
(bd)2 − 1

adbc − 1
adbd

− 1
acbc − 1

adbc
1

(ac)2
1

acad

− 1
acbd − 1

adbd
1

adac
1

(ad)2













,

Q3=
1

xξ













1
(bc)2 − 1

bcbd
1

acbc − 1
acbd

− 1
bcbd

1
(bd)2 − 1

adbc
1

adbd
1

acbc − 1
adbc

1
(ac)2 − 1

acad

− 1
acbd

1
adbd − 1

adac
1

(ad)2













, Q4=
1

xξ













1
(bc)2 − 1

bcbd − 1
acbc

1
acbd

− 1
bcbd

1
(bd)2

1
adbc − 1

adbd
1

acbc − 1
adbc − 1

(ac)2
1

acad

− 1
acbd

1
adbd

1
adac − 1

(ad)2













,

Q5=diag(D,C,B,A). (28)

After the manipulation, in terms of each POVM’s value Charlie concludes the corre-
sponding state of qubits m and n with the probability p. Further, he knows the state
|Ki〉36 (i = 1,2,3,4) of her qubits 3 and 6. Then Charlie constructs the prepared state by
performing an appropriate unitary operation on his qubits (3, 6) (see Table 5). Similarly,
Charlie gets Q5’s value with the probability 1− 1

xξ . It means he can not infer which state
the qubits m and n are in. Then RSP protocol fails in this case. As same as that pro-
posed before Bob’s measurement results may be |+〉2|−〉5, |−〉2|+〉5 or |−〉2|−〉5. In each
latter case, the RSP process is trivially similar to that in the former one. Alternatively,
Charlie can also construct the prepared state on his qubits (3, 6) with the same success
probability. We summarize all possible cases in Table 5 and do not depict them any-
more hereafter. Hence, the success probability of the RSP protocol in Ensemble IV is also
16
x ×(1−b2)(1−d2)b2d2.
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Table 5: Same as Table 1.

BM CB U CS U′

|+〉2|+〉5 00 σx
3 σz

3 I6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|+〉5 00 σx
3 σz

3 I6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|+〉2|+〉5 00 σx
3 σz

3 I6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|+〉2|+〉5 00 σx
3 σz

3 I6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|+〉2|−〉5 01 σx

3 σz
3 σz

6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|+〉2|−〉5 01 σx
3 σz

3 σz
6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|+〉2|−〉5 01 σx
3 σz

3 σz
6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|+〉2|−〉5 01 σx

3 σz
3 σz

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|+〉5 10 σx

3 I6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|+〉5 10 σx
3 I6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz

3 I6

|−〉2|+〉5 10 σx
3 I6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz

6
|−〉2|+〉5 10 σx

3 I6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6
|−〉2|−〉5 11 σx

3 σz
6 α|00〉36+β|01〉36+γ|10〉36+δ|11〉36 I3 I6

|−〉2|−〉5 11 σx
3 σz

6 α|00〉36+β|01〉36−γ|10〉36−δ|11〉36 σz
3 I6

|−〉2|−〉5 11 σx
3 σz

6 α|00〉36−β|01〉36+γ|10〉36−δ|11〉36 I3σz
6

|−〉2|−〉5 11 σx
3 σz

6 α|00〉36−β|01〉36−γ|10〉36+δ|11〉36 σz
3 σz

6

Ensemble V: |α|= |β|= |γ|= |δ|= 1
2 and αβ=δγ; Ensemble VI: |α|= |β|= |γ|= |δ|= 1

2
and αδ=βγ

In both cases, it can be noted η=1. So applying the same analysis method proposed
in Ensemble II, the two-qubit RSP protocol can be realized when Alice measures |λ4〉14.
While Alice’s measurement result is |λ1〉14 or |λ2〉14, applying the very similar method
proposed in Ensemble IV, the prepared state |V〉 can also be constructed in Charlie’s
place with the same success probability provided that the prepared state belongs to En-

semble V or Ensemble VI. We will not recount the whole process of preparation in each
case because of the very similar treatment. Accordingly, both the success probabilities in
these two cases are 16

x ×(1−b2)(1−d2)b2d2.

4 Discussion and conclusion

In summary, one can see, in general the tripartite RSP can be fulfilled in one ministrant’s
place with the other’s help. The total success probability is 4

x×(1−b2)(1−d2)b2d2, which
is only determined by the smaller coefficients of the two non-maximally entangled states
taken as the quantum channel. Nonetheless, if the state to be prepared is chosen from
six special ensembles proposed above, then the success probability can be enhanced to
8
x ×(1−b2)(1−d2)b2d2 (Ensemble I-II) or even to 16

x ×(1−b2)(1−d2)b2d2 (Ensemble III-

VI). The additional cost is that some more classical bits should be consume by Alice to
show which ensemble the prepared state belongs to.

To summarize, we have explicitly presented a symmetric tripartite scheme for re-
motely preparing an arbitrary two-qubit state. In the scheme the quantum channel em-



Z. Y. Wang and X. Q. Yang / J. At. Mol. Sci. 1 (2010) 352-368 367

ployed by the involved parties is two non-maximally entangled three-qubit states. To
achieve the state preparation, the preparer Alice performs a two-qubit projective mea-
surement and then publishes her measurement result via a classical channel. Due to the
symmetry, either Bob or Charlie can construct the prepared state. Once one person is
assigned to retrieve the prepared state, another one acts as an assistant. Then by collabo-
ration, the tripartite RSP protocol can be realized with a certain probability by incorporat-
ing two auxiliary qubits and executing appropriate operations including a proper POVM.
Furthermore, we have also explored its applications to six special ensembles of states in
detail. Our extensive investigations show that the two-qubit RSP can be achieved with
higher probability provided that the prepared state belongs to the six special ensembles.
Incidentally, it is easy and forthright to generalize our present tripartite RSP scheme to a
multiparty case.
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