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Abstract. Wigner function is a fundamental method to study the connection between
quantum and classical system. Since negative value can be accepted by Wigner func-
tion even from a positive initial condition, they are various issues existing in corre-
sponding interpretation as well as the development of numerical methods. We present
the entangled trajectories based on the Wigner distributions with negative values.
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1 Introduction

Wigner function can reveal the deep insights between quantum system and classical
world. It has the similar form compared with classical probability distribution which
can be integrated over the whole phase space to obtain unit. However, negative values of
Wigner function indicate that such a function can only be regarded as quasi-probability
distribution. Such a characteristic cause many issues when we want to propagate Wigner
function in a general form. Meanwhile, negative values, illustrated in Fig. 1, for instance,
also make the distinctions between quantum and classical trajectories in the phase space.
We choose a special case to propagate Wigner function precisely by eigenvalues and then
analysis the natures of the entangled trajectories in detail.

2 Wigner function and Liouville equation

Here we only consider one dimensional case since multi-dimensional can be easily ex-
panded. As a solution from time-dependent Schrödinger equation, Ψ(x) can be used to
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construct Wigner function as follows:

ρw(q,p;t)=
1

2πh̄

∫

Ψ∗(q+x/2,t)Ψ(q−x/2,t)e(ipx/h̄)dx. (1)

Combined with the time-dependent Schrödinger equation, we can obtain the quantum
Liouville equation

∂ρw

∂t
=− p

m

∂ρw

∂q
+
∫

J(q,ξ−p)ρw(q,ξ)dξ, (2)

where

J(q,ξ)=
i

2πh̄2

∫ ∞

−∞
[V(q+y/2)−V(q−y/2)]e(−izξ/h̄)dz. (3)

Similar as a probability distribution, we can impose the continuity condition as

∂ρw

∂t
=−~∇·~j, (4)

where~j=(jq, jp) is the current vector in phase space and ~∇=(∂/∂q,∂/∂p)is the gradient
operator. The current is as follows

~∇·~j= ∂

∂q
(

p

m
ρw)−

∫ ∞

−∞
J(q,ξ−p)ρw(q,ξ,t)dξ, (5)

with

jq =
p

m
ρw, (6)

jp=−
∫ ∞

−∞
Θ(q,ξ−p)ρw(q,ξ,t)dξ, (7)

and

Θ(q,η)=
1

2πh̄

∫ ∞

−∞
[V(q+y/2)−V(q−y/2)]

e−iıηy/h̄

y
dy. (8)

Since we can link the current density to density as well as velocity field in phase space by
~j=ρw~v, we can finally deduce the equation of motion for the entangled trajectories as [1]

q̇=
p

m
, (9)

ṗ=
1

ρw

∫ ∞

−∞
Θ(q,p−ξ)ρw(q,ξ)dξ.

We can use the above formula to realize the time evolution of the entangled trajectories.
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3 Wigner function evolution by eigenvalue

We study a special case where the particle is experiencing a one-dimensional attractive

potential, V=−e−x2/2σ2
. Thus the Schrödinger equation becomes

HΨ(x)=

{

−1

2

d2

dx2
−ex2/2σ2

}

Ψ(x). (10)

Here we set h̄=1. Then we can expand the wave function by a set of Gaussian functions
with different widths, which means

Ψ(x)=
nmax

∑
n=1

anψn(s), (11)

where the basis function is

ψn(x)=
e−x2/2β2

n

(
√

πβn)1/2
, (12)

and βn =
√

nβ0. Such method used to propagate Wigner function have been discussed
by Wong [2] and here we only give main results without deduction. Notice that the
normalized basis is not orthogonal, then we can obtain

Bnm= 〈n|m〉=
√

2βnβm

β2
n+β2

m

, (13)

as the matrix element of overlap matrix B. Based on properties of Gaussian function, we
further construct eigenvalue equation as

(T+V)a=EBa, (14)

where T is the matrix for kinetic term, with elements

Tnm=

〈

n

∣

∣

∣

∣

− 1

2

d2

dx2

∣

∣

∣

∣

m

〉

=
1

2

√

2βnβm

β2
n+β2

m

1

β2
n+β2

m

. (15)

V is the matrix for potential, then

Vnm= 〈n|−e−x2/2σ2 |m〉=−
√

2βnβm

β2
n+β2

m

σ2

β2
nm+σ2

, (16)

where β2
nm = β2

n β2
m

β2
n+β2

m
. Then the eigenvalues can ba obtained by solving Eq. 14 by invert

matrix B to the left side. Our initial state can be set as

Φ(x,t=0)=∑
λ

bλΨλ(x). (17)
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Figure 1: Initial Wigner function.

where bλ is amplitudes of eigenstates Ψλ(x), which need to be normalized by
∫

dx|Ψλ(x)|2=
1. Time dependent wave function turns to be

Φ(x,t=0)=∑
λ

bλe−iEλtΨλ(x). (18)

According to the definition and after doing several integral, we can construct Wigner
function as

ρw(q,p,t)=
1

2π ∑
nm

cn(t)c
∗
m(t)ρ

w
nm(xp), (19)

where

cn(t)=∑
λ

bλeiEλtaλn, (20)

ρw
nm(xp)=2

√

2βnβm

β2
n+β2

m

e−νnm , (21)

νnm =
(β2

n+β2
m)(x2−µ2

nm/4)

2β2
nβ2

m

, (22)

µnm =4
β2

nβ2
m

β2
n+β2

m

[

x

(

1

2β2
n

− 1

2β2
m

)

+ip

]

. (23)

Then using Eq. 19, we can obtain Wigner function at any time. In our calculation, we set
σ=3, nmax=50, β0=1, bλ=1/

√
2, and pick two lowest real eigenvalues, E0=−0.844 and

E1=−0.3147, respectively.

4 Results and discussion

By the accurate time evolution of Wigner function, we can study the behavior of quantum
trajectories based on Eq. 9, starting from the initial condition selected in the phase space.
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Figure 2: Wigner function starts from positive value.
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Figure 3: Wigner function starts from negative value.

Energy of out initial state is (E0+E1)/
√

2=0.8193, which should also correspond to the
initial energy of our classical system. We pick 4 different initial points sharing the same
energy in the phase space, locating at (1.9,0.1), (1,0.67), (1.5,0.45), (−1.8,0.24) as (q0,p0).
Wigner functions ρw(q(t),p(t)) are illustrated correspondingly. Fig. 2 starts from a point
where Wigner function is positive and the first stage of the quantum trajectories matches
the classical one pretty well before Wigner function turns to zeros. A fluctuating behavior
can be observed in both graphs when Wigner function is approximately zero, which will
cause singularity according to Eq. 9. Afterwards quantum trajectory deviates from the
classical one. Similar phenomena occur in Fig. 3 and even more obvious in Fig. 4 with a
zero Wigner function at the beginning. Fig. 5 give us a chance to witness the fact that a
stronger quantum effect can separate quantum and classical trajectories even the Winer
function is far from zero point. The wave packet starts from q0=−1.8 and move towards
the center of potential, which means quantum effect plays an increasingly important role.
When q>−1.72, quantum trajectory starts deviating from the classical one remarkably.
Such effect can be explained by the series expansion of Eq. 9,

ṗ=−V ′(q)+
h̄2

24
V ′′′(q)

1

ρw

∂2ρw

∂p2
+··· (24)
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Figure 4: Wigner function starts from zero.
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Figure 5: Quantum effect causes separation.

The first term on the right side is as same as the term in classical equation of motion.
However, quantum effect accounts for higher order terms which are also the explanation
for our results in Fig. 5.

5 Conclusion

We used eigenvalue method to propagate Wigner function accurately and then we use
equation of motion, deducted from quantum Liouville equation, to study quantum trajec-
tories in the phase space. Based on the analysis above, we figure out that when quantum
effect is not strong and Wigner function is far from zero, quantum trajectory will be sim-
ilar to the classical one. However, quantum trajectory will definitely fluctuate or even
jump when the corresponding Wigner function approaches zero. Thus the property that
Wigner function can have negative values must play a profound role in the gap between
quantum and classical world since zero points can not be avoided during the evolution.

There are still various interesting problems with respect to Wigner function and quan-
tum trajectories. The most significant one should be developing a general numerical
technique to realize the time evolution of Wigner function. There are several attempts,
for instance, ETMD [1] can be effective when we tackle certain cases even though the neg-
ative values have to be abandoned, which means deep and fascinating physics insights
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might not be captured. Further study will also cover realms concerning entanglement
entropy [3] formed by Wigner function, and even we can study entanglements between
distinct quantum trajectories by the definition of trajectory’s entropy.
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