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Abstract. The aim of this paper is to study the convergence analysis of three

low order Crouzeix-Raviart type nonconforming rectangular finite elements to

Maxwell’s equations, on a mixed finite element scheme and a finite element

scheme, respectively. The error estimates are obtained for one of above elements

with regular meshes and the other two under anisotropic meshes, which are as

same as those in the previous literature for conforming elements under regular

meshes.
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1. Introduction

It is well-known that Maxwell’s equations are very important equations in the
electric-magnetic fields and are usually solved with finite element methods(see [1-
8]). P.Monk [2-4] described a mixed finite element scheme and a finite element
scheme, respectively, and provided convergence and superconvergence analysis for
smooth solutions for three-dimensional Maxwell’s equations. Lin and Yan [5] im-
proved Monk’s results by means of the technique of integral identity. The simi-
lar results were proved for two-dimensional Maxwell’s equations by Lin [6,8] and
Brandts [7].

However, there are still some defects in the work mentioned above. On the
one hand, all of previous analysis only concentrated on conforming finite elements,
for examples, ECHL element, MECHL element, Nédélec’s element [1] and so on.
Whether those results hold for nonconforming ones or not is still an open problem.
On the other hand, to our best knowledge, almost all the convergence analysis in the
literature on this aspect are based on the classical regularity assumption or quasi-
uniform assumption on the meshes [9], i.e., hK

ρK
≤ C or h

hmin
≤ C, ∀K ∈ Th, where

Th is a family of meshes of Ω, hK and ρK are the diameter of K and the biggest
circle contained in the element K, respectively, h = max

K∈Th

hK , hmin = min
K∈Th

hK and

C is a positive constant which is independent of hK and the function considered.
However, in many cases, the above regular assumptions on meshes are great deficient
in applications of finite element methods. For example, the solutions of some elliptic
problems may have anisotropic behavior in parts of the defined domain. This
means that the solution only varies significantly in certain directions. It is an
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obvious idea to reflect this anisotropy in the discretion by using anisotropic meshes
with a finer mesh size in the direction of the rapid variation of the solution and
a coarser mesh size in the perpendicular direction. Besides, some problems may
be defined in narrow domain, for example, in modeling a gap between rotor and
stator in an electrical machine, if we employ the regular partition of the domain,
the cost of calculation will be very high. Therefore, to employ anisotropic meshes
with fewer degrees of freedom is a better choice to overcome these difficulties.
However, anisotropic elements K are characterized by hK

ρK
→ ∞, where the limit

can be considered as h →∞. In this case, the Bramble-Hilbert Lemma can not be
used directly in the estimate of the interpolation error, and the consistency error
estimate. The key of the nonconforming finite element analysis, will become very
difficult to be dealt with, because there will appear a factor |F |

|K| which tends to ∞
when the estimate is made on the longer sides F of the element K, which means that
the traditional finite element analysis techniques are no longer valid. Zenisek [10,11]
and Apel [12,13] published a series of papers concentrating on the interpolation
error estimates of some Lagrange type conforming elements, and [13] represented
an anisotropic interpolation theorem, but it is very difficult to be verified for some
elements. Chen and Shi [14] generalized Apel’s results and studied many problems,
including anisotropic nonconforming elements, and obtained a lot of valuable results
[14-19]. Although anisotropic finite element methods have such obvious advantages
over conventional ones, it seems that there are few studies focusing on Maxwell’s
equations of the finite element formulations, especially the nonconforming ones.

In this paper, we will apply three Crouzeix-Raviart type nonconforming finite
elements (one is the so-called five-node nonconforming element[15,20], another is
similar to the so-called P1 nonconforming finite element discussed in [21] and the
last one is a new element constructed in this paper) to Maxwell’s equations on a
mixed finite element scheme and a finite element scheme, respectively. The plan
of this paper as follows: in section 2, we will give the constructions of the three
Crouzeix-Raviart type nonconforming finite elements, analyze the mixed finite el-
ement scheme and the finite element scheme for the time-dependent Maxwell’s
system in two dimensions and prove some important Lemmas. In section 3, the
so-called five-node nonconforming element is applied to Maxwell’s equations on the
finite element scheme, meanwhile, the other two elements are applied to approx-
imating Maxwell’s equations on the mixed finite element scheme and the finite
element scheme, respectively. Based on some novel approaches and elements’ prop-
erties, the convergence analysis and error estimates are obtained for two elements
under anisotropic meshes and the other one with regular meshes, respectively.

2. Constructions of nonconforming finite element schemes

Let K̂ = [−1, 1]×[−1, 1] be the reference element on ξ−η plane, the four vertices
of K̂ are d̂1 = (−1,−1), d̂2 = (1,−1), d̂3 = (1, 1) and d̂4 = (−1, 1), the four edges
of K̂ are l̂1 = d̂1d̂2, l̂2 = d̂2d̂3, l̂3 = d̂3d̂4 and l̂4 = d̂4d̂1.
The shape function spaces and the interpolation operators of the finite elements on
K̂ are defined by
(2.1)

P̂ 1 = span{1, ξ, η, ϕ(ξ), ϕ(η)}, 1
|K̂|

∫

K̂

(v̂ − Î1v̂)dξdη = 0,
1

|l̂k|

∫

l̂k

(v̂ − Î1v̂)dŝ = 0,

(2.2) P̂ 2 = span{1, ξ, η}, 1

|l̂k|

∫

l̂k

Î2v̂dŝ =
1
2
(v̂(d̂k) + v̂(d̂k+1)),
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(2.3) P̂ 3 = span{1, ξ, η, ξ2}, P̂ 4 = span{1, ξ, η, η2}, 1

|l̂k|

∫

l̂k

(v̂ − Îj v̂)dŝ = 0,

where ϕ(ξ) =
1
2
(3ξ2 − 1), ϕ(η) =

1
2
(3η2 − 1), k = 1, 2, 3, 4, d̂5 = d̂1, j = 3, 4.

It can be easily checked that interpolations defined above are well-posed. If we

denote v̂k =
1

|l̂k|

∫

l̂k

v̂dŝ, v̂5 =
1
|K̂|

∫

K̂

v̂dξdη, v̂k+5 = v̂(d̂k) (k = 1, 2, 3, 4), the

interpolation functions Îiv̂(i = 1, 2, 3, 4) can be expressed as
(2.4)

Î1v̂ = v̂5 +
1
2
(v̂2− v̂4)ξ+

1
2
(v̂3− v̂1)η+

1
2
(v̂2 + v̂4−2v̂5)ϕ(ξ)+

1
2
(v̂3 + v̂1−2v̂5)ϕ(η),

(2.5) Î2v̂ =
1
4
(v̂6 + v̂7 + v̂8 + v̂9) +

1
4
(v̂7 + v̂8− v̂6− v̂9)ξ +

1
4
(v̂8 + v̂9− v̂6− v̂7)η,

(2.6)

Î3v̂ =
3(v̂1 + v̂3)− (v̂2 + v̂4)

4
+

1
2
(v̂2− v̂4)ξ+

1
2
(v̂3− v̂1)η+

3
4
(−v̂1+ v̂2− v̂3+ v̂4)ξ2,

(2.7)

Î4v̂ =
3(v̂2 + v̂4)− (v̂1 + v̂3)

4
+

1
2
(v̂2− v̂4)ξ +

1
2
(v̂3− v̂1)η+

3
4
(v̂1− v̂2 + v̂3− v̂4)η2,

respectively.
Lemma 2.1. The interpolation operators Îi(i = 1, 2) defined by (2.4) and (2.5)
have the anisotropic interpolation property, i.e., ∀v̂ ∈ H2(K̂), α = (α1, α2) with
|α| = 1, there hold

(2.8) ‖D̂α(v̂ − Îiv̂)‖0,K̂ ≤ C|D̂αv̂|1,K̂ , i = 1, 2.

Here and later, the positive constant C will be used as a generic constant, which is
independent of hK and hK

ρK
.

Proof. When α = (1, 0)

D̂αÎ1v̂ =
∂Î1v̂

∂ξ
=

1
2
(v̂2 − v̂4) +

1
2
(v̂2 + v̂4 − 2v̂5)ϕ′(ξ),

D̂αÎ2v̂ =
∂Î2v̂

∂ξ
=

1
4
(v̂7 + v̂8 − v̂6 − v̂9).

Note that dimD̂αP̂ 1 = 2, D̂αP̂ 1 = span{1, ϕ′(ξ)} and dimD̂αP̂ 2 = 1. Let

D̂αÎ1v̂ = β1 + β2ϕ
′(ξ), D̂αÎ2v̂ = β3,

where

β1 =
1
2
(v̂2 − v̂4) =

1
4
(
∫

l̂2

v̂(1, η)dη −
∫

l̂4

v̂(−1, η)dη) =
1
|K̂|

∫

K̂

∂v̂

∂ξ
dξdη,

β2 =
1
2
(v̂2 + v̂4 − 2v̂5) =

1
4
(
∫

l̂2

v̂(1, η)dη +
∫

l̂4

v̂(−1, η)dη −
∫

K̂

v̂(ξ, η)dξdη)

=
1
|K̂|

∫

K̂

ξ
∂v̂

∂ξ
dξdη,

β3 =
1
4
(v̂7 + v̂8 − v̂6 − v̂9) =

1
4
(
∫

l̂1

∂v̂(ξ,−1)
∂ξ

dξ +
∫

l̂3

∂v̂(ξ, 1)
∂ξ

dξ).

∀ŵ ∈ H1(K̂), let

F1(ŵ) =
1
|K̂|

∫

K̂

ŵdξdη, F2(ŵ) =
1
|K̂|

∫

K̂

ξŵdξdη,
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F3(ŵ) =
1
4
(
∫

l̂1

ŵdξ +
∫

l̂3

ŵdξ).

Apparently Fj ∈ (H1(K̂))
′
, j = 1, 2, 3. Employing the basic anisotropic interpola-

tion theorem [14], there yields

‖D̂α(v̂ − Î1v̂)‖0,K̂ ≤ C|D̂αv̂|1,K̂ .

Similarly, we can prove that (2.8) is valid for α = (0, 1) and i = 2. This completes
the proof.

Let Ω ⊂ R2 be a polygon with boundaries parallel to the axes, Th
i (i = 1, 2, 3) be

an axis parallel rectangular meshes of Ω, where Th
1 and Th

2 don’t need to satisfy the
regularity assumption or quasi-uniform assumption, but Th

3 is required to satisfy
the above regular assumption.
∀K ∈ Th

i (i = 1, 2, 3), let

K = [xK − hx, xK + hx]× [yK − hy, yK + hy], hK = max{hx, hy}, hi = max
K∈T h

i

hK .

Define the affine mapping FK : K̂ −→ K as follows:

(2.9)
{

x = xK + hxξ,
y = yK + hyη.

Then the associated finite element spaces V h
i (i = 1, 2, 3) and Wh

j (j = 2, 3) are
defined by
(2.10)

V h
1 = {~v = (v1, v2), v̂m|K̂ = vm|K ◦ FK ∈ P̂ 1, ∀K ∈ Th

1 ,

∫

F

[~v]ds = 0, F ⊂ ∂K},

(2.11)

V h
2 = {~v = (v1, v2), v̂m|K̂ = vm|K ◦ FK ∈ P̂ 2, ∀K ∈ Th

2 ,

∫

F

[~v]ds = 0, F ⊂ ∂K},
Wh

2 = {w ∈ L2(Ω), w|K ∈ Q0,0(K),∀K ∈ Th
2 },

(2.12)
V h

3 = {~v = (v1, v2), v̂1|K̂ = v1|K ◦ FK ∈ P̂ 3, v̂2|K̂ = v2|K ◦ FK ∈ P̂ 4, ∀K ∈ Th
3 ,∫

F

[~v]ds = 0, F ⊂ ∂K},

Wh
3 =

{
w ∈ L2(Ω), w|K ∈ Q0,0(K), ∀K ∈ Th

3

}
,

respectively, where m = 1, 2, [~v] stands for the jump of ~v across the edge F if F is
an internal edge, and it is equal to ~v itself if F belongs to ∂Ω, Q0,0(K) is a space
of polynomials whose degrees for x, y are equal to 0, respectively.

We define the operators Πi : ~v ∈ H0(curl; Ω) ∩ (H2(Ω))2 7−→ Πi~v ∈ V h
i (i =

1, 2, 3) as follows:

Πi
K~v = (Îiv̂1◦F−1

K , Îiv̂2◦F−1
K )(i = 1, 2), Π3

K~v = (Î3v̂1◦F−1
K , Î4v̂2◦F−1

K ),Πi |K= Πi
K ,

respectively. Obviously, for any ~v ∈ H0(curl; Ω) ∩ (H2(Ω))2, the interpolations
Πi~v ∈ V h

i (i = 1, 2, 3) satisfy

(2.13)





∫

lk

(~v −Π1~v)ds = 0, k = 1, 2, 3, 4,
∫

K

(~v −Π1~v)dxdy = 0,
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(2.14)





1
|lk|

∫

lk

Π2~vds =
1
2
(~v(dk) + ~v(dk+1)), k = 1, 2, 3, 4, d5 = d1,

1
|l1|

∫

l1

Π2~vds +
1
|l3|

∫

l3

Π2~vds =
1
|l2|

∫

l2

Π2~vds +
1
|l4|

∫

l4

Π2~vds

and

(2.15)
∫

lk

(~v −Π3~v)ds = 0, k = 1, 2, 3, 4,

where lk = l̂k ◦ F−1
K , dk = d̂k ◦ F−1

K (k = 1, 2, 3, 4) are the four edges and the four
vertices of K, respectively.

At the same time, for any w ∈ L2(Ω), we define the interpolations Rjw ∈
Wh

j (j = 2, 3), on element K, as follows

(2.16)
∫

K

(w −Rjw)dxdy = 0, j = 2, 3.

Consider the following two-dimensional Maxwell’s equations [22] :

(2.17)





ε ~Et + σ ~E − rotH = − ~J, in Ω× (0, T ),
µHt + curl ~E = 0, in Ω× (0, T ),
~n× ~E = 0, on ∂Ω× (0, T ),
~E(0) = ~E0,H(0) = H0,

where ε = ε(x) and µ = µ(x) denote the dielectric constant and the magnetic
permeability of the material in Ω, respectively; σ = σ(x) denotes the conductivity
of the medium; ~E(x, t) and H(x, t) denote, respectively, the electric and magnetic
fields; ~J = ~J(x, t) is a known function specifying the applied current, x = (x, y);
~E0 = ~E0(x, t) and H0 = H0(x, t) are given functions. The coefficients ε(x), µ(x)
and σ(x) are bounded, and there exist constants εmin and µmin such that

0 < εmin ≤ ε(x), 0 < µmin ≤ µ(x), ∀x ∈ Ω.

Furthermore, the conductivity σ is a nonnegative function on Ω. ~E = (E1, E2),

rotH = (
∂H

∂y
,−∂H

∂x
), curl ~E =

∂E2

∂x
− ∂E1

∂y
, ~n× ~E = E1n2 − E2n1, ~n = (n1, n2) is

the unit outward normal vector on ∂Ω.
In the following, we will use the notations:

‖ · ‖l, ‖ · ‖l,K for H l(Ω) or (H l(Ω))2,H l(K) or (H l(K))2-norm,

| · |m, | · |m,K for Hm(Ω) or (Hm(Ω))2,Hm(K) or (Hm(K))2-seminorm,

where l ≥ 0,m > 0 are integer numbers, H0(Ω) = L2(Ω) and H0(K) = L2(K).
Let

H(curl; Ω) = {~v = (v1, v2) ∈ (L2(Ω))2; curl~v ∈ L2(Ω)},
H0(curl; Ω) = {~v ∈ H(curl; Ω), ~n× ~v |∂Ω= 0}

with norm
‖ ~v ‖H(curl;Ω)= (‖ ~v ‖20 + ‖ curl~v ‖20)

1
2 .

We denote

(p, q) =
∫

Ω

pqdxdy, (p, q)h =
∑

K∈T h
i

∫

K

pqdxdy(i = 1, 2, 3).

Then two discrete schemes presented in [1] and [3] are described as follows:
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(1) A mixed finite element scheme
The variational formulation to (2.17) reads as:
find ( ~E, H) ∈ H0(curl; Ω)× L2(Ω), such that

(2.18)





(ε ~Et, ~Φ) + (σ ~E, ~Φ)− (H, curl~Φ) = −( ~J, ~Φ), ∀~Φ ∈ H0(curl; Ω),
(µHt, Ψ) + (curl ~E, Ψ) = 0, ∀Ψ ∈ L2(Ω),
~E(0) = ~E0, H(0) = H0.

Then the mixed finite element approximations based on (2.18) is:
find ( ~Eh,Hh) ∈ V h

i ×Wh
i (i = 2, 3), such that

(2.19)





(ε ~Eh
t , ~Φ)h + (σ ~Eh, ~Φ)h − (Hh, curl~Φ)h = −( ~J, ~Φ)h, ∀~Φ ∈ V h

i ,

(µ(Hh)t,Ψ)h + (curl ~Eh,Ψ)h = 0, ∀Ψ ∈ Wh
i ,

~Eh(0) = Πi ~E0, Hh(0) = RiH0,

where Πi ~E0 and RiH0 are the finite element interpolations of ~E(0) and H(0),
respectively. Since the discrete scheme is a system of ordinary differential equations
with respect to t, it has a unique solution.
(2) A finite element scheme
By taking the time differentiation of the first equation of (2.17) and using the second
equation of (2.17), we obtain the following electric field equation

(2.20)

{
ε ~Ett + σ ~Et + rot( 1

µcurl ~E) = ~G, in Ω× (0, T ),
~E(0) = ~E0, ~Et(0) = ~Et0,

where ~G(x, t) = − ~Jt(x, t), ~Et0 = 1
ε [− ~J(x, 0) + rotH0 − σ ~E0].

Then the weak form of (2.20) is:
find ~E ∈ H0(curl; Ω), such that

(2.21)

{
(ε ~Ett, ~Φ) + (σ ~Et, ~Φ) + ( 1

µcurl ~E, curl~Φ) = ( ~G, ~Φ), ∀~Φ ∈ H0(curl; Ω),
~E(0) = ~E0, ~Et(0) = ~Et0.

The finite element scheme of (2.21) is:
find ~Eh ∈ V h

i (i = 1, 2, 3), such that

(2.22)

{
(ε ~Eh

tt,
~Φ)h + (σ ~Eh

t , ~Φ)h + ( 1
µcurl ~Eh, curl~Φ)h = ( ~G, ~Φ)h, ∀~Φ ∈ V h

i ,

~Eh(0) = Πi ~E0, ~Eh
t (0) = Πi ~Et0,

where Πi ~E0 and Πi ~Et0 are interpolations of ~E0 and ~Et0, respectively.
We define mesh dependent norms:

‖ ~v ‖20h= (~v,~v)h =
∑

K∈T h
i

2∑

j=1

‖ vj ‖20,K , ‖ ~v ‖21h=
∑

K∈T h
i

2∑

j=1

|vj |21,K .

Then it is easy to see that ‖ · ‖0h and ‖ · ‖1h are the norms over V h
i (i = 1, 2, 3).

We have the following important lemmas.
Lemma 2.2. ∀~v ∈ (H2(Ω))2 ∩H0(curl; Ω), we have

(2.23) ‖ ~v −Πi~v ‖0h≤ Chi|~v|1, i = 1, 2, 3,

(2.24) ‖ curl(~v −Πi~v) ‖0h≤ Chi|~v|2, i = 1, 2, 3.

Proof. By Lemma 2.1 and the interpolation theorem [9,14], it is obvious that

‖ ~v −Πi~v ‖0h≤ Chi|~v|1, i = 1, 2, 3,
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‖ ~v −Π3~v ‖1h≤ Ch3|~v|2.
When i = 1, 2, by Lemma 2.1, we have

‖ ~v −Πi~v ‖1h = (
∑

K∈T h
i

|~v −Πi
K~v|21,K)

1
2

= (
∑

K∈T h
i

∑

|α|=1

‖ Dα(~v −Πi
K~v) ‖20,K)

1
2

= (
∑

K∈T h
i

∑

|α|=1

h−2α
K (hxhy) ‖ D̂α(~̂v − Π̂i

K~̂v) ‖2
0,K̂

)
1
2

≤ C(
∑

K∈T h
i

∑

|α|=1

h−2α
K (hxhy)|D̂α~̂v|2

1,K̂
)

1
2

≤ C(
∑

K∈T h
i

∑

|α|=1

∑

|β|=1

h2β
K ‖ Dα+β~v ‖20,K)

1
2

≤ Chi|~v|2,
so (2.24) follows by ‖ curl(~v −Πi~v) ‖0h≤‖ ~v −Πi~v ‖1h.
Lemma 2.3. ∀~v ∈ (H1(Ω))2 ∩H0(curl; Ω)), we have

(2.25) (curl(~v −Π3~v), Ψ)h = 0, ∀Ψ ∈ Wh
3 ,

(2.26) (curl(~v −Π3~v), curl~Φ)h = 0, ∀~Φ ∈ V h
3 ,

(2.27) (w −Riw, curl~Φ)h = 0, ∀~Φ ∈ V h
i , i = 2, 3, ∀w ∈ L2(Ω).

Proof. Note that ∀q |K∈ Q0,0(K), rotq |K vanishes. By Green’s formula and
the definition of Π3, we get

∫

K

curl(~v −Π3~v)qdxdy =
∫

K

(~v −Π3~v) · rotqdxdy +
∫

∂K

~n× (~v −Π3~v)qds = 0.

Since for any ~Φ ∈ V h
3 , curl~Φ|K is a constant,

(curl(~v −Π3~v), curl~Φ)h = 0, ∀~Φ ∈ V h
3 .

Similarly, by the definitions of Ri(i = 2, 3), we have

(w −Riw, curl~Φ)h = 0, ∀~Φ ∈ V h
i , i = 2, 3, ∀w ∈ L2(Ω).

Lemma 2.4. ∀H ∈ H2(Ω), we have

(2.28)
∑

K∈T h
i

∫

∂K

H ~n× ~Φds ≤ Chi|H|2 ‖ ~Φ ‖0h, ∀~Φ ∈ V h
i , i = 1, 2, 3.

Proof. ∀K ∈ Th
3 ,H ∈ H2(K) and ∀~Φ = (Φ1,Φ2) ∈ V h

3 , let

P0kH =
1

2hx

∫

lk

Hdx, k = 1, 3,

P0kH =
1

2hy

∫

lk

Hdy, k = 2, 4.
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Then we have ∑

K∈T h
3

∫

∂K

H~n× ~Φds

=
∑

K∈T h
3

∫

∂K

(HΦ1n2 −HΦ2n1)ds

=
∑

K∈T h
3

[
∫

l1

−(Φ1 − P01Φ1)(H − P01H)dx

+
∫

l3

(Φ1 − P03Φ1)(H − P03H)dx

+
∫

l2

−(Φ2 − P02Φ2)(H − P02H)dy

+
∫

l4

(Φ2 − P04Φ2)(H − P04H)dy]

=
∑

K∈T h
3

[I1 + I3 + I2 + I4],

where
I1 =

∫

l1

−(Φ1 − P01Φ1)(H − P01H)dx,

I2 =
∫

l2

−(Φ2 − P02Φ2)(H − P02H)dy,

I3 =
∫

l3

(Φ1 − P03Φ1)(H − P03H)dx,

I4 =
∫

l4

(Φ2 − P04Φ2)(H − P04H)dy.

Since

I1 + I3 = −
∫ xK+hx

xK−hx

[H(x, yK − hy)− 1
2hx

∫ xK+hx

xK−hx

H(x, yK − hy)dx]

·[Φ1(x, yK − hy)− 1
2hx

∫ xK+hx

xK−hx

Φ1(x, yK − hy)dx]dx

+
∫ xK+hx

xK−hx

[H(x, yK + hy)− 1
2hx

∫ xK+hx

xK−hx

H(x, yK + hy)dx]

·[Φ1(x, yK + hy)− 1
2hx

∫ xK+hx

xK−hx

Φ1(x, yK + hy)dx]dx

and

Φ1(x, yK − hy)− 1
2hx

∫ xK+hx

xK−hx

Φ1(x, yK − hy)dx

=
1

2hx

∫ xK+hx

xK−hx

[Φ1(x, yK − hy)− Φ1(t, yK − hy)]dt

=
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂Φ1

∂z
(z, yK − hy)dzdt

=
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂Φ1

∂z
(z, yK + hy)dzdt

= Φ1(x, yK + hy)− 1
2hx

∫ xK+hx

xK−hx

Φ1(x, yK + hy)dx,
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by the use of the special property:
∂Φ1

∂x
∈ span{1, x} and the same argument of

[15], we have

|I1 + I3| ≤ 4h2
x

3
‖ ∂2H

∂x∂y
‖0,K‖ ∂Φ1

∂x
‖0,K .

Similarly, since
∂Φ2

∂y
∈ span{1, y}, we can get

|I2 + I4| ≤
4h2

y

3
‖ ∂2H

∂x∂y
‖0,K‖ ∂Φ2

∂y
‖0,K .

Note that ‖ ∂Φ1

∂x
‖0,K≤ Ch−1

x ‖ Φ1 ‖0,K , ‖ ∂Φ2

∂y
‖0,K≤ Ch−1

y ‖ Φ2 ‖0,K , we have

∑

K∈T h
3

∫

∂K

H ~n× ~Φds ≤ Ch3|H|2 ‖ ~Φ ‖0h, ∀~Φ ∈ V h
3 .

Since for any ~Φ ∈ V h
i (i = 1, 2),

∂Φ1

∂x
and

∂Φ2

∂y
have nothing to do with the variable

y and x, respectively, thus (2.28) holds for these elements, i.e.
∑

K∈T h
i

∫

∂K

H ~n× ~Φds ≤ Chi|H|2 ‖ ~Φ ‖0h, ∀~Φ ∈ V h
i , i = 1, 2,

which completes the proof.

3. The convergence analysis

Now, based on the lemmas in Section 2, we can get the main results of this
paper. For the sake of simplicity, we will assume that ε = µ = 1 and σ = 0.
Theorem 3.1. Assume that ( ~E, H) ∈ H0(curl; Ω) × L2(Ω), ( ~Eh,Hh) ∈ V h

i ×
Wh

i (i = 2, 3) are the solutions of (2.17) and (2.19), respectively, ~Et ∈ (H1(Ω))2, ~E ∈
(H2(Ω))2 and H ∈ H2(Ω). Then we have

(3.1) ‖ ~Eh −Π2 ~E ‖0h + ‖ Hh −R2H ‖0h≤ Ch2(
∫ t

0

(| ~Et|21 + |H|22 + | ~E|22)dτ)
1
2 ,

(3.2)

‖ ~E − ~Eh ‖0h + ‖ H −Hh ‖0h≤ Ch2[| ~E|1 + |H|1 + (
∫ t

0

(| ~Et|21 + |H|22 + | ~E|22)dτ)
1
2 ],

(3.3) ‖ ~Eh −Π3 ~E ‖0h + ‖ Hh −R3H ‖0h≤ Ch3(
∫ t

0

(| ~Et|21 + |H|22)dτ)
1
2 ,

(3.4) ‖ ~E− ~Eh ‖0h + ‖ H −Hh ‖0h≤ Ch3[| ~E|1 + |H|1 +(
∫ t

0

(| ~Et|21 + |H|22)dτ)
1
2 ].

Proof. We define

(3.5) A(( ~E,H); (~Φ, Ψ)) = ( ~Et, ~Φ)− (H, curl~Φ) + (Ht, Ψ) + (curl ~E, Ψ).

Then we have

A(( ~E, H); ( ~E, H)) = ( ~Et, ~E) + (Ht,H) =
1
2

d

dt
(‖ ~E ‖20 + ‖ H ‖20).
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Due to for any (~Φ, Ψ) ∈ V h
i ×Wh

i (i = 2, 3),

(rotH, ~Φ)h =
∑

K∈T h
i

∫

∂K

H ~n× ~Φds +
∑

K∈T h
i

∫

K

H curl~Φdxdy,

it follows from (2.17) and (2.19) that

Ah(( ~E − ~Eh,H −Hh); (~Φ, Ψ)) =
∑

K∈T h
i

∫

∂K

H ~n× ~Φds,

where Ah(( ~E,H); (~Φ, Ψ)) = ( ~Et, ~Φ)h − (H, curl~Φ)h + (Ht,Ψ)h + (curl ~E, Ψ)h.

Let (~ζ, θ) = ( ~Eh −Πi ~E, Hh −RiH), we have

(3.6)

Ah((~ζ, θ); (~Φ, Ψ)) = Ah(( ~Eh −Πi ~E, Hh −RiH); (~Φ,Ψ))

= Ah(( ~E −Πi ~E, H −RiH); (~Φ, Ψ))−
∑

K∈T h
i

∫

∂K

H ~n× ~Φds

= (( ~E −Πi ~E)t, ~Φ)h − (H −RiH, curl~Φ)h + (Ht −RiHt, Ψ)h

+(curl( ~E −Πi ~E), Ψ)h −
∑

K∈T h
i

∫

∂K

H ~n× ~Φds.

by (2.23)-(2.25), (2.27), (2.28) and the definitions of Ri(i = 2, 3)

(3.7) Ah((~ζ, θ); (~Φ, Ψ)) ≤ Ch2(| ~Et|1 + |H|2) ‖ ~Φ ‖0h +Ch2| ~E|2 ‖ Ψ ‖0h,

(3.8) Ah((~ζ, θ); (~Φ, Ψ)) ≤ Ch3(| ~Et|1 + |H|2) ‖ ~Φ ‖0h .

Taking (~Φ, Ψ) = (~ζ, θ) in (3.7),(3.8)and applying Schwarz inequality, there yield

(3.9)

1
2

d

dt
(‖ ~ζ ‖20h + ‖ θ ‖20h) =

1
2

d

dt
(‖ ~Eh −Π2 ~E ‖20h + ‖ Hh −R2H ‖20h)

≤ Ch2
2(| ~Et|21 + |H|22 + | ~E|22) +

1
2
‖ ~ζ ‖20h +

1
2
‖ θ ‖20h,

(3.10)

1
2

d

dt
(‖ ~ζ ‖20h + ‖ θ ‖20h) =

1
2

d

dt
(‖ ~Eh −Π3 ~E ‖20h + ‖ Hh −R3H ‖20h)

≤ Ch2
3(| ~Et|21 + |H|22) +

1
2
‖ ~ζ ‖20h .

Because ~ζ(0) = (0, 0), θ(0) = 0, integrating (3.9),(3.10) for t, by Gronwall inequality,
there yield

‖ ~Eh −Π2 ~E ‖0h + ‖ Hh −R2H ‖0h≤ Ch2(
∫ t

0

(| ~Et|21 + |H|22 + | ~E|22)dτ)
1
2 ,

‖ ~Eh −Π3 ~E ‖0h + ‖ Hh −R3H ‖0h≤ Ch3(
∫ t

0

(| ~Et|21 + |H|22)dτ)
1
2 .

By the triangle inequality, we can prove (3.2) and (3.4). The proof is completed.
Theorem 3.2. Assume that ~E ∈ H0(curl; Ω), ~Eh ∈ V h

i (i = 1, 2, 3) are the solu-
tions of (2.20) and (2.22) respectively, and Πi ~E ∈ V h

i (i = 1, 2, 3) are the interpo-
lations of ~E ∈ (H3(Ω))2, ~Et, ~Ett ∈ (H2(Ω))2. Then

(3.11)
‖ ( ~Eh −Πi ~E)t ‖0h + ‖ curl( ~Eh −Πi ~E) ‖0h

≤ Chi[| ~E|22 +
∫ t

0

(| ~Ett|21 + | ~Et|22 + | ~E|23)dτ ]
1
2 , i = 1, 2,
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(3.12)
‖ ( ~E − ~Eh)t ‖0h + ‖ curl( ~E − ~Eh) ‖0h

≤ Chi[| ~Et|1 + | ~E|2 + (| ~E|22 +
∫ t

0

(| ~Ett|21 + | ~Et|22 + | ~E|23)dτ)
1
2 ], i = 1, 2,

(3.13) ‖ ( ~Eh −Π3 ~E)t ‖0h + ‖ curl( ~Eh −Π3 ~E) ‖0h≤ Ch3[
∫ t

0

(| ~Ett|21 + | ~E|23)dτ ]
1
2 ,

(3.14)

‖ ( ~E− ~Eh)t ‖0h + ‖ curl( ~E− ~Eh) ‖0h≤ Ch3[| ~Et|1 + | ~E|2 +(
∫ t

0

(| ~Ett|21 + | ~E|23)dτ)
1
2 ].

Proof. ∀~Φ ∈ V h
i (i = 1, 2, 3), by (2.20) and (2.22), we can obtain

(3.15)

(( ~Eh −Πi ~E)tt, ~Φ)h + (curl( ~Eh −Πi ~E), curl~Φ)h

= (( ~E −Πi ~E)tt, ~Φ)h + (curl( ~E −Πi ~E), curl~Φ)h

+
∑

K∈T h
i

∫

∂K

curl ~E ~n× ~Φds.

Let ~ζ = ~Eh −Πi ~E, ~Φ = ~ζt, then (3.15) can be rewritten as
(3.16)

1
2

d

dt
(‖ ~ζt ‖20h + ‖ curl~ζ ‖20h) = (~ζtt, ~ζt)h + (curl~ζ, curl~ζt)h

= (( ~E −Πi ~E)tt, ~ζt)h + (curl( ~E −Πi ~E), curl~ζt)h +
∑

K∈T h
i

∫

∂K

curl ~E ~n× ~ζtds

= (( ~E −Πi ~E)tt, ~ζt)h +
d

dt
(curl( ~E −Πi ~E), curl~ζ)h − (curl( ~E −Πi ~E)t, curl~ζ)h

+
∑

K∈T h
i

∫

∂K

curl ~E ~n× ~ζtds.

Because ~ζ(0) = ~ζt(0) = (0, 0), integrating (3.16) for t, we get

(3.17)

‖ ~ζt ‖20h + ‖ curl~ζ ‖20h

= 2
∫ t

0

(( ~E −Πi ~E)tt, ~ζt)hdτ + 2(curl( ~E −Πi ~E), curl~ζ)h

−2
∫ t

0

(curl( ~E −Πi ~E)t, curl~ζ)hdτ

+2
∫ t

0

∑

K∈T h
i

∫

∂K

curl ~E ~n× ~ζtdsdτ,

if i = 1, 2, by (2.23), (2.24), (2.28) and the Schwarz inequality

‖ ~ζt ‖20h + ‖ curl~ζ ‖20h

≤ Ch2
i [| ~E|22 +

∫ t

0

(| ~Ett|21 + | ~Et|22 + | ~E|23)dτ ] +
∫ t

0

(‖ ~ζt ‖20h

+ ‖ curl~ζ ‖20h)dτ +
1
2
‖ curl~ζ ‖20h,

if i = 3, by (2.23), (2.26), (2.28) and the Schwarz inequality

‖ ~ζt ‖20h + ‖ curl~ζ ‖20h≤ Ch2
3[

∫ t

0

(| ~Ett|21 + | ~E|23)dτ ] +
∫ t

0

‖ ~ζt ‖20h dτ.
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Hence (3.11) and (3.13) follow from the Gronwall inequality. Thus, employing the
triangle inequality, we can prove (3.12) and (3.14). Then the proof is completed.

Remark 1: It can be checked that some very popular elements, such as the rotated
Q1 element [23] and low order element [15,24-25] can not be applied to Maxwell’s
equations on the mixed finite element scheme discussed in this paper because they
do not satisfy the important property (2.27), although they also have some advan-
tages in superconvergence analysis. However, we get the convergence results of the
element [15] on the finite element scheme under anisotropic meshes. Moreover, the
above results can be extended to the three-dimensional problem for the first element
and the second element spaces. The convergence analysis of the last element for
three-dimensional Maxwell’s equations will be investigated in our further study.

Remark 2: Since the superconvergence analysis of the above nonconforming mixed
finite elements to Maxwell’s equations under anisotropic meshes is very important
in the electric-magnetic fields and can hardly be treated, it will be one of our further
studying topics.
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