INTERNATIONAL JOURNAL OF (© 2008 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 5, Number 3, Pages 386-406

ON THE CONVERGENCE OF DIFFERENCE SCHEMES FOR
PARABOLIC PROBLEMS WITH CONCENTRATED DATA

BOSKO S. JOVANOVIC AND LUBIN G. VULKOV

Abstract. Parabolic equations with unbounded coefficients and even gen-
eralized functions (in particular Dirac-delta functions) model large-scale of
problems in the heat—mass transfer. This paper provides estimates for the
convergence rate of difference scheme in discrete Sobolev like norms, compat-
ible with the smoothness of the differential problems solutions, i.e with the

smoothness of the input data.
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ference scheme, rate of convergence.

1. Introduction

The present paper continues the study for convergence of finite difference schemes
of the model heat equation with concentrated capacity in [11], [12]. In the heat
capacity coefficient the Dirac—delta distribution is involved and as a result, the
jump of the heat flow at the interface point is proportional to the time derivative
of the temperature. Dynamical boundary conditions correspond to concentrated
capacity on the boundary [5], [7], [19]. These problems are nonstandard and the
classical analysis is difficult to be applied for error estimates and convergence proof.
The finite difference method for parabolic problems with discontinuous data (co-
efficients, initial and boundary conditions) is based on associated weak solutions
[17], [20], [30]. For these problems the most used tool for studying convergence
of the difference solutions is the Bramble-Hilbert lemma and its generalizations
[4], [6]. The theory of difference scheme convergence rate estimates compatible
with the smoothness of the differential problem solutions was developed first for
elliptic problems in papers of Samarskii, Lazarov and Makarov, cf. the monograph
[23]. Further development of this theory is presented in [8], and especially, results
for parabolic problems. The basic physical model corresponding to the parabolic
problems considered in the present paper is that of heat—transfer, where the process
take places in two adjoining bodies at different scale in each body. The diffusion
through thin layers, divided the bodies has high specific heat. We consider the
limiting case, when the thickness of the layers goes to zero and where the specific
heat goes to infinity. The simplest mathematical model of this phenomena is de-
rived in [26] and its further development in [5], [19]. Our aim is to treat these
problems as a first order abstract—evolution equation (1), with selfadjoint positive
linear operators A, B, defined in Hilbert space H and then to use energy methods
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from the theory of Hilbert spaces. Discrete analysis of appropriate subspaces of the
Sobolev spaces are used and yet that allow the discrete operators to be selfadjoint
of the space involved. In this first stage we obtain a priori estimates for the discrete
solutions. The second important idea of the method consists in constructing the
special integral representations of the error of the difference schemes. This allows
us by applying imbedding Sobolev’s theorems to obtain more accurate estimates.
We do not use the Bramble-Hilbert lemma. The remainder of this paper is orga-
nized as follows: energy estimates for the solutions of an abstract Cauchy problem
for a first order evolution equation and for an operator—difference scheme can be
found in the next section. These auxiliary results are used in the next sections
for obtaining a priori estimates to the derivation of convergence rate estimates in
special discrete Sobolev norms of difference schemes approximations to heat equa-
tion with discontinuous coeflicients and dynamical conditions of conjugation, i.e
in which the time derivative of the solution is involved. We also treat parabolic
equations with dynamical boundary condition and elliptic equation with dynamical
condition of conjugation. The method proposed here is applied to analogous hyper-
bolic problem in [13], see also [25]. Energy stability for a class of two-dimensional
interface parabolic problems is investigated in [15], while the stability of difference
schemes for parabolic equations with dynamical boundary conditions and condi-
tions on conjugation is analyzed in [16]. Two—dimensional elliptic problems in
which the Dirac-delta function appears in the lowest coefficients are treated in [9]
and [14], while finite-difference approximation for Poisson’s equation with a dy-
namic boundary condition is given in [29]. Convergence of difference schemes on
classical solutions for parabolic and hyperbolic equations with dynamical boundary
conditions or dynamical conditions of conjugation are studied in [1], [2], [3], [28].

2. Preliminary Results

Let H be a real separable Hilbert space endowed with inner product (-,-) and

norm || - || and S — unbounded selfadjoint positive definite linear operator, with
domain D(S) dense in H. The product (u, v)s = (Su, v) (u, v € D(S)) satisfies
1/

the inner product axioms. Reinforcing D(S) in the norm ||us = (u, u){ * we ob-
tain a Hilbert space Hg C H. The inner product (u, v) continuously extends to
Hg x Hg, where HY is the adjoint space for Hg. Operator S extends to mapping
S : Hg — H§. There exists unbounded selfadjoint positive definite linear operator
S1/2 such that D(SY/?) = Hg and (u, v)s = (Su, v) = (SY%u, S1/?v) (see [17],
[21]). We also define the Sobolev spaces W (a,b; H), W(a,b; H) = La(a,b; H), of
the functions u = u(t) mapping interval (a,b) C R into H [17]. Let A and B be un-
bounded selfadjoint positive definite linear operators, not depending on ¢, in Hilbert
space H, with D(A) — dense in Hg. In general, A and B are noncommutative. We
consider an abstract Cauchy problem [20], [30].

du
(2.1) BE +Au=f(t), 0<t<T; u(0) = uyg,
where ug is a given element in Hp, f(t) € Ly(0,T; H4-1) — given function and wu(t)
— unknown function from (0,T) into H4. Setting in (1) f(¢) = dg(t)/dt we get the
Cauchy problem

du dg

2.2 B— 4+ Au=— T; = ug.
(2.2) o T Au= 0<t<T; u(0) = g

The following proposition holds.
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Lemma 1. The solution u of the problem (2.1) satisfies a priori estimates:

Qw520 )< ool [ v ),

’Lf’LLOGHA andfGLgOT Hp- 1)

Tl t) — u(t’
/||u I3 dt+// ” t_t,ﬁ”Bdtdt<c(||uo||3+/ POl ar).

ifup € Hp and f € Ly(0,T; Hp-1); and

T T
/ |u<t>|23dtsc(||3uoil+ / ||A-1f<t>||%dt),

ifup € Hga—1p and f € Lo(0,T; Hpy-154-1). The solution u of the problem (2.2)
satisfies a priori estimates:

[u(t) — u(®)|Z
/ Jut ||Adt+/ / PO vt < ¢ | fuolf+
T lg(t) *gﬂmgl o [T, >
/ / L e + [ (t+T_t)|g(t)||B_1dt],

ifug € Hg and g € W21/2(O,T; Hg-1); and

/ ||u<t>|23dt<c(||Buo—g<o>||i1+ / g(t)HQBldt),

if Bug — g(0) € Hy-1 and g € L(0,T; Hg-1). Proof: Using energy method and
Fourier expansion. [J Analogous results hold for operator—difference schemes. Let

Hj, be finite dimensional real Hilbert space with inner product (-, ), and norm ||-||5.
Let A}, and Bj, be constant selfadjoint positive linear operators in Hj,, in general
case noncommutative. By Hg, , where S, = S} > 0, we denote the space Hg, = H},
with inner product (v, w)s, = (Spv, w), and norm |jv|ls, = (Skv, 11),11/2 . Let
w; be an uniform mesh on (0,7") with the step size 7 = T/m, w; = w; U {0},
wi =w,; U{T} and &, = w, U{0,T}. Further we shall use standard denotation of
the theory of difference schemes [22]. We consider the simplest two—level operator—
difference scheme

(2.3) Bpvp + Apv = ¢(t), te€w); v(0) = wo,

where vg is a given element in Hy,, ¢(t) is also given and v(¢) — unknown function
with values in H;,. Let us also consider the scheme

(2.4) Bpvg + Apv =g, t € w]; v(0) = vo,

where 9(t) is a given function with values in Hj,. The following analogue of Lemma
1 holds true.

Lemma 2. The solution v of the problem (2.3) satisfies a priori estimates:

P Y M@l 7 3 ol < (Il + 7 X eI ).

tEw.,Jf t€w.,. tij
[o(t) —v(®)|%
U DD SR L
te€w, t€w, t/ €Dy, t'F#L

< (k3 + 7l +7 3 IeO1 )

tewj
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r ¥ oo, < (1Bl + 7 3 1401, )
tewT tew

The solution v of the problem (2.4) salisfies a priori estimates:

2 L 3 [v(t) — o(t)3, > >
Y le®IA, +72 ) Y. e < Cllwllg, + T llvolld, +

_ 2
tew, tEG, t/ €@, , t/#t [t =
()~ w2, N
2y Y e 3 () el

tEW, t'ED,, t'F#t tEw,

Ty v®]E, < C(llBhvo — YO +7 > ||¢(t)||§?hl>,

tEwi— t@ui

3. Heat equation with concentrated capacity

Let us consider the initial boundary value problem for the heat equation with
concentrated capacity at the interior point x = £ [5], [18], [19]:

B1) o)+ Kol 0] 0~ () 0 = fat), mn)eQ

(3.2) w0, t) =0, u(l,t)=0, 0<t<T

(3.3) u(z, 0) = up(z), =z €(0,1),

where @ = (0,1) x (0,7T), K >0, 0 <c¢; <a(z) <c 0<es <c(x) <eyq and
d(z) is the Dirac distribution [27]. It follows from (3.1) that the solution of this
problem satisfies at (z,t) € Q1 = (0, £) X (0, T) and (z,t) € Q2 = (£, 1) x (0, T)
the equation
ou 0 Ou
(@) 5 = 5= (al@) o) = fla.t).

and at x = £ — the conditions

[U)—e = u(§+0,t) —u(€—0,t) =0, { Bu} K du(§, 1)

G;% x:fz ot

It is easy to see that the initial boundary value problem (3.1)-(3.3) can be reduced
in the form (2.1) letting H = L1(0, 1),

Au = —% (a(x) %) and Bu = [c(z) + Ké(z — &)] u(z, t).
Then H 4 :V?@l (0,1),
1
(3.4 fulfs = [ ato) /(@) do.
1
(3.5) |lw||% = / c(z) w?(z) de + K w?(€).
0

Further we assume that the function ¢(z) is continuous on [0, 1] and a(z) has finite
jump in the point z = £.
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3.1. The functional spaces W} (0,1) and WX"*?(Q). By L,(0,1) = W9(0,1)
we denote the closure of C0,1] in the norm |Jw|| Ta(0,1) induced by inner product

(0, 0),0.1) = / u(e) w(z) dz + u(€) wl).

Further we let W2(0,1) =W (0,1) and WX(0,1) =W} (0,1)nWE(0,6)nWk(g, 1),
k=2,3,.... The following assertion holds true.

Lemma 3. Let Aw = —(a(z)w'(z)) and Bw = (c(z) + K §(z — &) w(z), where
a, ¢ € Lo(0,1). Then the norm ||w||p is equivalent to the norm [lw|z, ). The
norm ||w|| 4 is equivalent to the norm ||w||W21(0 1) atw € /V[v/21(0, 1). If in addition
a' € Ly(0,6)NLa(&, 1) then the norm ||Aw| g-1 is equivalent to the norm Hw||V~V22(0 1)
at w € WQQ(O, 1).  Proof: The first assertion immediately follows from (3.5) and
the boundness of ¢(z). The second one follows from (3.4), the boundness of a(x)
and the Friedrich’s inequality

wllL(0,1) < 0.5 [|w'[| £, 0,1)5 w eWs (0,1).

We prove the third assertion. Using the equality

A
]| 5o = sup 1422 2
vz vlls

we obtain
CAw@P AP
/0 C(l‘) d +A C(.T) d S ||A HB—l S

CAw@)? M AwE)? )
</0 o) d*/5 w Tt r

Hence, using the equality Aw = —aw” — a’ w’, the boundness of a and ¢, and the
imbedding Wy C C we get

(3.6) lAw] -+ < Ca wllgae
Further

1032 0.1) = Tlza0,0) + 102500y + 10" I 2u0,6) + 10" 1 E ) -
We already have proved

(3.7) ol o) + 10" B0y = 025 ) < Co ol

Let us estimate [[w” | z,(0,¢):

o' a0 = | [ ()] do = / E i (4w + 0@ w’(w))r du <

a(z)

<c{ /;de—i- max [w'(a:)P}.

- c(x) z€[0,£]
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Further, using imbedding W4 C C we get

1
2 ’ 2
max (W' (z)|° < -5 max |a(z)w (r)]|” <
z€[0,£] ] - C% z€[0 &}[ ( ) ( )]

i From here it follows
(3.8) "1 0.6) < Ca(lAwlE-s + o)) -

In an analogous way one can estimate |w”| 1, 1). Let consider the eigenvalue
problem

Aw=ABw, weW, (0,1).

As it is known its spectrum is discrete, all eigenvalues \; are positive, and the
eigenfunctions w; are orthogonal in Hg [26]. The inequality holds

(3.9) [Awllp-1 > v/ Amin |0,
where

1 ’ 2
/\min = in (A’U, U) = inf T f() CL(J?) [U (x)} dx 2 461 0.
v#0 (B’U, ’U) v#0 fO C(SL‘) ’UQ(I) dx + K?JQ(f) 4 + K

Now, the third assertion follows from (3.6)—(3.9). [ We also define the spaces
ik, k/2 Tk k/2 7 . ..
W, (Q) = Lo(0,T; W5 (0,1))NW57%(0,T; L2(0,1)), k=0, 1, 2, .... Differentiating

equation (3.1) on z and ¢ and applying Lemmas 1 and 3 we obtain the following
assertion.

Lemma 4. (i) If a € W2(0,&) N Wi(€,1), ¢ € W(0,1), up € W(0,1) and f €
L2(Q1) N Ly (Q2), then the problem (3.1)—(3.3) has unique solution u € ng(Q)
(i) If a € W3(0.6) N WZ(E1), ¢ € W3(0.1), wp € W3(0.1), f € Wy "(Qu)
W21’1/2(Q2) and the compatibility conditions hold

Ui (0)=U (1) =0, [Ui],_e =0, laugl,_c = Kil_{ﬂE Ui(z),

where
a(z)ug(z) + d'(z)ug(z) + f(=,0)
c(x) ’

then the problem (3.1)-(5.3) has unique solution u € W§’3/2(Q). (i3) If a €
W23(07£) n W23(§71)7 ¢ € W23(0’1); up € WS(O’ 1)) f € W2271(Q1) N W2271(Q2)
and the last compatibility conditions hold, then the problem (3.1)-(8.3) has unique
solution u € ,VIV/;’Q(Q).

Ut (33) =
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3.2. The difference scheme. Let w;, = {1, @2, ..., £p—1} be an nonuniform
mesh in (0, 1), chosen, so that ¢ is a node. We let w;, = w, U{zo}, w}" = wp U{z,},
op =wp U{zo, Tp}, 2o =0, 2, =1 and h; = z; — ;1. Also we let

vy = (vy —0) /by, va=(v—v)/h, wvi= (v —v)/h,

v=v(z), vi=v(zrt), =2, xx=2x41, h=(h+hy)/2.
We assume that the condition holds

1/co < hy/h<e¢y, co=const>1.

We approximate the problem (3.1)—(3.3) on the mesh @, x @, by the implicit
difference scheme with averaged right hand side

(3.10) (c+ K o) vg — (avz)s = T2Ty f, (w,t) € wp x W,
(3.11) v(0,t) =0, wv(1,t)=0, tew/,
(3.12) v(z,0) = ug(xz), =z € oy,

where a(z) = [a(x)+a(o—h)] /2, for o # €, &, a(€) = [a(¢—0)+a(e_)] /2, a(&+) =
[a(¢+) +alE +0)] /2,

op =dp(x—¢&) = { (1)’/71, ii‘gh \ {¢}

is the mesh Dirac function and T2, T, are the Steklov averaging operators [8], [23]:

T, f(z,t) = T+f =) / flx,t)

- %/x_ Pt de, T (o) = EL £ ) da’

Ty
1 14+ (' —x)/h, z_<2' <=z
2 / / / AN ) )
1) = [ o) f 0, sy = { TN S
€T
We note that these operators are commutative and map derivatives into difference
relations, for example,
0%u _Ou
cgz = TGy
Let Hj, be the set of all mesh functions on the mesh @, equal to zero at x = 0 and
x = 1. We define the inner products

(v, w)p = Z v(x) w(z) h, (v, W]pye = Z v(x)w(z) h,

TEWH

= Ug .

wEw;
with corresponding norms

1/2 1/2
wlln = W], = (w, W)/, [Jw]la = (w, w]}2.

The difference scheme (3.10)—(3.12) can be written in the form (2.3) letting Apv =
—(avz)z and Bpv = (¢ + K 0p)v. For w € Hj, we have

lwll, = (Anw, w)n = Y (@) wi(@) h = Jwsll,,

wa;

lwllE, = (Buw, w)n =Y el@)w(2) h+ K w?(€) = |wll3,,

TEWH
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and

ol = By tw, wh = Y
wewn\{£}

w?(z) h*(€)

h 26) < 2,
bt e 0O =l
where Bop w = (1+35,) w. We define the mesh spaces th and W;:T/Q (k=0,1,2),
with norms:

IIwII%M = [lwllg,, = llwli,, +w?)), IIwII%th = [lwz]l7, + llwllf ,
IIwIIZ@} = > wii(x) bt |wsll, + wllf; IIUH%W =7y ||v(-,t)\|%21h,
T zewn\{€} tew,

lo(-.0) = ol 12,

2 _ . 2 2
[l e =7 20 0GBl +7° 30 D0 P !

tew, t€w, t' €@y, t/#£t
olas =7 3 o0l +7 3 DI,
tewr tewd
Lemma 5. Let Apw = —(awz)z and Byw = (¢ + K 0p)w, where a and ¢ are

bounded mesh functions and w € Hy. Then the norm |w||p, s equivalent to the
mesh norm Ly and the norm ||w|| a, to the mesh norm Wy, . If in addition, a, is
a bounded mesh function for x # £, then the norm ||Ahw||B}71 s equivalent to the

norm Wih. The proof is analogous to the proof of Lemma 3. O

3.3. Convergence in the norm /V[v/zl:th/ %, Let u be the solution of the problem
(3.1)—(3.3) and v the solution of (3.10)—(3.12). The error z = u—uv satisfies difference
scheme

(3.13) (c+ Kéon)ze — (azz)s = Y7 — Xa,  (2,1) €wp X @],
(3.14) 2(0,t) =0, 2(1,t)=0, tecwl,
(3.15) 2(x,0) =0, =z € oy,
where
h? 0 h?
Y =cu—T(cu) + (F (cu)i>x and x=auz — T, T, (a a—Z) + 5 (cu)zz-
From Lemmas 2 and 5, and the inequality
HX@”A*l — max |(X§Ca w)h‘ — max |7 (X7 wi]h*| <
510 VT la, SR el
' [l lwzlne _ 1
< max < — *
SEE T e, e
the a priori estimate for the problem (3.13)—(3.15) follows
(3.17)
(-, 8) =, )%
2 2 Bon
el < c{f Sl Y Y BAASALL -
tewt tED, t'€w,, t/Ft

1/2
1 1
w3 (347 ) I t>||z%1} .

tEw,
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Therefore, in order to estimate the rate of convergence of the difference scheme
(3.10)—(3.12) in the norm W;”th/ ? it is sufficient to be estimated the right hand side
of (3.17). We let

_ ./ Ou h?
X=x1+Xx2, x1=auz—T, T} (a%)’ X2=€(Cu)ff-

Using the integral representation

0?(cu)(z', t')
.1 ! !/
(3.18) xa( 6}”/ /” oot da,

and summing on the mesh nodes, we immediately get

1/2 0*(cu)
5 et ok} <o | <
max 8 8t 5
(3.19) vt vot Ha(Q)
< Ch? H )
= max HC”W (0,1) OOt L2(Q)
Next, we let
_ou ___Ou
X1 = x11 + Xx12 + Xx13, X11 = (Tz -1, T, *>
Oz or

X12=(d—Tz_a)(T ng) XlS:(TJa)(T ng) LT ( ZZ)

The integral formulas

Ou(z’, t")
t dt” dt’' dz’
xu(z,t) = 2h7‘ / /t T/t, 61:8 v

I/ I// " 12 i\/w /t au(‘r/7tl) / /
X12(z,t) <2h/ / / )dz'" dx dx)(hT 5 t,Tiam dt' dx' ),

and

1 bz v ,//82 ( " /)

_ 1o " u(z™,t " "
Xl?’(x’t)_QhQT///(/a(x ) dx )(/83@2 dx )daj da’ dt/
t—Tx_ x_ x// x’/
implies
1/2

X <C7|{|la + ||la H

o {r b N (Nalwzoe + lolbwzen) [ o

4O n2 0, (lalwz o lulhwogn) + lalhwzien [l wzoon)-

The addendum 1 can be presented in two forms:

)= / L, (1= ) e 1)

ﬂ/ (@ t) oy he [T Olcw)@ D)

(3.21)

6h 890 ﬁ ox
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and also
1 [ [= ! ’_ 92 "y
et L[ [ () P
1 T4 _z z!! I’ — 82(611,) (x/// t)
3.22 - _ ) "m0 g1
( ) +h/a: ] (1 h+ ) 92 dz"" dz" dx'+
h x x 82 //’ t T4 82 ,, t

Representation (3.22) implies the estimate

1/2
1 1 5 )
Ty ’ — < log 1
(3.23) {th@ <t+Tt> (¢ JIIBOhl} C 2,0 V108 1/7 [lelliwz 0.1)

x(max ful-, Ollwzoe + max ul-, Olwaen )-

te[0,7] t€[0,T]
Next
[(st) = (-, t’)H?, Tt [T ) T ()%

2 Bon, 2 ]
> 2 w4ty P =
tEw, t' €Dy, t/ £t t=T t'=0

EN=yTe ;w<-,t>uzg JRR=yTR T+w< .

+8r ZZ 2 Z 2

t=7t'= t=1t'=

Using again (3.22), we get

T o [T ) = T, )15 Y2
2 B
{ryy

t=71 t'=0

2
(24) g2 (Haa(:ﬂ )H rom oot H8<9(~””2 )H 1120, Lo, 1))) <

< Ch’?naw (Hu||W;3/2 + ||U||W3 3/2(Q )>

Now (3.21) gives

il [ CH ARTIC [t 1/2 2
{7'2 ! - T Boh} Chmazflla cu)
(3.25)

= =0 |t—t/|2 0xot 1lL2(Q)

< C(B2pgp +7) llellws (0 H

max

Oxot

In an analogous way can be estimated the expression

Lz(Q

T t—r

222|lw ~ T O /It -

t=T1 t'=

Finally, from (3.17), (3.19), (3.20), (3.23), (3.24), (3.25) and the imbedding theorem
we get the desired convergence rate estimate of the difference scheme (3.10)—(3.12).
Theorem 1. Let the assumptions of the second part (ii) of Lemma 4 hold. Then

(3.26)
2l < C(r+h2aay/108 L) (lalwzoo +lallwzen +lelwso.n ) lulg2a2 )
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3.4. Convergence of the difference scheme in Zz,,w. We approximate the
initial condition (3.3) as follows

% 7 zew,\{¢}
(3.27) 0(2,0) = § Ko ( O+ A T2 (o) (€) v =
K+he(f) ’ R

Let u be the solution of the initial boundary value problem (3.1)—(3.3) and v — the
solution of the difference problem (3.10), (3.11), (3.27). The error z = u—v satisfies
the conditions

(3.28)  (c+ Kbp)zr — (a2z)s = i — (apz)s — oz — Bar,  (,1) € wp X W,
(3.29) 20,6) =0, 2(1,6)=0, tew,,

(3.30) (c(z) + K op(x — &) 2(x,0) = ¥(x,0) — Bz(x,0), =€ wp,

where ¢ is the same in the Section 3.3,

2
Ox Ox 6 (cu)e.

Lemma 6. The solution of the difference scheme

p=u—-T u, a=xi2+xiz=al, T, (8u) T T, ( 8”) ﬂ:h

(C+K5h)zf_(dzi)i:_ﬁif7 (x,t)ewhxwi',

with initial and boundary conditions (3.14), (3.15), satisfies the a priori estimate:

9 1/2
12115 { ~ } <
2,hT L
tew 2

O{TZZ y, oo t,|2 M Z( 1_t)|ﬂ<‘,t>ni*}1/2.

tEw, t'Cw,, t/#t

Z(',If)#’Z(',f*’T’)‘
2

The proof is analogous to the proof of Lemmas 1 and 2. [J Using lemmas 2,5 and

6 for the difference scheme (3.28)—(3.30) we get the a priori estimate

I21%, ,. < { D ICOIE s+ 7Y Dy, +7 Y lal ]l

(331) tEw.r tew.r teu.).r

, 1/2
iy 3 WO Z( + I m} .

tE€EG t/ Cwr, t/#L

Using the integral representations (3.21) and (3.22), the decomposition v = T, ¥+
(v — T; ) and the technique described in [10], we obtain the estimate

1/2
{r o meo, ) <o+ n(leulzian + levlzia,)

tewy
< C (Brae + ) Iellwz oy (Tl o) + Iellz(q)) -

_ 1 /t /t Qu(z,t") dt" dt’
T t—r Jt! 5't

(3.32)

The integral formula
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the decomposition p = T, u+(u—T, 1), at z < &, respectively pu = T;F u+(u—T," 1),
at x > &, and again the technique in [10], leads to the estimate

1/2
{7 3wt o}
(3.33) tewt
< O (e +7) (Iullwzagu) + Nl o) + O || =5

From the estimates x12 and x13 (see (3.20)) we immediately find

{r T lac m}m <

tEwr
< C e (lallwz o6 lullwzogu) + lallwz e lullyzoi,)) -

IN

ou(g, - )’

L2(0,T)

(3.34)

T Jc

{T > (G+7ms) ||ﬂ<-,t>1|%*}1/2 <
535) < OHp Iog T/ ma [2EC0)

te[0,T] L2(0,1) —
<Ch?

2 e VIO /T llellwz 01y (Iellwz gy + Nz o))

Finally, by an analogous way as at the estimation of ¢, we get

1/2
2 ”/B(Wt)_ﬁ('ﬂt/)]‘}%*
(3.36) {T 2 2 [t =2 } =

tEW, t/ €@y, t'#t

Next, the formula 3 = %2 T- (8(cu)) implies the estimate

< C (B0z +7) lelwzon (Il g + lelhwzgy)

Now, from (3.31)—(3.36) we obtain the desired convergence rate estimate of the
difference scheme (3.10), (3.11), (3.27):

Theorem 2. Let the following assumptions hold: a € W3(0,£) N WZ(£,1), ¢ €
VVQQ(O7 1), Ug € WQI(O, 1), fe LQ(Ql) n LQ(QQ) Then
(3.37)

1215, . < (B2 log 247) (lellwz o +lallwz 0. +Hlallwae.n+1) el g)-
Remark. In the estimate (3.37) the requirements for the smoothness of a and
¢ in the differential equation (3.1) can be relaxed. An analogous estimate in the
case a € W2(0,£) NW3 (€,1) can be obtained using the so called “exact” difference
scheme [22] for the approximation of 8% (a(x) g—g).

3.5. Approximation and convergence in Wf ’,}T. Following [24] we approxi-
mate the equation (3.1) as follows

—h _ hy —h

(cv)pi—(avz)z— +6

for (z,t) € wp, X w. In the expressions a,(¢_) and azz(£-) the value a(€) must be
replaced with a(§ —0) and in the expressions a,(§) and azz (&) the value a(£) must
be replaced by a({+0). We approximate the boundary and the initial conditions as
above with (3.11) and (3.12). With respect to the mesh @, we suppose that ¢y < 2
and hy = h at x = £. The error z = u — v, where u is the solution of the problem

h
(3.38) (c+K ) vit+

(a0 V35— az3 vz) = ToT, f,
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(3.1)—(3.3) and v — the solution of difference problem (3.38), (3.11), (3.12), satisfies
the difference scheme

" (c2har — (@zs)a — E

(z,t) € wy X w, with homogeneous boundary and initial conditions (3.14) and
(3.15). Here

<P:<P1+<P2=Tt_[cau—T,2(cau) + hy —h (Cﬁu)r]_

h
(3.39) (c+ Kdp) 2z +

(az 222 — az3 23) = ¢,

3 ot

_ hy —h _0 ou
| @use + B (0~ assue) - 7275 5 ()]
We also denote
hy —h hy —h
Az = ——=F (am Zzs — Q34 zi,) and Bipz = — (c2)y .

It is easy to be verified the assertions.

Lemma 7. If ¢ € CY0,1] and the mazimal step size of &y, is sufficiently small
(hmaz < (1/6 —¢€)/llcllcrjo,1], 0 < e < 1/6) then the inequality holds

(Binz, 2)nl < (1 =) |2l , 2 € Ha.
Lemma 8. If a € C?[0,£] N C?[, 1] then the inequality holds

Izl < Chmas (lallcziog + lallczie) Izl » = € Ha
where C' is constant depending on £. It follows from lemmas 2, 7 and 8 that for

sufficiently small h,,q, the a priori estimate is valid

1/2
(3.40) otz < {r T et o}
1 tewi

Summing the integral representations

Cu)( " t) " 1" / !
#i) ﬁT/tT/x / / gwror G dendvdiy
_ 3 "
%m///8%J”%%wﬁ
t—T1 Jx
"
Pr(6t) = 5= / / / / Cg>§ 5 ) G da 4t e+
T t—T
t
£+ )( " t) /// 1! ! ! h 62(Cu) /
// // (& a T gpzgr v dvidedt _@/ [ Dzt Lt,)dt
t—1 ’

we ﬁnd the estlmate

1/2
{Zn@l O} < e lelwzon { | o

and

L2(Q)

LQ(O,T)} ’

(3.41)

62
Haaﬂat L2(Q1) H8x28t L2(Q2) + H baz@t}(g,.)‘
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For x # £ we decompose the addendum 5 as follows:

Y2 = P21 + Y22 + a3 + Yau + a5 + Y26 + Yo7 =

- S (et 2
et 2 o 2 12

1 hy —h hy —h
—|—§ (T2d") (u—|— +3 uz — Ty u— +3 Tt_ug,—c)—k

+2 (T2a") ;" (u— T2u+ hy —h uz) + % |(T2a") (T2T;w) = T2 (aw) |

3

The integral representation

a1(,t) / / / k(z,z") o law)(@', ¢7) dt’ dt' dz’, x#¢
2hT t—r Jt 3 2325 ’

implies

{TZ > <p§1($7t)ﬁ}1/2§

tewt T€wWH, T<E

<O lallwg,e (Hax28t

Lz(Q1)> '
In an analogous way, we obtain

1/2
(3.43) {7 Z Z Pho(, 1) h} < O llallwzo H Ox20t

tew] TEWH, T<E

(3.42)

L2(Q1) H o0xOt

La( Q1)

Qg (Cf (pl)

Using a known estimate for an expression of the form a — 772
we find

1/2
CRTIEERED DD DI YCUL) rer e ey ot B

tcwt TEWH, <€

The formula

(e, t) = W / / / w(@, 7)) Rl o )(/ ,a’(x”’)dx”’)x

Z 3 1 /
x / T ) o\ ay! da d! . w4 €
2! 8x3

and the imbedding theorem give

(3.45) {Tz ) ¢%4<x,t>h}l/2sc B lalzos | 2|

rewd TEwn, B<E L2(Q1)
;From the obvious inequality
<C|a" max |u— T, ul,
pas] < Clla"|[cpo,g) max | i ul
by applying imbedding theorem, we find
1/2
2
o) {73 5 dheont <Orlduen o], 0,

tEw] TEWhH, T<E
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The addendum ¢9g can be estimated in a similar way as @3
1/2
ERONERED DI DI YEUT) rer o ey et I
tewl TEWh, T<E

The integral formula

1 T4 T4 t I/
@27(3;’15) = m/ / /t n(x,x') Ii(:ml'//) (/H a///(x///) dﬁ///) «

'’ "oy
X ( % dac”’) dt' dx" dz', x#¢

T
implies
1/2
By 1Y T enn) <O ldugos il
tewt BEWn, B<E

For x = £ we set

P2 = pag + P29 = — [(a“i)i - T;(dui)fc} - [Tt(dum)i G 68 ( g;:t)}

(From the integral representation

2 //
hpas(§,t) = (=0 +a§ . / / /a 0585 dt” dt’ du'—
t—1 Jt

_a(§+0) +a€+h /f*/ /32 z', t") dt”dt’daz',
t—r Jt’ 6178

by applying of imbedding theorem we obtain

1/2
(T denr) <orliduos (| s

tij

)+
L2(Q1)

L2(Q1) H Oz ot

L2(Q2)>:|
¢ ¢ 2t

_L "o au(x”vtl)_/ 7 a2u(x”/7t/) g3 3l
hpag(§,t) = 2h7//// (a (") % a'(z'") 502 dx" dz" da' dt

E_x o t—T

§+ &+
—L (e M_ Tt M VIR,
2h7//// (a (") O a'(z") 92 da’" dx"" da dt

(3.50)

1/2
{TZ 30(€.1) h} < O (lallws 0.6 el o g Hlallwsee n lulwso gy )-

tewi

(3.49) +llallwz 1 (Hé)zx 5

In a similar way, from the formula

L2(Q2) Hc’)x ot
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From (3.42)—(3.48), analogous estimates for z > ¢, (3.49) and (3.50), we obtain the
estimate for s :
(3.51)

1/2
{r et 0} <O+ (lelsoo +lalwgien) Il

tEwi

Finally, from (3.40), (3.41) and (3.51) we get the required estimate for the rate of
convergence of the difference scheme (3.37), (3.11), (3.12):

Theorem 3. Let the assumptions of the third part (iii) of Lemma 4 hold. Then
(3:52) lzlligzy < C (B +7) (lalwso.e +llallwgen +lellwzon ) lullgaz g
4. Problem with dynamical boundary condition

Let us consider the initial-boundary value problem for the heat equation with
dynamical boundary condition at = = 0 (cf. [7], [28]):

(4.1) o() % . %(a(m) %) = f(x,t), z€(0,1), 0<t<T,
(4.2) Kaugi’ D _ o )au((?g; D wt,t)=0, 0<t<T
(4.3) u(z, 0) = up(x), =z € (0, 1),

where, as in Section 3, K > 0, 0 < ¢1 < a(z) < ¢z and 0 < ¢3 < ¢(z) < cy.
The problem (4.1)—(4.3) can be reduced to a problem of the form (3.1)—(3.3) using
even extension of the input data: c(z) = c¢(—z), a(z) = a(—x), uo(z) = uo(—x),
f(z,t) = f(—=x,t), for z € (=1,0). It easily follows that the solution u(x,t) also
can be extended by even fashion on (—1,0) x (0,7) and it satisfies the conditions

ou 0 Ju
(44) [ela) +2K 0(2)] 57 - %(a(az) %) = f(e,t), ze(-L1), 0<t<T,
(4.5) w(=1,6) =0, u(l,t)=0, 0<t<T,
(4.6) u(z, 0) = up(z), x=€(-1,1).
The problem (4.4)—(4.6) can be written in the form (2.1) if one lets H = La(—1,1),
0 ou
Au = ~ 3 (a(x) %> and Bu = [c(z) + 2K §(z)] u(z, t).

If w(z) is an even function on the segment (—1, 1), then

2 = ICLLU w/x2x: 1a:17 U)IIZ?2$
Juwlls = [ ao) @) do =2 [ afa) /(@) da

1 1
|w||% = / c(x) w?(x) de + 2K w?(0) = 2/ c(x) w?(x) dr + 2K w?(0).
—1 0

Further, we assume that the functions ¢(z) and a(x) are continuous on [0,1]. By
L2(0,1) = W$(0,1) we denote the closure of C[0, 1] in the norm lwliz, 0,1y induced
by inner product

1
(u, w)5, 01y = /0 u(z) w(z) dz + u(0) w(0) .

We let W3 (0,1) = {w € W3(0,1) : w(1) =0} and W(0,1) = Wi (0, 1) nWE(0, 1),
k=2,3,.... The following analog of Lemma 3 holds.
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Lemma 9. If Aw = —(a(z)w'(z)) and Bw = (c(z) + K §(z))w(z), where
a, ¢ € L(0,1). Then the norm ||w||p is equivalent to the norm |lw|z, - The
norm ||w|| 4 is equivalent to the norm ||w||‘7v21(0 1y, Jorw € W4(0,1). If in addi-
tion o' € Ly(0,1) then the norm ||Aw|g-1 is equivalent to the norm Hw”VAvg(o,l)’
for w € W2(0,1). We define also the spaces WQk’k/Q(Q) = Ly(0,T; WX(0,1)) N
WEO,T; Ly(0,1)), k=0,1,2, ....

Lemma 10. (i) If a € W2(0,1), ¢ € W(0,1), ug € W2(0,1) and f € L(Q),
then the problem (4.1)~(4.3) has unique solution v € W3 (Q). (i) If a € W(0,1),
c € W2(0,1), up € W2(0,1), f € WQI’I/Q(Q) and the compatibility conditions hold

Ui(1) =0, a(0)uy(0) = K U (0),

where Uy(x) is defined as in Lemma 4, then the problem (4.1)-(4.3) has unique
solution u € VV3 3/2(62). (iii) If a € W5(0,1), ¢ € W5(0,1), ug € W5(0,1),
fe W22 1(Q) and the last compatibility conditions hold, then the problem (4.1)-
(4.3) has unique solution u € Wy(Q).  On the segment [0,1] we introduce

nonuniform mesh @y. Let ﬁh be the space of the mesh functions, equal to zero at
x = 1. We define the following inner product

h
o, W) = o0 w(0) + 3 o) we)h
TEWHR

and the corresponding norm |[w||; = [[w]|L,, = [w, w),ll/Q. We also define the mesh
norms

W, = Il +w?0), Il =l + o3,

bl =l + el + 1wl
,t—7)2 1/2
Zl Lz} | Lz} { ZH ‘Ezh} ’
tEw, tEwT ’

[0+, 8) = (-, )12
2 2 Lan
0 =7 20 Mo Dl +72 30 30 e

tew, ’ t€w, t' €, t'#t
W0 =7 3 N 0%, +7 3l DI
tewr tews

We approximate the problem (4.1)—(4.3) by the difference scheme

(4.7) (c+2K &) vi— (avg)s = T2T) f,  (2,t) € wy, X wi,
(4.8) v(l,t) =0, t€,,
(4.9) v(z,0) =up(x), = €w,,
where
. 2 _ /o T € wy
(a'Uj)j x:O_E(avi) m:an’ (Sh—(Sh(l‘)—{ 1/h17 Z‘:O,

T2f(0,t) = h21 /Ow (1 - ]%) Fa ) da .
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We also consider higher order approximation of (4.1)

hy—h
(c+ 2K 6p) v+ 0 +3 (cv)ar — (@vz)s—

(4.10) he —h

—0 (ax Vzz — Aza vi) = TiTt_f, (z,t) € wy, X wj,

where 0(z) = 1 for = € wy and 6(0) = 0, and the following approximation of
initial condition (4.3)

T2 (cuo)(x)
TT , T € wp
(4.11) v(z,0) = { 2K g0t T cuo)®) 0
2 K+hi ¢(0)  T=E

Using results obtained in Section 3, we immediately obtain the following result.

Theorem 4. Let the assumptions of the first part (i) of Lemma 10 hold and
a € W(0,1), c € Wi(0,1). Then difference scheme (4.7), (4.8), (4.11) converges
and the following error bound holds

lu=olly, < C (e vIog1/7+7) (lelwson + lalwzo +1) lellm g, -

If the assumptions of the second part (ii) of Lemma 10 hold then difference scheme
(4.7)=(4.9) converges and the following error bound holds

[w = vllg. 172 < C (ae vVIog 177 +7) (llallwzon) + lellwzon ) lullgs. o g -

If the assumptions of the third part (¥i) of Lemma 10 hold then difference scheme
(4.10), (4.8), (4.9) converges and the following error bound holds

[w= vl < C e +7) (lalwson + lelwzomn ) lullpsz g,

5. Weakly-parabolic equation

Let us consider the initial-boundary value problem:

(5.1) Koz —¢) git‘ - a%(a(x) %) = f(x,t), z€(0,1), 0<t<T,
(5.2) w(0,8) =0, wu(l,t)=0, 0<t<T
(5.3) u(&, 0) = up = const,

where K >0, 0 < ¢ < a(z) < ¢y and §(z) is the Dirac—delta function. From (5.1)
follows, that the solution for (z,t) € @1 and (z,t) € Q2 satisfies the equation

o (a) 90) = f.),

and for x = £ — the conjugation conditions

[ulame = (€ +0,8) —u(€ = 0,) =0, | au}ﬁg:K@u(&t).

“ ou ot
Therefore, at fixed ¢, the equation is elliptic on (0,&) and (£, 1), and its parabolic
character exhibits only in the point = £. The problem (5.1)—(5.3) also has the

form (2.1), where Au = —2 (a(a:) g—g) and Bu = K §(x — &) u(z,t). The operator

A is positively definite in the space H4 =W (0, 1). The operator B is nonnegative
in Hy and

lwllz = VK [w(é)].
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It is easy to see, that in this case the estimates of Lemma 1 in which doesn’t par-
ticipate B~! are valid. From Lemma 1 and well known results for elliptic equations
it follows the following assertion.

Lemma 11. (i) If a € Lo(0,1), f = fo+ 6’;1 and fo, f1 € La2(Q), then the
problem (5.1)-(5.3) has unique solution uw € Wy (Q) and u(, -) € WQI/Q(O,T).
(ii) If a € W3 (0,€) N W3(£,1) and f € La(Q) then the problem (5.1)-(5.3) has
unique solution u € W,°(Q) N W2°(Q1) N W2P(Qyz) and u(é, ) € Wi (0,T).
(iii) If a € W2(0,6) " W2(&,1) and f € W3(Q) then the problem (5.1)-(5.3)

has unique solution u € Wy °(Q) N Wi(Q1) N Wi'(Q,), % € Ly(Q) and

u(g, -) € VV23/2(07 T). Holding back the notations from Section 3, we approximate

the problem (5.1)—(5.3) by the implicit difference scheme with averaged right—hand
side

(5.4) K épvp — (avg)s = T2T7 f,  (x,t) € wp X wi,
(5.5) v(0,t) =0, wo(l,t)=0, te€,,

(56) U(gv 0) = Uo-

The error z = u — v satisfies the discrete problem

(5.7) Képze—(azz)s = —X1,2, (2,t) €wp x W),
(5.8) 2(0,t) =0, z(1,t)=0, tE€w,,

(5.9) %(£,0) =0,

where, as in Section 3.3
ou
P )
X1 = auz ( o

The difference scheme (5.7)—(5.9) can be written in the form (2.3) where Apv =
—(awvz)z is positive linear operator in Hy and Bpv = K §,v — nonnegative linear
operator in Hy. Also,

1/2
||wAh={Zaw%h} s Jlls, = VE (@)

wEw;

‘We need the norm

H’UHQ 1 1/2 =T Z (HU ||h+HUZL’( ) |h*)+T Z Z |t7t'|§ t)‘

tewt tE€w, t/ €@y, t/#£t

From Lemma 2, using the discrete Friedrichs inequality, we get the a priori estimate

1/2
(5.10) leligpa, e < C{ > Il Ih*} :

tEw,-

Using the estimate (3.20) for x; we immediately obtain the following estimate for
the rate of convergence of the difference scheme (5.4)—(5.6):

el < C (Bs +7) (lellwzog + lallwze ) x

(5.11)
<H Oxot

+ [|u , + ||u , .
L2(Q) lullwzou + 1 ”W§°<Qz>>
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From Lemma 2 it follows also the estimate in the “weak” (semi)norm
(5.12)

2, =7 S 16 D = S e DI, <O 3 14y e 0,
tewd tews tewy
Letting
—X1,4 = Appt — oz,
where as in Section 3.4

_ e (OU [ Ou
p=u—T u and a=al, T (a)—Tth (a%)
We find
(5.13) 145 X1, 2115, < llull, + 114, ()3, -
We set

Then, using the imbedding, [22]:
1¥lc@,) = max |v(z)] < 0.5 [[va]la ,

we get

145 (@) 15, =I5, = Kv*(€) < K [v[E,) <
(5.14) K ) ) ) )
< o lvallie < Cllvlla, = Cllazly- < Clledl, -

4 h

Therefore, from (5.12)—(5.14) it follows

(5.15) P> 1aE O <O Y (16 0P + -, BIRL) -

tews tews
From (5.15) and the estimates for p and « (3.33) and (3.34) we get the following
rate of convergence estimate.

e
ot

|Z|f2,h7’ - LQ(O,T)

(516)  +Ch2, (lallwzoe + lalwzen ) (lelhwzoqn + lullwzoq,)
In such a way, the following assertion is valid.

Theorem 5. Let a € W2(0,&) N WE(£,1). If f € Wi(Q) then the difference

scheme (5.4)-(5.6) converges in discrete Wé:f norm and the convergence rate
estimate (5.11) is satisfied. If f € Lo(Q) then the convergence rate estimate (5.16)
holds.
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