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Abstract. The dissipative dynamics of classical correlation(CC), quantum discord(QD) and

entanglement (QE) of two qubits in two-side and one-side decoherence models are inves-

tigated under Markovian environments. We find the sudden change QD as well as CC and

sudden death of entanglement (ESD). The results show that QD and QE decay faster with

the increasing of squeezing parameter r; the dipole-dipole interaction Ω under two-side

decoherence leads to the oscillation of quantum discord and concurrence for initial non-

eigenstates; while in all cases when entanglement suddenly disappears, quantum discord

keeps nonzero under same conditions.
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1 Introduction

Quantum entanglement is a vital resource and has the computational advantage of quantum

over classical algorithms. Hence it has been playing a central role in quantum computation

and information processing [1]. However, there are other non-classical correlations apart

from the entanglement [2–5] that can be very important to these fields. In order to char-

acterize all non-classical correlations, Ollivier and Zurek introduced a concept of quantum

discord [2], it is a different type of quantum correlation than the entanglement, and it can

be considered as a more universal resource because separable mixed states (without entan-

glement) can have nonzero quantum discord. This measure of quantum correlations holds a
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fundamental feature of classical bipartite states. When the discord is zero, the information is

locally accessible and can be obtained by distant independent observers without perturbing

the bipartite state. In addition, it was shown theoretically [6,7] and later experimentally [8]

that, some separable states may also speed up certain tasks over their classical counterparts.

Therefore, much attention has been paid to many relative topics of quantum discord [9–13].

It is well known that all quantum systems interact inevitably with their surrounding en-

vironments, this leads to decoherence which degrades the entanglement of the quantum sys-

tem [14]. Thus it is important to know the influence of the environment on quantum cor-

relation. Recently, the quantum correlation dynamics in open quantum systems have been

studied [15–18]. It was shown that the quantum correlation measured by quantum discord

is more resistant against the environment than quantum entanglement. For a certain class of

states under Markovian dynamics, the quantum entanglement can disappear within a finite

time, namely, entanglement sudden death (ESD) [19], but quantum discord only vanishes

asymptotically at infinite time. In addition, for some special initial states, quantum corre-

lation in a bipartite quantum system will not be affected by the decoherence environment

during an initial time interval.

On the other hand, many typical environments have been investigated, such as, vacuum,

squeezed vacuum, multi-mode vacuum cavity, single mode cavity and so on. The effects on

the entanglement, such as dipole-dipole interaction between the particles and the couplings

of particles with the same cavity field have been studied extensively. Zhang et al. [20] stud-

ied the entanglement character between two identical two-level atoms in a two-mode cavity

field, where the authors discussed the influence of dipole-dipole interaction on entanglement

between atoms. Chen et al. [21] study the influence of the dipole-dipole interaction on the

evolution of entanglement between two atoms, they obtained different results. However, the

dissipative dynamics of quantum discord in coupled qubit system under Markovian environ-

ments are rarely discussed. In this paper we investigate the dissipative dynamics of quantum

discord and entanglement for two coupled qubit system subjected to Markovian environments,

each of which interacts with a multi-mode squeezed vacuum field reservoir. We also compare

the dynamics of quantum discord with that of the entanglement by using the standard numer-

ical method, and examine the influence of dipole-dipole interaction and squeezing parameter

on quantum discord and entanglement.

2 The model and its solution

The system consists of two identical qubits. By one-side decoherence, we mean that only

one qubit A (or B) is subject to the multi-mode squeezed vacuum field reservoir. For the

two-side decoherence, the two atoms characterized by an excited state |1〉 and a ground

state |0〉, are independently subject to their respective reservoirs (assumed to be the same for

both) described by annihilation bk and creation operators b+
k

. In the interaction picture and

the rotating-wave approximation, the interaction between the qubits and their reservoirs is
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generally represented by the simple Hamiltonian ( h̄=1)

V (t)=
2
∑

j=1

∑

k

gk

�

b+
k
σ

j
−e−i(ω−rk)t+bkσ

j
+ei(ω−rk)t

�

, (1)

where j labels A j, σ−=|0〉〈1| (σ+=|1〉〈0|), andω are lowering (raising) operator and transi-

tion frequency between the ground and excited states of a qubit, and rk= ck are the frequen-

cies associated with the reservoir. Here, we consider each qubit is coupled to a multi-mode

squeezed vacuum field reservoir represented by the reduced density operator

ρR=
∏

k

Sk(ξ)|0k〉〈0k|S+
k
(ξ), (2)

Sk(ξ)=exp
�

ξ∗bk0+k bk0−k−ξb+
k0+k

b+
k0−k

�

. (3)

Here, Sk(ξ) is the squeeze operator, ξ= rexp(iφ) with r being the squeezing parameter

and φ being the phase for squeezed field. Under the Markovian approximation, the reduced

density matrix ρ describing the two non-coupled qubit system is then expressed by a master

equation [22]

dρ

d t
=

2
∑

i=1

 

Γ

2
c2

r

�

σi
+σ

i
−ρ−2σi

−ρσ
i
++ρσ
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+σ
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−
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s2
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+ρσ
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−+ρσ

i
+σ

i
−
�

−Γe−iφsr crσ
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−ρσ

i
−−Γeiφsr crσ

i
+ρσ

i
+

!

, (4)

where sr = sinh(r), cr = cosh(r), Γ is the spontaneous decay rate of the qubit to the reser-

voir. When the two qubits are coupled to each other , the dipole-dipole interaction [23] of

two qubits can be expressed as H =Ω(σ1
+σ

2
−+σ

1
−σ

2
+), where Ω is the interaction strength

between two qubits, and taken real for simplicity. The dynamics of the density matrix ρ

describing the system of two-coupled qubits is then expressed by

dρ

d t
=−i[H,ρ]+

2
∑

i=1

 

Γ

2
c2

r

�
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+σ

i
−ρ−2σi

−ρσ
i
++ρσ

i
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−
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− Γ

2
s2
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i
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i
−
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i
−ρσ
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−−Γeiφsr crσ

i
+ρσ

i
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!

. (5)

Assuming that the two-qubit system is initially an “X-state” form, in the basis of the sepa-

rable product states {|00〉,|01〉,|10〉,|11〉}, the initial state is

ρ0=











a0 0 0 µ0

0 b0 ν0 0

0 ν∗ c0 0

µ∗0 0 0 d0











. (6)
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One of the important features is that the initial density matrix of Eq. (6) preserves its form

during time evolution governed by Eq. (5),

ρAB=











a 0 0 µ

0 b ν 0

0 ν∗ c 0

µ∗ 0 0 d











. (7)

Using Eq. (5), we can obtain the resolve of coupled differential equations. For simplicity,

we set φ=0.Then given an initial state, the behavior of quantum discord and entanglement

between the two qubits finally depends on squeeze parameter γ and dipole-dipole interaction

Ω.

3 Dynamics of quantum and classical correlations

A bipartite quantum state contains both classical and quantum correlations. These correla-

tions are quantified jointly by their “quantum mutual information”, an information-theoretic

measure of the total correlation in a bipartite quantum state [24]. Such the quantum mutual

information can be defined as

I(ρAB)=S(ρA)+S(ρB)−S(ρAB). (8)

ρAB denotes the density operator of a composite bipartite system, ρA (ρB) is the reduced

density operator of part A (B) respectively, and S(ρ)=−Tr(ρ log2ρ) is the joint entropy of

the system. Quantum mutual information may be written as a sum of classical correlation

C(ρAB) and quantum correlation D(ρAB), namely, I(ρAB) = D(ρAB)+C(ρAB) [2–4]. This

quantum part D(ρAB) has been called quantum discord [2]. The classical correlation C(ρAB)
is defined as

C(ρAB)=max
{Bk}

�

S(ρA)−S(ρAB|{Bk})
�

=S(ρA)−min
{Bk}

S(ρAB|{Bk}), (9)

where the maximum (or the minimum) is taken over all the complete sets of projective mea-

surements {Bk} on the subsystem B and S(ρAB|{Bk})=
∑

k pkS(ρk) is the quantum conditional

entropy with respect to this measurement, the conditional density operator ρk associated with

the measurement result k is

ρk=
1

pk

�

TrB(I⊗Bk)ρAB(I⊗Bk)
�

,

where the probability

pk=TrAB(I⊗Bk)ρAB(I⊗Bk).

To evaluate the entanglement and the discord dynamics presented in this paper we de-

termine an analytical expression for a subclass of the X structured density operator same as

Eq. (7).
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For the discord, we choose the set of projectors {|ϕ1〉〈ϕ1|,|ϕ2〉〈ϕ2|}where |ϕ1〉=cosθ |1〉+
eiδsinθ |0〉, |ϕ2〉= sinθ |1〉−eiδsinθ |0〉 to measure one of the subsystem. The minimum of

discord D(ρAB)= I(ρAB)−C(ρAB) can be obtained by the maximum of Eq. (9), which can be

achieved by choosing appropriate values of θ and δ [13].

The usual way to identify entanglement between two qubits in a mixed state is to examine

the concurrence. Using Wootters’ formula [25], the concurrence for the state of Eq. (7) is

written as C=2max{0,C1=|µ|−
p

bc,C2=|ν |−
p

ad}.Then given an initial state, the behavior

of quantum discord and entanglement between the two qubits finally depends on squeeze

parameter r.

3.1 Dynamics of QD, CC and QE under two-side decoherence

Firstly, we take the initial state

ρ(0)=(1−p)|ψα〉〈ψα|+p|φβ〉〈φβ |,
where |ψα〉=cosα|01〉+sinα|10〉 and |ψβ〉=cosβ |00〉+sinβ |11〉 are two Bell-like states. The

initial state of the two-qubit is given by the parameters (p,α,β)=(0.6,π/10,π/3), we draw

the dynamics of quantum and classical correlation and concurrence in Fig. 1, we can see CC,

QD and QE decrease with time, but the sudden change of CC and QD is present for this ini-

tial state, and it occurs earlier when r is large. Additionally, the initial order is CC>QE>QD,

after a short evolution time, the order becomes CC>QD>QE, this is because entanglement

undergoes sudden death, while correlations are long lived. The results imply that QE dis-

appear completely after a finite time independently with the initial states, while QD as well

as CC decreases and tends to be a stable value according to the initial-state parameter for a

very-long-time interval. In this sense, the quantum discord is more robust than entanglement

for the quantum system exposed to the environment. The inset in Fig. 1(a) shows r versus

ESD time, and indicates that the disentanglement time decreases with the increase of squeeze

parameter r due to the increasing of average photon number of every mode in the squeezed

vacuum reservoirs.

Fig. 2 gives the dynamics of QD and QE for dipole-dipole interaction strength Ω=8, we can

see that QD decreases oscillatory with time and the amplitude is reduced with r increasing.

When r is large, quantum discord shows no evident oscillation after long time evolution,

and remains to be non-zero value. Instead, concurrence falls abruptly to zero, i.e., the ESD

occurs .The oscillations of QD and QE disappear due to the fact that large r dominates over

Ω, consequently the effects of Ω could be neglected at present. But QD behaves obviously

differently from the QE, implying that quantum algorithms based only on quantum discord

correlations are more robust than those based on entanglement.

The influences of dipole-dipole interaction strength Ω on the dynamics can be seen from

Fig. 3, obviously, both quantum discord and concurrence drop with time. For Ω=0, they dis-

play no oscillation but concurrence present “ESD” feature without dark-bright periods. When

Ω>0, QD and QE decreases oscillatory with Ω. For strong Ω, the concurrence evolution ex-

hibits dark-bright periods, and the period of oscillation becomes shorter. However, quantum
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Figure 1: Dissipative dynamics of QD (dashed line), CC(dot-dashed line) and QE (solid line) under

two-side decoherence for (a) r=0.5 (b) r=1, (p,α,β)=(0.6,π/10,π/3), Ω=0.
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Figure 2: Dissipative dynamics of QD (dashed line) and QE (solid line) for (a) r =0.5, (b) r =1,

(p,α,β)=(0.6,π/10,π/3), Ω=8.
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Figure 3: Dissipative dynamics of quantum discord (a) and concurrence (b) for r = 0, (p,α,β) =
(0.6,π/10,π/3), Ω=0 (solid line), Ω=5 (dot-dashed line), Ω=10 (dashed line).
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discord goes down oscillatory and more slowly and without dark-bright periods. The concur-

rence dynamics is confined with the region determined by the below solid line (Ω=0), but it

is not same for the QD. This mean Ω can make the quantum correlation stronger or weaker

periodically. Moreover, the investigation shows that, the dipole-dipole interaction leads to

the oscillation when the initial states are not the eigenstates of the coupling Hamiltonian

H=Ω(σ1
+σ

2
−+σ

1
−σ

2
+).

3.2 Dynamics of QD, CC and QE under one-side decoherence

By one-side decoherence, we mean that only one qubit A (or B) is subject to the heat reservoir.

The Solution of the quantum-Louiville equation is outlined in Appendix, The dynamics behav-

iors of CC, QD and QE, are very similar with that present in two-side decoherence model, for

example, there exist sudden-change behavior in the dynamics of CC and QD, long-lived CC

and QD, and ESD, etc. However, in comparison with the dynamics under the two-side deco-

herence, in one-side decoherence QD, CC and QE decay slowly under same initial conditions.

It is worth pointing out that when the system is initially the eigenstates of the coupling

Hamiltonian, for example, the initial state as Werner state [26]

ρ0=p|ψ−〉〈ψ−|+ 1−p

4
I ,

where |ψ−〉=(|01〉−〈10|)/p2 is a maximally entangled state and p (0< p<1) indicates the

purity of the initial states. When p=0, the Werner state become totally mixed states, while

for p=1 it is well-known Bell-state.
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Figure 4: Dissipative dynamics of QD (dashed line), CC(dotted line) and QE (solid line) under

one-side decoherence for (p=0.5) (a) r=0.5, (b) r=1.

As shown in Fig. 4, QD, CC and QE monotonously decrease with time, CC and QD present

no sudden changes, and the order keeps all the timeąACC drops with the time more slowly

when is smaller . In this case we also say that this initial state is robust associated with CC and

QD, while not with respect to QE. Moreover, the dynamics of QD, CC and QE is not influenced
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by dipole-dipole interaction, this stems from the fact that the Werner states are the eigenstates

of the coupling Hamiltonian H=Ω(σ1
+σ

2
−+σ

1
−σ

2
+).

4 Conclusion

In this paper, we have studied the dynamics of two qubits in two-side and one- side decoher-

ence models (both or only one qubit) interacting independently with the multi-mode squeezed

vacuum field baths. We have discussed mainly the effects of the squeeze parameter r and the

dipole-dipole interaction Ω on QD, CC and QE. The result is as follows.

The sudden change of QD, CC and sudden death of entanglement are found. QD and QE

decay faster with the increasing of r. The large squeeze parameter r can contribute to the

entanglement death sooner and the time of sudden change earlier. The corresponding death

time under two-side decoherence has been given.

For initial non-eigenstates of the coupling Hamiltonian, the dipole-dipole interaction Ω

leads to the oscillation of quantum discord and concurrence. For large r, QD shows no evident

oscillation after long time evolution, and remains to be non-zero value. Instead, concurrence

falls abruptly to zero, i.e., the ESD occurs. The oscillations of QD and QE disappear due to the

fact that large dominates over Ω, consequently the effects of Ω could be neglected at present.

For one-side decoherence model, the dynamics behaviors of CC, QD and QE are very

similar with that present in two-side decoherence model, However, in one-side decoherence

QD, CC and QE decay slowly under same initial conditions ,and CC decays more slowly with

increasing r in one-side decoherence.

In conclusion, quantum discord evidently behaves differently from the concurrence under

same conditions. Even when ESD occurs, the value of quantum discord keeps nonzero. This

means that the absence of entanglement does not necessarily indicate the absence of quantum

correlations, then quantum discord is more robust than the entanglementąAmeaning that

quantum computers based on this kind of quantum correlation, differently from those based

on entanglement, are more resistant to external environment.
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Appendix 1

Solution of the quantum-Liouville equation under two-side decoherence is

a=
x2

4

�

c−2
2r

+2(a0−d0)c
−1
2r

+1−2(b0+c0)
�

− x

2

�

c−2
2r
−(b0+c0+2d0)c

−1
2r

+d0−a0

�

+
(c−1

2r
−1)2

4
,
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b=− x2
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�
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−1
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4
,
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µ=Re(µ)+iIm(µ), ν=Re(ν)+iIm(ν),

Re(µ)= x

�

sinφRe(iµ0e−iφ)+
ycosφ

2
Re(ν0+eiφµ0)+

cosφ

2y
Re(−ν0+e−iφµ0)

�
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,

Im(ν)=
x

2

�

2cos(2Ωt)Im(ν0)+sin(2Ωt)(b0−c0)
�

,

with y= e−Γs2,t , y= e−s2,t , sr =sinh(r), cr =cosh(r).

Appendix 2

Solution of the quantum- Liouville equation under one-side decoherence:

a=
1

2
e−tΓcosh(2r)

�
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�

,
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ν=
1

2
e

1
2

Γ(cosh(2h)+sinh(2r))t
�

Re(µ0)(1+eΓsinh(2r)t)+Re(ν0)(1−eΓsinh(2r)t)

+i
1

2
e

1
2

Γ(cosh(2r)−sinh(2r))t
�

Im(ν0)(1−e−Γsinh(2r)t)+Im(µ0)(1+eΓsinh(2r)t)
�

.
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