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Abstract. In this work we present three age-structured models with spatial

dependence. We introduce an improved explicit method, namely Super-Time-

Stepping (STS) developed for parabolic problems and we use its modification

for the numerical treatment of our models. We explain how the acceleration

scheme can be adapted to the age-dependent models. We prove convergence

of the method in case of Dirichlet boundary conditions and we demonstrate

the accuracy and the efficiency of the Modified STS comparing it with other

numerical algorithms of same or higher order, namely the explicit, fully implicit

and Crank-Nicolson standard schemes.
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1. Introduction.

During the last years, when modeling how populations change in time, it has
been common to take into account not only the age structure of the species, but
also their distribution in space. In 1973 Gurtin introduced spatial spread in age-
dependent populations [9]. Later on many other authors have investigated the
analytical aspects of various age-structured models with linear or nonlinear diffusion
(for instance [4], [5], [6], [12], [16], [17]). Concerning the numerical treatment of the
models arising in the field of population dynamics, numerical methods for models
including only age or space structure, have been studied extensively (see [20, 21, 22]
and the references cited therein). Much less research work has been done on models
that include both - age and space. In the works of Kim [10], Kim-Park [11] and
Milner [18], nonlinear models with nonlinear diffusion are treated. They propose
and analyze some mixed numerical algorithms combining finite difference methods
along the characteristic lines and finite element methods in the spatial variables.
In the case of linear fertility and mortality functions, Lopez and Trigiante [15] have
developed a finite difference scheme for an age-dependent model with Dirichlet
boundary conditions and linear population flux. Ayati [3] proposes a numerical
method for a nonlinear model with nonlinear diffusion which allows the use of
variable time steps and independent age and time discretization. In [19] Pelovska
and Boyadzhiev show how an additional acceleration of the Modified STS scheme
can be obtained.
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In the present paper we propose a variation of the standard explicit scheme
for the heat equation adapted for solving age-dependent population models with
linear spatial diffusion. One of the main ideas used in the article is that along
characteristics in the age-time direction the models below can be viewed as parabolic
differential equations. The super-time-stepping algorithm that we employ is an
acceleration method for explicit schemes for parabolic problems. STS relaxes the
condition of stability at the end of every time step that is imposed for the normal
explicit scheme and demands stability at the end of every super-step, where a super-
step consists of K sub-steps. It implies that we can take larger time steps and
consequently the total number of steps is reduced speeding up the computations,
compared with the standard explicit scheme. The intermediate steps (sub-steps)
are chosen non-uniformly from a formula that is given later.

The organization of the paper is as follows. In Section 2 we present the contin-
uous models and our assumptions on them. In Section 3 the Super-Time-Stepping
algorithm for the heat equation is presented and we show the connection between
the problems with and without age structure. In Section 4 we give a modified
version of STS adapted to our problems and we discuss its implementation. The
convergence of the method is proved in Section 5. In Section 6 we give computa-
tional examples illustrating the benefits of the numerical scheme and we analyze
our results. In Section 7 we make a brief discussion on the different approaches
to the models with Neumann boundary conditions and in Section 8 we make some
final remarks.

2. The continuous models.

The model we consider is similar to the Lotka-McKendrick’s problem [20], but
involving also the spatial structure of the individuals [19]. Let p(a, t, x) be the
density of the population where a ∈ [0, a+] denotes age and a+ is the maximum
age; t > 0 denotes time and x ∈ (0, 1) denotes spatial position, then we have the
following system:

(1)





1) pt + pa + µ(a)p = Dpxx, a ∈ [0, a+], t > 0, x ∈ (0, 1)

2) p(0, t, x) =
∫ a+

0

β(a)p(a, t, x) da = B(t, x), t > 0, x ∈ (0, 1)

3) p(a, 0, x) = p0(a, x), a ∈ [0, a+], x ∈ (0, 1)
4) p(a, t, 0) = p(a, t, 1) = 0, a ∈ [0, a+], t > 0

The functions β(a) and µ(a) represent the age specific fertility and the age
specific mortality respectively; p0(a, x) is the initial distribution; D is the
dispersal modulus being constant; B(t, x) is the birth rate, which gives the
total number of offspring in one time unit at position x. Since homogeneous Dirich-
let conditions on the boundaries of the region (0,1) are considered as ”extremely
inhospitable” (see [6]), we consider the same model but with Neumann bound-
ary conditions which are imposed to describe a population without immigration or
emigration:

(2)





1) pt + pa + µ(a)p = Dpxx, a ∈ [0, a+], t > 0, x ∈ (0, 1)

2) p(0, t, x) =
∫ a+

0

β(a)p(a, t, x) da = B(t, x), t > 0, x ∈ (0, 1)

3) p(a, 0, x) = p0(a, x), a ∈ [0, a+], x ∈ (0, 1)
4) px(a, t, 0) = px(a, t, 1) = 0, a ∈ [0, a+], t > 0
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In order to present a more realistic case where the species are with a finite life span
and to allow the mathematical treatment of our problems, we want the maximum
age a+ to be finite (a ∈ [0, a+], where a+ < +∞) and we require that the survival
probability

(3) π(a) = e
−

∫ a

0

µ(τ)dτ

vanishes at a+. We assume:

- β(.) is non-negative and belongs to L∞(0, a+);
- µ(.) is non-negative and belongs to L1

loc(0, a+);

-
∫ a+

0

µ(τ)dτ = +∞ (in order for the survival probability to vanish at a+);

- p0 ∈ L2([0, a+]; (0, 1)), p0(a, x) ≥ 0 for a.e. (a,x)∈ [0, a+]× (0, 1)

We add the following compatibility condition that ensure the continuity of p(a, t, x)
along the characteristic lines, namely

(4) p0(0, x) =
∫ a+

0

β(a)p0(a, x)da,

where p0(a, x) satisfies the conditions of Dirichlet (1-4) or Neumann (2-4). Under
these assumptions it is shown (see [4, 12, 13]), that there exists a unique solution
p ∈ C(0, T ;L2((0, a+)× (0, 1))), verifying problems (1) and (2).

Furthermore we consider the following variables:

(5)





1) w(a, t, x) =
p(a, t, x)

P (t)
(age profile)

2) P (t) =
∫ 1

0

∫ a+

0

p(a, t, x)dadx (total population)

Then, substituting in (2) we obtain a nonlinear model which is a modified version
of our initial-boundary value problem with Neumann conditions

(6)





1) wt + wa + µ(a)w + Y (t)w = Dwxx, a ∈ [0, a+], t > 0, x ∈ (0, 1)

2) w(0, t, x) =
∫ a+

0

β(a)w(a, t, x)da, t > 0, x ∈ (0, 1)

3)
∫ 1

0

∫ a+

0

w(a, t, x)dadx = 1, t > 0

4) w(a, 0, x) = w0(a, x), a ∈ [0, a+], x ∈ (0, 1)
5) wx(a, t, 0) = wx(a, t, 1) = 0, a ∈ [0, a+], t > 0

(7)





d

dt
P (t) = Y (t)P (t)

P (0) = P0

where

(8) w0(a, x) =
p0(a, x)∫ 1

0

∫ a+

0

p0(a, x)dadx

, P0 =
∫ 1

0

∫ a+

0

p0(a, x)dadx

and

(9) Y (t) =
∫ 1

0

∫ a+

0

[β(a)− µ(a)]w(a, t, x)dadx
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This formulation has the advantage that ”the function w is ”smoother” than p
([5, 6])” and obviously, once w(a, t, x) and P (t) have been approximated, an ap-
proximation of p(a, t, x) can be obtained by formula (5.1) and vice versa.

In order to approximate our models we have to use quadrature formulas such
as the end-point rule or the trapezoidal rule for the integral terms. In [20] it is
shown that this creates problems every time when an evaluation of the integrated
function at the right endpoint a+ of the interval is required, since lim

a→a+
µ(a) = ∞.

Following [20] we take

(10)
u(a, t, x) =

p(a, t, x)
π(a)

v(a, t, x) =
w(a, t, x)

π(a)

and then substituting with the new variables u and v in equations (1), (2) and (6)
respectively, we obtain:
(11)



1)ut + ua = Duxx, a ∈ [0, a+], t > 0, x ∈ (0, 1)

2)u(0, t, x) =
∫ a+

0

β(a)π(a)u(a, t, x) da = B(t, x), t > 0, x ∈ (0, 1)

3)u(a, 0, x) = u0(a, x), a ∈ [0, a+], x ∈ (0, 1)
4)u(a, t, 0) = u(a, t, 1) = 0 or ux(a, t, 0) = ux(a, t, 1) = 0, a ∈ [0, a+], t > 0

(12)



1) vt + va + v

∫ 1

0

∫ a+

0

[(β(a)− µ(a))π(a)]v(a, t, x)dadx = Dvxx,

a ∈ [0, a+], t > 0, x ∈ (0, 1)

2) v(0, t, x) =
∫ a+

0

β(a)π(a)v(a, t, x)da, t > 0, x ∈ (0, 1)

3)
∫ 1

0

∫ a+

0

v(a, t, x)π(a)dadx = 1, t > 0

4) v(a, 0, x) = v0(a, x), a ∈ [0, a+], x ∈ (0, 1)
5) vx(a, t, 0) = vx(a, t, 1) = 0, a ∈ [0, a+], t > 0

Written in this way, the qualitative features of the discussed models are preserved
but there are no more problems with their numerical treatment (see [20] for details).
Because of this reason in the sequel we shall apply numerical schemes on equations
(11) and (12) and once knowing their approximate solution u(a, t, x) and v(a, t, x)
respectively, we shall multiply it with π(a) in order to yield results for p(a, t, x) and
w(a, t, x) respectively.

3. Super-Time-Stepping method.

In this section we give the connection between (11) and the heat equation and
we present the super-time-stepping method for parabolic equations. Let us make
the following substitution

(13) γ(s, x) = u(a0 + s, t0 + s, x)
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where (a0, t0) is a certain point on the characteristic line t = a + s (or a = t + s) as
shown on the figure below.

Then, we obtain:

(14)





γs = ua + ut = Duxx(a0 + s, t0 + s, x) = Dγxx

γ(s, 0) = γ(s, 1) = 0 or γx(s, 0) = γx(s, 1) = 0
γ(0, x) = u(a0, t0, x),

where if a0 > t0, then u(a0 +s, t0 +s, x) = u0(a, x) and u(a0 +s, t0 +s, x) = B(t, x)
vice versa (see the figure above). This means that along the characteristic lines we
can rewrite the governing equation in (11) as

(15) γt = Dγxx, t > 0, x ∈ (0, 1)

coupled with Dirichlet or Neumann boundary conditions

(16) γ(t, 0) = γ(t, 1) = 0 or γx(t, 0) = γx(t, 1) = 0, t > 0

and initial conditions

(17) γ(0, x) = γ0(x), x ∈ (0, 1)

Consequently an approximation of this problem by a standard Euler explicit scheme
is given by
(18)



1) γn+1
i =

Dτ

h2
γn

i−1 + (1− 2Dτ

h2
)γn

i +
Dτ

h2
γn

i+1, i = 1, . . . , M − 1;n = 0, . . . , N − 1

2) γn+1
0 = 0 or γn+1

0 = (1− 2Dτ

h2
)γn

0 +
2Dτ

h2
γn
1 , n = 0, . . . , N − 1

3) γn+1
M = 0 or γn+1

M =
2Dτ

h2
γn

M−1 + (1− 2Dτ

h2
)γn

M , n = 0, . . . , N − 1

4) γ(0, x) = γ0(x),

where τ is the step size in time; h is the mesh size in space; by γn+1
i we have

denoted an approximation of the exact solution γ(s, x) at the mesh point (tn+1, xi)
and for the end points i = 0 and i = M we have employed a central-difference
approximation (with a ”fictitious” point) (see [21, 22]) in case of Neumann boundary
conditions. Rewriting the scheme in a suitable way, we get

(19)

{
γn+1 = Aγn, n = 0, . . . , N − 1
γ0 = γ0,
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where A is an (M-1)× (M-1) symmetric, three-diagonal, positive definite matrix
[22] and γn denotes a column vector with M-1 elements.

Even though this scheme is computationally simple, it has a serious drawback -

the scheme is stable if the time step is very small, namely τ ≤ 2
λmax

(λmax is the

biggest eigenvalue of the matrix A). This is the so called Courant-Friedrichs-Lewy

condition (CFL), which in our case is: τ ≤ h2

2D
. Aiming to overcome this drawback

and to increase the efficiency of the method by a slight modification in the code
while keeping the accuracy at the same time we use the STS method for parabolic
problems (see [2], [8]) whose idea is to require stability only at the end of a super-
step ∆T , consisting of K sub-steps τ1, τ2, ..., τK with different length. These inner
steps have no particular approximation properties and can be chosen explicitly in
such a way that stability is ensured over the super-step

(20) ∆T =
K∑

k=1

τk

Consequently the method can be associated with Runge-Kutta type methods with
K stages.

Alexiades [2] uses the optimality properties of some modified Chebishev poly-
nomials to give the following formula for τk:

(21) τk = τ((−1 + ν) cos(
(2k − 1)π

2K
) + 1 + ν)−1, k = 1, . . . ,K

where τ is the time step for the explicit scheme, calculated in such a way that the

CFL (stability) condition is satisfied; ν is a number in the interval (0,
λmin

λmax
] with

λmin and λmax being the smallest and the biggest eigenvalues respectively of the
matrix A in (19).

From the equation above it can be shown, [2], that:

(22) ∆T → K2τ as ν → 0

Analyzing this result we can conclude that for ν being close to 0 the super-step
∆T is K times faster than an explicit time step, i.e. the length of the time interval
covered when executing K explicit steps Kτ is K times shorter than a super-step,
consisting of K sub-steps. It means that by a proper choice of Kand ν, STS can
accelerate an explicit scheme for parabolic equations up to K times.

In [2] it is shown that for each choice of K the standard explicit scheme (18-1),
applied to equation (15), coupled with Dirichlet boundary conditions is stable and
accurate for larger ν (< 1). But the larger the damping factor ν is, the shorter
∆T becomes, trading accuracy for speed. When ν is small, the method is faster
but less accurate which is to be expected, since the time steps become larger. The
same subordination can also be seen by our experiments.

4. Modified Super-Time-Stepping for age-structured problems.

Inspired by the approach described above, we note that the age of the species
changes at the same rate as the time passes, so we take the step size in age identical
to the step size in time and along the characteristic lines, we have the following
numerical grid
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Figure 1. Along the characteristics

where τ > 0 is the age and time discretization parameter and τ =
a+

N
(N is

the total number of subintervals in time). Let h =
1
M

be the discretization step in

space where M is the number of subintervals in space. Let L =
a+

τ
be the number

of discrete age steps. Then for each time level tn = nτ, n = 0, ..., N we have the
following grid: Γ = {(aj , xi) : aj = jτ, j = 0, ..., L;xi = ih, i = 0, ..., M}. Let the
discrete function U j

i be an approximation of the solution of (15) at time level tn at
grid point (aj , xi) and Û j+1

i - at time level tn+1 at grid point (aj+1, xi). Then we

approximate the directional derivative
∂

∂t
+

∂

∂a
, setting

(23)
(

∂

∂t
+

∂

∂a

)
u(aj , tn, xi) ≈ Û j+1

i − U j
i

τ

and the discrete Laplace operator

(24) Uxx =
U j

i−1 − 2U j
i + U j

i+1

h2

Thus, an approximation of problem (11) (analogous to the one we applied to the
heat equation) is as follows (see Figure 1):
(25)



1) Û j+1
i =

Dτ

h2
U j

i−1 + (1− 2Dτ

h2
)U j

i +
Dτ

h2
U j

i+1, i = 1, . . . , M − 1; j = 0, . . . , L− 1

2) Û j+1
0 = 0 or Û j+1

0 = (1− 2Dτ

h2
)U j

0 +
2Dτ

h2
U j

1 , j = 0, . . . , L− 1

3) Û j+1
M = 0 or Û j+1

M =
2Dτ

h2
U j

M−1 + (1− 2Dτ

h2
)U j

M , j = 0, . . . , L− 1

Proceeding as in the case without age-structure we rewrite (25) in the form

(26) Û j+1 = AU j , j = 0, . . . , L− 1

where A is the same (M-1) × (M-1) symmetric, tri-diagonal, positive definite matrix
as in (19).

At the initial time t = 0 we consider U j
i =

p0(aj , xi)
π(aj)

, j = 0, . . . , L, i = 0, . . . , M

and for the boundary condition (11-2) we apply the trapezoidal rule, obtaining

(27) Û0
i = τ

L−1∑

j=1

βjπ(aj)Û
j
i +

τ

2
[β0π(a0)Û0

i + βLπ(aL)ÛL
i ], i = 0, . . . , M
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The previous description concerns a uniform grid (see Figure 1). Wishing to adapt
STS to the age-structured problems, we consider a mesh as shown in Figure 2,
which shows how one super-step looks like.

Figure 2. One super-time-step with 3 intermediate steps

The vertical and horizontal axes present the time and age distributions respec-
tively; τk, k = 1, . . . , K are the inner-time-steps (on the graph we have drawn
one super-step, consisting of three sub-steps). The first difference with STS for
parabolic problems is that when stepping in time, we move also in age. Another
particularity is that we have to calculate the solution at the boundary points as
well. Because of these reasons, for the implementation of the modified STS scheme
we proceed as follows: first we choose the value of ν and the number of intermediate

steps, K; then we calculate τk, k = 1, . . . , K, the length of ∆T and s =
a+K

T
, the

number of age-nodes (see Figure 2), which depends on the choice of K. To initialize
the procedure, we consider the discrete solution being identical to the analytical so-
lution at time t = 0. Next we start using sub-steps τk, k = 1, . . . ,K in time. Since
we have multiple age nodes at each time level, we re-number the ”inner” age-nodes
in a convenient way (as shown on Figure 3.2) and we calculate the discrete solution
at the kth inner time level k = 1, . . . ,K − 1 as follows

(28)

Û j
i =

Dτk

h2
U j

i−1 + (1− 2Dτk

h2
)U j

i +
Dτk

h2
U j

i+1, i = 1, ..., M − 1; j = 0, ..., s− 1,

Û j
0 = Û j

M = 0, j = 0, ..., s− 1 or

Û j
0 = (1− 2Dτk

h2
)U j

0 +
2Dτk

h2
U j

1 , Û j
M =

2Dτk

h2
U j

M−1 + (1− 2Dτk

h2
)U j

M , j = 0, s− 1,

where U j
i is the discrete solution at the (k − 1)st time level and we consider it

as known. One can see that within one super-step, we do not use the value of
the discrete solution at the boundary points and that’s why we do not calculate
it. Another specification is that the discrete solution at the inner time levels has
no particular approximation properties and consequently we do not output it. We
use the approximation only at the last inner-time K corresponding to time level
tn+1, found by formula (25), but with time step τK , i.e. τ = τK . At this level we
calculate the solution at the boundary point as well, by formula (27) and time step
∆T . The described procedure is repeated for each super-step and continues until
we reach the end of the time interval.

In the nonlinear case (12), we proceed in an analogous way. The only difference
here is that we need to approximate the double integral in the first equation with
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a proper quadrature formula, namely we use the trapezoidal rule. Since we employ
an explicit scheme, its application is trivial. The modified STS procedure is easy
to use once we have developed it for the linear model. The difficulty comes from
the fact that for the nonlinear problem no theoretical results are available. This
implies that we cannot determine the upper bound for the parameter ν, but the
results show that this is not a real obstacle since we can choose ν as a suitable
number in the interval (0, 1), [1], and apply the modified STS also in this case.
The good performance of STS-like algorithms for degenerate nonlinear parabolic
problems is given in [7]. A method for an automatic time-step selection for STS
applied to a Stefan-like problem, is proposed in [14].

While with a proper choice of K and ν, STS can accelerate an explicit scheme
for parabolic equations up to K times, (22), in our case, as we do steps in time
and in age, modified STS can speed up the explicit scheme up to K2 times. If
we consider also the fact that by the STS modification, we calculate the boundary
condition much less frequently (we calculate it only at the end of each super-step)
in comparison with the explicit scheme, this means the acceleration is even bigger.

5. Convergence of the method.

We shall show in this Section that under certain conditions on regularity of the
coefficients of (11), the approximate solution defined by the modified STS converges
to u, uniformly in ∆T , as ∆T → 0.
Let us first note that the formula of integration by parts

f(∆T )− f(0) = ∆Tf ′(0) +
∫ ∆T

0

(∆T − s)f ′′(s)ds

is equivalent to

(29) f ′(0) =
f(∆T )− f(0)

∆T
− 1

∆T

∫ ∆T

0

(∆T − s)f ′′(s)ds

Using this formula and equation (11-1) it can be shown that
(30)
u(a + ∆T, t + ∆T, x)− u(a, t, x)

∆T
= D

∂2u

∂x2
+

1
∆T

∫ ∆T

0

(∆T−s)
∂2u

∂ξ2
(a+s, t+s, x)ds,

where we have considered the directional derivative in the characteristic direction
ξ = 1√

2
(1,1):

∂

∂ξ
= (

∂

∂t
,

∂

∂a
).ξ

Thus, for 0 ≤ i ≤ M , 0 ≤ j ≤ Ns, 0 ≤ n ≤ Nt (Ns and Nt represent the number of
subintervals in age and time respectively; Nt = TNs (since for simplicity we assume
a+ = 1) and we use the notation introduced in Section 4, replacing the step-size τ
in age and time by ∆T ) we have

(31)
ûj+1

i − uj
i

∆T
−D

∂2uj
i

∂x2
i

=
1

∆T

∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds,

which can be rewritten in the following form

(32) ûj+1
i = uj

i + D∆T
∂2uj

i

∂x2
i

+
∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds
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Let us now introduce the approximation error ε, defined by

(33)

{
εj

i = u(aj , tn, xi)− U j
i = uj

i − U j
i ,

ε̂j+1
i = u(aj+1, tn+1, xi)− Û j+1

i = ûj+1
i − Û j+1

i ,

for 0 ≤ i ≤ M , 0 ≤ j ≤ Ns, 0 ≤ n ≤ Nt.
For readers’ convenience we give the definition of some norms, associated with ε:

(34)

||εi||l1 = ∆T

Ns∑

j=0

|εj
i |,

||ε||l∞l1 = ∆T max
0≤i≤M

Ns∑

j=0

|εj
i |,

||ε||l∞l∞ = max
0≤i≤M

max
0≤j≤Ns

{|εj
i |}

Here is the result about the convergence of the modified STS:

Theorem 1. Let the solution u(a, t, x) of (11) with conditions of Dirichlet on the
boundary be continuously differentiable for (a,t,x) ∈ (0, a+)× (0, T )× (0, 1) and its
derivatives are bounded. Then there exists a constant C > 0 (independent of ∆T
and depending on the norms indicated below), such that:

(35)
a) ||ε||l∞l1 ≤ C

(
||β̃||L∞ + ||∂u

∂t
||L∞ + ||∂u

∂a
||L∞ + ||∂

2u

∂ξ2
||L∞

)
∆T,

b) ||ε||l∞l∞ ≤ C

(
||β̃||L∞ + ||∂u

∂t
||L∞ + ||∂u

∂a
||L∞ + ||∂

2u

∂ξ2
||L∞

)
∆T,

where with β̃ we have denoted the function β̃(a) = β(a)π(a).

Proof: 1) i > K
Let us consider K intermediate steps within one super-step (see Figure 2). Then,
after one step in time ∆T , we have the following more convenient form of the
modified STS scheme:
(36)
Û j+1

i = cK(U j
i−K + U j

i+K) + cK−1(U
j
i−K+1 + U j

i+K−1) + . . .

+c1(U
j
i−1 + U j

i+1) + c0(U
j
i ), i = 1, . . . ,M − 1, j = 0, . . . , Ns − 1

where ck, k = 0, . . . , K are positive (and bounded) coefficients which can be
obtained explicitly by formula (38) given below. Subtracting (36) from (32) we
obtain, for i = 1, . . . ,M − 1, j = 0, . . . , Ns − 1, 0 ≤ n ≤ Nt − 1, the error equation:

ε̂j+1
i = ûj+1

i − Û j+1
i =

uj
i + D∆T

∂2uj
i

∂x2
i

+
∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds− cK(U j

i−K + U j
i+K)

−cK−1(U
j
i−K+1 + U j

i+K−1)− ...− ci(U
j
0 + U j

2i)− ...− c1(U
j
i−1 + U j

i+1)− c0(U
j
i )
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We add and subtract the exact solution in mesh points (aj , tn, xi−K), (aj , tn, xi+K),
(aj , tn, xi−K+1), . . . , (aj , tn, x0), multiplied by proper coefficients and thus, we ob-
tain:

ε̂j+1
i = uj

i + D∆T
∂2uj

i

∂x2
i

+
∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds + cK(εj

K+i + εj
i−K)

+cK−1(ε
j
i+K−1 + εj

i−K+1) + . . . + ci(ε
j
2i + εj

0) + . . . + c1(ε
j
i−1 + εj

i+1) + c0(ε
j
i )−

−cK(uj
i−K + uj

i+K)− cK−1(u
j
i−K+1 + uj

i+K−1)− . . .− ci(u
j
0 + uj

2i)− . . .

−c1(u
j
i−1 + uj

i+1)− c0(u
j
i )

Using Tailor expansions we have:

uj
i+k = u(aj , tn, xi + kh) = uj

i + kh
∂uj

i

∂xi
+

k2h2

2
∂2uj

i

∂x2
i

+
k3h3

3!
∂3uj

i

∂x3
i

+ O(h4),

uj
i−k = u(aj , tn, xi − kh) = uj

i − kh
∂uj

i

∂xi
+

k2h2

2
∂2uj

i

∂x2
i

− k3h3

3!
∂3uj

i

∂x3
i

+ O(h4),

which implies

uj
i+k + uj

i−k = 2uj
i + k2h2 ∂2uj

i

∂x2
i

+ O(h3)

Hence we see that:

(37)

ε̂j+1
i = uj

i + D∆T
∂2uj

i

∂x2
i

+
∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds + cK(εj

i+K + εj
i−K)

+cK−1(ε
j
i+K−1 + εj

i−K+1) + . . . + ci(ε
j
2i + εj

0) + . . . + c1(ε
j
i−1 + εj

i+1) + c0(ε
j
i )−

−cK(2uj
i + K2h2 ∂2uj

i

∂x2
i

)− cK−1(2uj
i + (K − 1)2h2 ∂2uj

i

∂x2
i

)− . . .

−c1(2uj
i + h2 ∂2uj

i

∂x2
i

)− c0(u
j
i ) + O(h3)

= uj
i + D∆T

∂2uj
i

∂x2
i

+
∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds + cK(εj

i+K + εj
i−K)

+cK−1(ε
j
i+K−1 + εj

i−K+1) + . . . + ci(ε
j
2i + εj

0) + . . . + c1(ε
j
i−1 + εj

i+1)+

+c0(ε
j
i )− h2(K2cK + (K − 1)2cK−1 + . . . c1)

∂2uj
i

∂x2
i

−(2cK + 2cK−1 + . . . 2c1 + c0)u
j
i + O(h3)

Now we give some results about the coefficients (36) of the method: the coefficients
ck
l , l = 0, . . . , k at the intermediate time level tk, k = 1, . . . , K can be obtained by

the following recursive formulas:

(38)

ck
0 = (1− 2σk)ck−1

0 + 2σkck−1
1 ,

ck
l = σk(ck−1

l−1 + ck−1
l+1 ) + (1− 2σk)ck−1

l , l = 1, . . . , k − 1,

ck
k = σkck−1

k−1,

where σk =
Dτk

h2
; ck−1

l , l = 0, . . . , k−1 are the (non-zero) coefficients of the previous

(k − 1)st intermediate time level and ck−1
l =0 for l ≥ k, i.e. if a super-step consists



AN IMPROVED EXPLICIT SCHEME FOR AGE-DEPENDENT POPULATION MODELS 477

of K sub-steps, then for each sub-step k, k = 1, . . . ,K we calculate the discrete
solution by using formula (38), where all ck

l , l = 0, . . . , k are dependent on the
coefficients ck−1

l , l = 0, . . . , k − 1 of the (k − 1)st sub-step as shown above and to
initialize this procedure we assume that in the beginning c0

0 = 1, c0
l = 0, l ≥ 1.

Then, under these conditions the following relations hold:

Proposition 1. At each (also intermediate) time level tk, we have:

(39) 2ck
k + 2ck

k−1 + . . . + 2ck
1 + ck

0 = 1, k = 1, . . . , K

Proof : We will prove this statement by induction. Let k = 1, then using
formula (38) we get:

c1
0 = 1− 2σ1,

c1
1 = σ1,

i.e. 2c1
1+c1

0 = 1. Let us assume that the equality holds for the first k−1 intermediate
steps; we shall show it is valid for the kth. Using again (38) we obtain:

ck
0 + 2ck

1 + . . . + 2ck
k = (1− 2σk)ck−1

0 + 2σkck−1
1 + 2σkck−1

k−1 + 2σk

k−1∑

l=1

(ck−1
l−1 + ck−1

l+1 )

+2(1− 2σk)
k−1∑

l=1

ck−1
l

= (1− 2σk)ck−1
0 + 2σkck−1

1 + 2σkck−1
k−1 + 2σk

k−2∑

l=0

ck−1
l + 2σk

k∑

l=2

ck−1
l

+2(1− 2σk)
k−1∑

l=1

ck−1
l

= (1− 2σk)ck−1
0 + 2σk

k−1∑

l=1

ck−1
l + 2σkck−1

0 + 2σk

k−1∑

l=1

ck−1
l + 2σkck−1

k + 2
k−1∑

l=1

ck−1
l

−4σk

k−1∑

l=1

ck−1
l

= ck−1
0 + 2

k−1∑

l=1

ck−1
l + 2σkck−1

k = ck−1
0 + 2

k−1∑

l=1

ck−1
l = 1,

where we have used that since ck−1
l , l = 0, . . . , k − 1 are the coefficients of level

k − 1, then ck−1
l = 0 for l ≥ k.

Proposition 2. At each time level tk, we have:

k2ck
k + (k − 1)2ck

k−1 + . . . + ck
1 =

D(τ1 + τ2 + ... + τk)
h2

, k = 1, . . . ,K

In particular, for the end sub-level k = K, this sum is exactly
D∆T

h2
(since a

super-step ∆T consists of K sub-steps).

Proof : The proof of Proposition 2 is analogous to that of Proposition 1. In order
to verify it, we shall again use mathematical induction, adopting the notation we
introduced above. Let k = 1, then we obtain the following result for the coefficients
of (36):

c1
1 = σ1 =

Dτ1

h2
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We assume the equality holds for k − 1 intermediate steps and using (38) we shall
verify it for the kth step:

k2ck
k + (k − 1)2ck

k−1 + . . . + ck
1 = σkk2ck−1

k−1 + σk

k−1∑

l=1

l2(ck−1
l−1 + ck−1

l+1 )

+(1− 2σk)
k−1∑

l=1

l2ck−1
l

= σk

[
12ck−1

0 + 22ck−1
1 + (12 + 32)ck−1

2 + . . . +
(
(k − 3)2 + (k − 1)2

)
ck−1
k−2

+
(
(k − 2)2 + k2

)
ck−1
k−1

]
+ (1− 2σk)

k−1∑

l=1

l2ck−1
l

= 2σk

[
ck−1
1 + 22ck−1

2 + 32ck−1
3 + . . . + (k − 2)2ck−1

k−2 + (k − 1)2ck−1
k−1

]

+σk

[
ck−1
0 + 2ck−1

1 + 2ck−1
2 + 2ck−1

3 + . . . + 2ck−1
k−2 + 2ck−1

k−1

]
+ (1− 2σk)

k−1∑

l=1

l2ck−1
l

Using the result obtained in Proposition 1, we have:

k2ck
k + (k − 1)2ck

k−1 + . . . + ck
1 = σk +

k−1∑

l=1

l2ck−1
l = σ +

D(τ1 + τ2 + ... + τk−1)
h2

=

D(τ1 + τ2 + ... + τk)
h2

=
D∆T

h2
,

and thus, we conclude the proof.
Remark: We underline that everywhere in the article, by cl, l = 0, . . . ,K we have
denoted the coefficients of the last level (the Kth) of each super-step and that’s
why we have skipped their upper index.

Substituting these results into the error equation (37), we readily obtain:

(40)

ε̂j+1
i =

∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds + cK(εj

i+K + εj
i−K)

+cK−1(ε
j
i+K−1 + εj

i−K+1) + . . . + ci(ε
j
2i + εj

0) + . . .

c1(ε
j
i−1 + εj

i+1) + c0(ε
j
i ) + O(h3)

We take the absolute values of (40) to deduce that:

(41)

|ε̂j+1
i | ≤

∫ ∆T

0

|(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)|ds + |cK ||εj

i+K + εj
i−K |

+|cK−1||εj
i+K−1 + εj

i−K+1|+ . . . + |ci||εj
2i + εj

0|+ . . . + |c1||εj
i−1 + εj

i+1|
+|c0||εj

i |+ O(h3)

≤ sup
s∈[0,∆T ]

{
|∂

2u

∂ξ2
(aj + s, tn + s, xi)|

}
∆T 2

2
+ |cK ||εj

i+K + εj
i−K |

+|cK−1||εj
i+K−1 + εj

i−K+1|+ . . . + |ci||εj
2i + εj

0|+ . . . + |c1||εj
i−1 + εj

i+1|
+|c0||εj

i |+ O(h3)

≤ C1∆T 2 + max
1≤i≤M−1

|εj
i |(| 2cK + . . . + 2c1 + c0︸ ︷︷ ︸

1

|) + O(h3)

= C1∆T 2 + max
1≤i≤M−1

|εj
i |+ O(h3)
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Concerning n = 0 we see that:

(42) εj
i = u0(aj , xi)− u0(aj , xi) = 0,

while for the approximation of the newborn (j = 0) we have:

(43) ε̂0
i =

∫ a+

0

β̃(aj+1)u(aj+1, tn+1, xi)da−
(
∆T

Ns−1∑

j=0

β̃j+1Û
j+1
i +

∆T

2
β̃0Û

0
i

)

Using the standard error estimate for the trapezoidal rule, an immediate conse-
quence is

(44) |ε̂0
i | ≤ ∆T 2||β̃||l∞C2

(
||∂u

∂t
||l∞ + ||∂u

∂a
||l∞

)
,

where C2 does not depend neither on ∆T nor on u.
From (41) and (44) it follows that

(45) max
1≤i≤M−1

|ε̂j+1
i | ≤ max

1≤i≤M−1
|εj

i |+ C1∆T 2 + O(h3),

and

(46) max
1≤i≤M−1

|ε̂0
i | ≤ C2∆T 2

Consequently, multiplying (45) and (46) by ∆T and summing on j, j = 0, ..., Ns,
we obtain

(47) ||ε̂||l∞l1 ≤ ||ε||l∞l1 + C∗∆T 2,

where C∗ depends on
(
||∂u

∂t ||L∞ , ||∂u
∂a ||L∞ , ||∂2u

∂ξ2 ||L∞ , ||β̃||L∞ , T and a+

)
. Substitut-

ing this relation into itself n times and using (42), we see that

(48) ||ε||l∞l1 ≤ C∗∆T,

which is exactly part a) of Theorem 1.
In order to derive the ||.||l∞l∞ estimate, we use (45) and (46) to see that:

max
0≤j≤Ns

max
1≤i≤M−1

|ε̂j
i | ≤ max

0≤j≤Ns

max
1≤i≤M−1

|εj
i |+ C3∆T 2

and then using the same iterative procedure as in case a), we obtain the second
part of the proof:

(49) ||ε||l∞l∞ ≤ C∗∗∆T

2) K > i and K < 2i
In this case, it can easily be checked that we can present the modified STS scheme
at time level tn+1 in the following form:
(50)
Û j+1

i = cK(U j
i+K − U j

i−(2i−K)) + cK−1(U
j
i+(K−1) − U j

i−(2i−K+1)) + . . .

ci+1(U
j
i+(i+1) − U j

i−(i−1)) + ci(U
j
i+i − U j

i−i) + ci−1(U
j
i+(i−1) + U j

i−(i−1)) + . . .

c1(U
j
i+1 + U j

i−1) + c0(U
j
i ), i = 1, . . . ,M − 1, j = 0, . . . , Ns − 1,
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where cl, l = 0, . . . ,K are the same coefficients as in case 1. Subtracting (50) from
(32) we obtain, for i = 1, . . . , M−1, j = 0, . . . , Ns−1, 0 ≤ n ≤ Nt−1, the following
error equation
(51)

ε̂j+1
i = uj

i + D∆T
∂2uj

i

∂x2
i

+ I − cK(U j
i+K − U j

i−(2i−K))

−cK−1(U
j
i+(K−1) − U j

i−(2i−K+1))− . . .− ci+1(U
j
i+(i+1) − U j

i−(i−1))
−ci(U

j
i+i − U j

i−i)− . . .− c1(U
j
i+1 + U j

i−1)− c0U
j
i ,

where we have used the notation I =
∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds. We

add and subtract the exact solution in mesh points (aj , tn, xi+K), (aj , tn, xK−i),
(aj , tn, xi+K−1), . . . , (aj , tn, x0), multiplied by proper coefficients and thus, we ob-
tain

(52) ε̂j+1
i = ε1 − ε2,

where
(53)

ε1 = uj
i + D∆T

∂2uj
i

∂x2
i

+ I + cK(εj
i+K − εj

i−(2i−K)) + cK−1(ε
j
i+(K−1) − εj

i−(2i−K+1))

+ . . . + ci+1(ε
j
i+(i+1) − εj

i−(i−1)) + ci(ε
j
i+i − εj

i−i) + . . . + c1(ε
j
i+1 + εj

i−1) + c0ε
j
i

(54)
ε2 = cK(uj

i+K − uj
i−(2i−K)) + cK−1(u

j
i+(K−1) − uj

i−(2i−K+1)) + . . .

+ci+1(u
j
i+(i+1) − uj

i−(i−1)) + ci(u
j
i+i − uj

i−i) + . . . + c1(u
j
i+1 + uj

i−1) + c0u
j
i

Proceeding as in the previous case, i.e. using the Tailor expansions and simplifying
afterwards, we readily obtain:

ε2 = uj
i [c0 + 2c1 + . . . + 2ci] + 2ih

∂uj
i

∂xi
[ci+1 + ci+2 + . . . + cK ] +

h2 ∂2uj
i

∂x2
i

[
c1 + 22c2 + . . . + i2ci

]
+ 2ih2 ∂2uj

i

∂x2
i

[1ci+1 + 2ci+2 + . . . + (K − i)cK ] +

2ih3

3!
∂3uj

i

∂x3
i

[
(i2 + 3.12)ci+1 + (i2 + 3.22)ci+2 + . . . + (i2 + 3.(K − i)2)cK

]
+ O(h4)

We add and subtract the expression 2uj
i [ci+1 + ci+2 + . . . + cK ] and using the fact

that the solution of (11) (for Dirichlet boundary conditions) is identically 0 at the
boundary points x = 0 and x = 1, we only add 2uj

0[ci+1 + ci+2 + . . . + cK ].
We also use the following formulas:

2uj
0[ci+1 + ci+2 + . . . + cK ] =

2[ci+1 + ci+2 + . . . + cK ]

[
uj

i − ih
∂uj

i

∂xi
+

i2h2

2!
∂2uj

i

∂x2
i

− i3h3

3!
∂3uj

i

∂x3
i

+ O(h4)

]

uj
i [c0 + 2c1 + . . . + 2ci] + 2uj

i [ci+1 + ci+2 + . . . + cK ] = uj
i (see Proposition 1)
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Thus, we arrive to the following result:

ε2 = uj
i − 2uj

i [ci+1 + ci+2 + . . . + cK ]

+2[ci+1 + ci+2 + . . . + cK ]

[
uj

i − ih
∂uj

i

∂xi
+

i2h2

2!
∂2uj

i

∂x2
i

− i3h3

3!
∂3uj

i

∂x3
i

]

+2ih
∂uj

i

∂xi
[ci+1 + ci+2 + . . . + cK ] + h2 ∂2uj

i

∂x2
i

[
c1 + 22c2 + . . . + i2ci

]

+2ih2 ∂2uj
i

∂x2
i

[1ci+1 + 2ci+2 + . . . + (K − i)cK ]

+
ih3

3
∂3uj

i

∂x3
i

[
(i2 + 3.12)ci+1 + (i2 + 3.22)ci+2 + . . . + (i2 + 3.(K − i)2)cK

]
+ O(h4)

= uj
i + h2 ∂2uj

i

∂x2
i

[
c1 + 22c2 + . . . + i2ci

]

+h2 ∂2uj
i

∂x2
i

[
(i + 1)2ci+1 + (i + 2)2ci+2 + . . . + K2ck

]

−h2 ∂2uj
i

∂x2
i

[
12ci+1 + 22ci+2 + . . . + (K − i)2cK

]

+ih3 ∂3uj
i

∂x3
i

[
12ci+1 + 22ci+2 + . . . + (K − i)2cK

]
+ O(h4)

Using the result obtained in Proposition 2 and the fact that since uj
0 = 0, it follows

∂2uj
0

∂x2
0

= 0, we get:

ε2 = uj
i + D∆T

∂2uj
i

∂x2
i

− h2
[
ci+1 + 22ci+2 + ...(K − i)2cK

]
[

∂2uj
0

∂x2
0

+ ih
∂3uj

0

∂x3
0

+ O(h2)

]

+ih3
[
12ci+1 + 22ci+2 + . . . + (K − i)2cK

]
[

∂3uj
0

∂x3
0

+ O(h)

]
+ O(h4)

= uj
i + D∆T

∂2uj
i

∂x2
i

+ O(h4)

Combining this result with (53), we yield:
(55)

ε̂j+1
i = ε1 − ε2 = uj

i + D∆T
∂2uj

i

∂x2
i

+ I + cK(εj
i+K − εj

i−(2i−K))

+cK−1(ε
j
i+(K−1) − εj

i−(2i−K+1)) + . . . + ci+1(ε
j
i+(i+1) − εj

i−(i−1))

+ci(ε
j
i+i − εj

i−i) + . . . + c1(ε
j
i+1 + εj

i−1) + c0ε
j
i − [uj

i + D∆T
∂2uj

i

∂x2
i

+ O(h4)]

=
∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds + cK(εj

i+K − εj
i−(2i−K))

+cK−1(ε
j
i+(K−1) − εj

i−(2i−K+1)) + . . . + ci+1(ε
j
i+(i+1) − εj

i−(i−1))

+ci(ε
j
i+i − εj

i−i) + . . . + c1(ε
j
i+1 + εj

i−1) + c0ε
j
i + O(h4)
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We can take the absolute values in (55), yielding:

|ε̂j+1
i | = |

∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds|+ |cK(εj

i+K − εj
i−(2i−K))|

+|cK−1(ε
j
i+(K−1) − εj

i−(2i−K+1))|+ . . . + |ci+1(ε
j
i+(i+1) − εj

i−(i−1))|
+|ci(ε

j
i+i − εj

i−i)|+ . . . + |c1(ε
j
i+1 + εj

i−1)|+ |c0ε
j
i |+ O(h4)

≤ |
∫ ∆T

0

(∆T − s)
∂2u

∂ξ2
(aj + s, tn + s, xi)ds|+ |cK(εj

i+K + εj
i−(2i−K))|

+|cK−1(ε
j
i+(K−1) + εj

i−(2i−K+1))|+ . . . + |ci+1(ε
j
i+(i+1) + εj

i−(i−1))|
+|ci(ε

j
i+i + εj

i−i)|+ . . . + |c1(ε
j
i+1 + εj

i−1)|+ |c0ε
j
i |+ O(h4)

Since the rest of the proof is identical to what we did in case 1), we are not going to
demonstrate it. The case (K > i and K > 2i) is analogous to (K > i and K < 2i)
and we leave it to the reader.

6. Performance on linear and nonlinear test problems.

In this section we investigate the performance of the modified super-time-stepping
scheme on three exactly solvable test problems. Relying on the stability results
given in Section 5, we believe the algorithm will work well also in the case of Neu-
mann boundary conditions and we demonstrate this empirically. We choose the
parameter ν as a random number in the interval (0, 1) and we perform a large
number of experiments. In each case we compare modified STS with schemes of
the same or higher order, namely the explicit, fully implicit and Crank-Nicolson
standard schemes, in terms of efficiency and approximation. For the implementa-
tion of the implicit schemes we use either direct or iterative methods for solving
the resulting system. Since SOR iterations and Thomas’ algorithm showed best
results, we list comparisons only with them. In the modified super-time-stepping
scheme we vary the parameter ν and the number of sub-steps we do, while in the
implicit schemes we increase the number of steps in time. Moreover, when apply-
ing SOR iterations we report the value of ω (found by trial) which gives the best
approximation and we use a tolerance of 10−6 for convergence.

6.1 Problem 1 - linear models

We consider a population with a finite age and for simplicity we take the maximum
age of the individuals a+ = 1 [19]. The mortality and the survival probability are

µ(a) =
1

1− a
, π(a) = 1−a respectively. We choose the following initial conditions:

(56) p0(a, x) = e−α∗a(1− a) sin(πx), for Dirichlet boundary conditions

(57) p0(a, x) = e−α∗a(1− a)(2 + cos(πx)), for Neumann boundary conditions

where α∗ is the intrinsic Malthusian parameter which determines the population
growth via the birth rate B(t, x). We assume the fertility β(a) = β and by choosing
an appropriate value of α∗ = 2, we calculate it by formula (4), which provides
continuity of the solution p(a, t, x). The solution of system (1) is given by

(58) p(a, t, x) = eα∗(t−a)(1− a)e−π2Dt sin(πx),
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and the one of problem (2)

(59) p(a, t, x) = eα∗(t−a)(1− a)[2 + e−π2Dt cos(πx)],

We assume the diffusion constant D = 1 for simplicity. In order to satisfy the CFL

condition τ ≤ h2

2D
for the explicit scheme, we choose τ = 0.00125 and h = 0.05. In

the other schemes we fix M = 20 and we vary the number of the steps in time. All
calculations in the first three tables are done for T = 3 (since the solution (58) of
(1) does not grow in time). In case of Neumann conditions on the boundary, we
have exponential growth of the solution and we give results only for T = 1.

In the tables below we use the following notations:
tsteps - total number of steps in time; asteps - total number of steps in age;
N∫ - number of calculations of the birth integral; NSTS - total number of super-
steps;
K - number of intermediate steps per one super-step; iter - number of iterations;
ω- factor, used in SOR iterations; CPU - time (in seconds), needed for computa-
tions;
Eabs - the max L∞ error; EL1 - the max L1 error; Erel - the max relative error;
IS - pure implicit scheme; CN - Crank-Nicolson scheme

a) Drichlet boundary conditions: T = 3

Table 1: MODIFIED SUPER - TIME - STEPPING

ν NSTS K tsteps asteps N∫ Eabs EL1 CPU

0.00 2400 1 2400 36480000 45600 3.069E-3 6.102E-4 24.18

0.0003 66 6 396 159258 1254 1.163E-1 2.361E-2 0.07

0.0006 150 4 600 561450 2850 4.933E-2 9.898E-3 0.24

0.001 99 5 495 302841 1881 7.628E-2 1.540E-2 0.14

0.001 27 10 270 41553 513 3.817E-1 7.937E-2 0.01

0.004 279 3 837 1468377 5301 2.615E-2 5.227E-3 0.48

0.006 168 4 672 705432 3192 4.237E-2 8.502E-3 0.31

0.006 114 5 570 402876 2166 6.149E-2 1.240E-2 0.19

0.009 177 4 708 783579 3363 3.919E-2 7.861E-3 0.28

0.02 150 5 750 701100 2850 3.882E-2 7.811E-3 0.30

0.07 126 10 1260 983934 2394 1.502E-2 3.133E-3 0.25

0.07 48 25 1200 342912 912 8.339E-3 2.673E-3 0.08

0.095 48 30 1440 411312 912 5.810E-3 1.874E-3 0.09

0.20 69 30 2070 866571 1311 2.657E-3 8.412E-4 0.18

Table 2a: IS + THOMAS’ ALGORITHM

tsteps N∫ asteps Eabs EL1 CPU

450 8550 1282500 2.594E-2 5.142E-3 1.09

600 11400 2280000 1.986E-2 3.939E-3 1.76

1200 22800 9120000 1.072E-2 2.127E-3 6.85

1800 34200 20520000 7.659E-3 1.521E-3 15.12

2400 45600 36480000 6.130E-3 1.217E-3 26.37
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Table 2b: IS + SOR ITERATIONS

tsteps N∫ asteps ω iter Eabs EL1 CPU

450 8550 1282500 1.57 597 2.460E-2 4.887E-3 1.11

600 11400 2280000 1.46 778 2.420E-2 4.808E-3 1.88

1200 22800 9120000 1.35 1389 1.905E-2 3.784E-3 7.25

1800 34200 20520000 1.27 2030 1.491E-2 2.962E-3 15.87

2400 45600 36480000 1.22 2641 1.417E-2 2.904E-3 26.55

Table 3a: CN + THOMAS’ ALGORITHM

tsteps N∫ asteps Eabs EL1 CPU

300 5700 570000 1.197E-3 2.118E-4 0.61

450 8550 1282500 1.384E-3 2.634E-4 1.24

600 11400 2280000 1.450E-3 2.815E-4 2.01

1200 22800 9120000 1.514E-3 2.991E-4 6.83

1800 34200 20520000 1.526E-3 3.023E-4 15.43

Table 3b: CN + SOR ITERATIONS

tsteps N∫ asteps ω iter Eabs EL1 CPU

300 5700 570000 1.1 667 3.623E-2 5.203E-3 1.05

450 8550 1282500 1.17 913 2.325E-2 4.620E-3 1.26

600 11400 2280000 1.14 1109 1.071E-2 2.127E-3 2.04

1200 22800 9120000 1.36 1687 1.702E-3 3.382E-4 7.32

1800 34200 20520000 1.22 2327 1.085E-3 2.155E-4 16.28

b) Neumann boundary conditions: T = 1

Table 4: MODIFIED SUPER - TIME - STEPPING

ν NSTS K tsteps asteps N∫ Eabs EL1 Erel CPU

0.00 800 1 800 13440000 16800 1.116E-2 1.853E-3 9.659E-4 8.54

0.0001 22 6 132 58674 462 1.220E-1 2.630E-2 4.122E-2 0.03

0.0005 50 4 200 206850 1050 5.037E-2 1.001E-2 1.635E-2 0.09

0.0009 32 5 160 104832 672 7.869E-2 1.564E-2 2.582E-2 0.05

0.006 38 5 190 148428 798 6.307E-2 1.254E-2 2.068E-2 0.07

0.008 58 4 232 278922 1218 4.091E-2 8.131E-3 1.314E-2 0.15

0.03 58 5 290 348348 1218 3.090E-2 6.138E-3 9.827E-3 0.15

0.08 56 8 448 518616 1176 1.423E-2 2.827E-3 4.469E-3 0.17

0.08 75 6 450 700875 9450 4.792E-2 1.007E-2 9.783E-3 0.24

0.1 50 10 500 515550 1050 1.129E-2 2.243E-3 3.545E-3 0.16

0.22 34 22 748 519078 714 1.148E-2 1.917E-3 1.521E-3 0.13

Table 5a: IS + THOMAS’ ALGORITHM

tsteps N∫ asteps Eabs EL1 Erel CPU

150 3150 472500 3.112E-1 5.144E-2 7.861E-3 0.47

200 4200 840000 1.756E-1 2.906E-2 6.056E-3 0.72

400 8400 3360000 4.454E-2 7.391E-3 3.298E-3 2.76

600 12600 7560000 2.009E-2 3.351E-3 2.365E-3 6.17

800 16800 13440000 1.149E-2 1.933E-3 1.896E-3 10.82
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Table 5b: IS + SOR ITERATIONS

tsteps N∫ asteps ω iter Eabs EL1 Erel CPU

150 3150 472500 1.5 1492 2.346E-1 3.635E-2 7.833E-3 0.92

200 4200 840000 1.2 2838 1.664E-1 3.889E-2 6.276E-3 1.75

400 8400 3360000 1.36 2533 1.545E-2 2.405E-3 3.247E-3 3.96

600 12600 7560000 1.3 3096 1.572E-2 3.771E-3 2.275E-3 8.41

800 16800 13440000 1.6 6258 1.004E-2 1.839E-3 2.101E-3 15.81

Table 6a: CN + THOMAS’ ALGORITHM

tsteps N∫ asteps Eabs EL1 Erel CPU

100 2100 210000 1.314E-3 1.849E-4 2.892E-4 0.33

150 3150 472500 1.267E-3 2.516E-4 3.935E-4 0.54

200 4200 840000 1.384E-3 2.749E-4 4.299E-4 0.79

400 8400 3360000 1.497E-3 2.974E-4 4.652E-4 2.92

600 12600 7560000 1.518E-3 3.016E-4 4.717E-4 6.54

Table 6b: CN + SOR ITERATIONS

tsteps N∫ asteps ω iter Eabs EL1 Erel CPU

100 2100 210000 1.57 820 3.302E-2 6.552E-3 6.944E-3 0.44

150 3150 472500 1.5 914 1.732E-2 3.442E-3 1.101E-3 0.65

200 4200 840000 1.45 1089 7.741E-3 1.154E-3 7.279E-4 1.12

400 8400 3360000 1.48 2320 3.719E-3 7.388E-4 4.835E-4 3.98

600 12600 7560000 1.15 3403 3.167E-3 7.278E-4 4.720E-4 8.84

From the data reported in the first table, we can see that the smaller the ν is, the
larger the errors are, but the computations are fast performed. One way to improve
accuracy is by increasing the damping factor. Thus the duration ∆T of the super-
step decreases and the errors we get are with better accuracy, but the cost goes up.
One can see that when decreasing the number of intermediate steps we also obtain
better accuracy (compare results for ν = 0.0003, K = 6 and ν = 0.0006, K = 4
or ν = 0.001, K = 10 and ν = 0.001, K = 5 in Table 1), but computational time
increases sensitively. Similar behavior can be observed in Table 4.

Since the upper bound of the parameter ν in case of Dirichlet b.c. is approx-

imately 0.006 (
λmin

λmax
≈ 0.00619), we increased the damping factor to 0.004 and

0.006 and we obtained an error comparable to the error given by the fully implicit
scheme + Thomas’ algorithm and to the one of the fully implicit scheme + SOR,
but modified STS appeared to be much more effective (see Tables 1, 2a, 2b, 3a
and 3b). Furthermore, relying on the fact that in practice computations work far
beyond the theoretical limits, we tried the modified STS algorithm with larger val-
ues of ν and the results show that it behaves extremely well. It follows that the

analytical restriction ν ∈ (0,
λmin

λmax
] is too strong and we can choose the values

of ν in the interval (0,1) randomly. Doing so, we could decrease the number of
super-steps NSTS and consequently the number of computations of the boundary
condition N∫ too. Thus, for ν ≈ 0.2 (also in case of Neumann b.c., Table 4) we
obtained accuracy comparable to the accuracy of the explicit scheme (note that for
ν = 0 and K = 1, we have exactly the explicit scheme itself) and to that one of the
second order Crank-Nicolson scheme (see Tables 3a and 3b). Regarding the CPU
time, one can see that the speed up given by the modified STS is enormous.
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In case of Neumann boundary conditions, the excessive restrictiveness of the
theoretical condition imposed on ν is even more obvious (since λmin = 0) and it is
proved empirically (see Table 11) that the scheme works for ν ∈ (0, 1). It implies,
we can also apply the modified STS to problems (for example nonlinear problems)
where the eigenvalues of the matrix A in (26) are not known. This fact is confirmed
by our experiments done for the nonlinear model (6) and listed below.

The results obtained in case of Neumann b.c. are similar to these for Dirichlet
b.c. In addition to the absolute and L1 errors, we show also the relative error. It
seems that in both cases for smaller values of ν we achieve best accuracy for smaller
number of inner steps, which corresponds to number of super-steps between 30 and
60 per unit time. By increasing ν, we yield better results as we increased the num-
ber of the inner steps as well (compare error values for ν = 0.07, K = 10 and
K = 25 in Table 1 and ν = 0.08, K = 6 or K = 8 in Table 4). Another interesting
observation is that while the implicit scheme combined with Thomas’ algorithm is
as exact and efficient as the implicit scheme combined with SOR iterations in case
of Dirichlet b.c. (Tables 2a and 2b), in the other case the implicit scheme with
SOR iterations, appears to be much slower with respect to the implicit scheme
with Thomas’ algorithm (see Tables 5a and 5b). Concerning the Crank-Nicolson
scheme in both cases its combination with Thomas’ algorithm is better (as error
values and time consumption) than the combination with SOR iterations (compare
results from Tables 3a, 3b, 6a and 6b). Moreover, in case of Neumann b.c. SOR it-
erations are more expensive than Thomas’ algorithm (Tables 5a and 5b; 6a and 6b).

6.2 Problem 2 - nonlinear model

Here we consider the same values for the fertility and mortality as in the linear
case and our initial conditions are the following

(60) w0(a, x) =
βe−α∗a(1− a)(2 + cos(πx))

2
,

where we assume α∗ is again equal to 2.
The solution of system (6) is given by

(61) w(a, t, x) =
βeα∗(t−a)(1− a)(2 + e−π2Dt cos(πx))

2eα∗t
,

where the exact value of the total population (7) is:

(62) P (t) =
2eα∗t

β

In order to obtain stability for the explicit scheme we keep the values of N and M
as in the previous case, i.e. N = 800 and M = 20 and we use the same notations.
We underline that since the solution of (6) is bounded, it implies the errors remain
stable in time and we present results only for T = 1.



AN IMPROVED EXPLICIT SCHEME FOR AGE-DEPENDENT POPULATION MODELS 487

Table 7: MODIFIED SUPER - TIME - STEPPING: NONLINEAR CASE

ν NSTS K tsteps asteps N∫ Eabs EL1 Erel CPU

0.00 800 1 800 13440000 16800 2.239E-2 4.457E-3 3.314E-3 10.13

0.0005 50 4 200 206850 462 2.400E-1 4.963E-2 3.608E-2 0.14

0.004 26 6 156 82446 546 4.370E-1 9.401E-2 6.754E-2 0.05

0.004 54 4 216 241542 1134 2.143E-1 4.432E-2 3.227E-2 0.16

0.008 58 4 232 278922 1218 1.909E-1 3.941E-2 2.866E-2 0.19

0.03 58 5 290 348348 1218 1.285E-1 2.700E-2 1.960E-2 0.18

0.08 64 7 448 594048 1344 5.173E-2 9.985E-3 1.047E-2 0.30

0.1 50 10 500 515550 1050 5.094E-2 8.819E-3 9.907E-3 0.22

0.20 59 12 708 863583 1239 3.048E-2 5.107E-3 5.759E-3 0.28

0.22 57 13 741 872613 1197 2.969E-2 4.876E-3 5.544E-3 0.26

0.24 55 14 770 874335 1155 2.916E-2 4.705E-3 5.382E-3 0.24

Table 8a: IS + THOMAS’ ALGORITHM: NONLINEAR CASE

tsteps N∫ asteps iter Eabs EL1 Erel CPU

150 3150 472500 309 1.321E-1 2.602E-2 1.938E-2 0.65

200 4200 840000 396 9.971E-2 1.969E-2 1.459E-2 0.97

400 8400 3360000 634 5.107E-2 1.012E-2 7.438E-3 3.48

600 12600 7560000 918 3.481E-2 6.902E-3 5.055E-3 7.51

800 16800 13440000 1137 2.668E-2 5.292E-3 3.864E-3 12.65

Table 8b: IS + SOR ITERATIONS: NONLINEAR CASE

tsteps N∫ asteps ω iter Eabs EL1 Erel CPU

150 3150 472500 1.5 442 1.243E-1 2.447E-2 1.486E-2 0.52

200 4200 840000 1.45 667 9.888E-2 1.952E-2 1.486E-2 0.90

400 8400 3360000 1.35 1026 5.073E-2 1.004E-2 7.388E-3 3.22

600 12600 7560000 1.25 1198 3.457E-2 6.855E-3 4.969E-3 6.48

800 16800 13440000 1.2 1297 2.534E-2 5.026E-3 3.785E-3 10.65

Table 9a: CN + THOMAS’ ALGORITHM: NONLINEAR CASE

tsteps N∫ asteps iter Eabs EL1 Erel CPU

100 2100 210000 189 2.503E-3 7.239E-4 2.174E-3 0.39

150 3150 472500 282 1.846E-3 4.066E-4 9.681E-4 0.67

200 4200 840000 361 2.058E-3 3.893E-4 5.452E-4 1.18

400 8400 3360000 616 2.283E-3 4.471E-4 4.512E-4 3.82

600 12600 7560000 810 2.326E-3 4.591E-4 4.657E-4 7.58

Table 9b: CN + SOR ITERATIONS: NONLINEAR CASE

tsteps N∫ asteps ω iter Eabs EL1 Erel CPU

100 2100 210000 1.5 377 5.842E-3 1.161E-3 6.936E-4 0.34

150 3150 472500 1.3 448 5.353E-3 1.064E-3 8.649E-4 0.61

200 4200 840000 1.25 528 3.709E-3 7.369E-4 5.969E-4 1.12

400 8400 3360000 1.3 917 2.288E-3 4.545E-4 4.612E-4 3.57

600 12600 7560000 1.18 1101 1.503E-3 2.986E-4 3.122E-4 7.47

What we see from Table 7 is that the behavior of the modified STS we observed
in the linear models, does not change here - the method remains very accurate and
efficient also in the nonlinear case. For small ν it is fast, but the accuracy is poor.
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In order to achieve accuracy we have to proceed as before, i.e. taking larger values
of ν which increases sensitively the computational time. The best performance of
the modified STS here (as CPU time) was obtained for ν = 0.004 and NSTS = 26
with maximum absolute error ≈ 0.437, L1 error ≈ 0.094 and relative error ≈ 0.0675.
Increasing the damping factor up to 0.22 and 0.24 we obtained errors similar to the
errors of the explicit scheme but with much less costs.

We have to remark that in the nonlinear case the both implicit schemes (and
especially the fully implicit scheme) combined with SOR iterations are more ef-
ficient than their combination with Thomas’ algorithm (compare Tables 8a and
9a with 8b and 9b respectively). Moreover they are more efficient even than the
implicit schemes with SOR iterations in the linear case (see Tables 8b and 5b; Ta-
bles 9b and 6b). It seems that the integral term in the leading equation of model
(6) enables the fast convergence of these schemes. The fully implicit scheme with
Thomas’ algorithm shows results (as error values) similar to these of the fully im-
plicit scheme with SOR iterations (see Tables 8a and 8b). The same is valid for the
Crank-Nicolson method (Tables 9a and 9b). As CPU time, the worst result of the
modified STS (CPU=0.30) is better than the best result for Crank-Nicolson + SOR
iterations (CPU=0.34). As errors, the best values are obtained by Crank-Nicolson
scheme (Tables 9a and 9b). Although the errors of the modified STS are of the
same range as these of the fully implicit scheme (compare Tables 7, 8a and 8b),
their computational times are vastly different.

7. Different approaches.

Proceeding as in the case without diffusion [20], we want to compare different
ways of finding the solution of the linear model (2). In [20] it is shown that the
indirect ways, i.e. via the integral equation and via the non-linear formulation,
work better than the direct approach. In the diffusion dependent case we observe
different behavior and as all the schemes showed similar results we present results
only for one of them, i.e. the fully implicit scheme with Thomas’ algorithm.

Let us introduce the following notations:
- Eabsp - the maximum absolute error for p(a, x, t);
- Eabsw - the maximum absolute error for w(a, x, t);
- Erelp - the maximum relative error for p(a, x, t);
- Erelw - the maximum relative error for w(a, x, t);

Table 10: IS + THOMAS’ ALGORITHM - via p(a,x,t)

T N M Eabsp Eabsw Erelp Erelw

1 200 20 1.756E-1 3.009E-2 6.056E-3 6.056E-3

1 600 20 2.009E-2 1.182E-2 2.365E-3 2.365E-3

1 400 200 4.436E-2 1.427E-2 2.833E-3 2.833E-3

1 1000 100 7.333E-3 5.772E-3 1.158E-3 1.158E-3

Table 11: IS + THOMAS’ ALGORITHM - via w(a,x,t)

T N M Eabsp Eabsw Erelp Erelw

1 200 20 3.745 9.971E-2 1.459E-2 1.459E-2

1 600 20 1.236 3.481E-2 5.055E-3 5.055E-3

1 400 200 1.858 4.891E-2 7.156E-3 7.156E-3

1 1000 100 7.40E-1 1.967E-2 2.872E-3 2.872E-3
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From Table 10 and Table 11 it is obvious that in the case with diffusion the better
way to obtain p(a, x, t) is the direct treatment of the linear model (2). Moreover it
seems that finding w(a, x, t) by p(a, x, t) is better (as accuracy) than obtaining it
directly from the non-linear system.

8. Conclusions.

The analysis and computations presented show that modified Super-Time-Stepping
is very effective and accurate method in case of age-structured models. It is applica-
ble and simple to employ in an existing explicit code for such problems. Its features
- speed, accuracy and implementation simplicity when compared to the implicit
schemes, make it preferable also for higher-dimensional and nonlinear problems.
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