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condensed system
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Abstract. An algebraic method is proposed to generate a self-consistent converged
complex polarizability of atoms and molecules from limited available data. An iter-
ative method is also suggested to generate the general accurate local field models of
condensed systems. The effect of the local fields on the photoabsorption cross sections
as the functions of the media density and structures has been studied in the present
work. A substantial influence on the photoabsorption cross section has been found
when the media density exceeds a critical density in the present unique model.
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1 Introduction

The current understanding of photoabsorption processes has been established from theo-
retical research assuming the interaction of a laser pulse with gases at low pressures. For
the isolated atom or molecule, the main characteristics of the photoabsorption process
can be explained by the polarizability of the target. The photoabsorption cross section
can usually be represented in terms of linear polarizability [1],

- 47w

o= 4 1)

c

where ( is the imaginary part of the complex dynamic polarizability of an isolated atom
or molecule, and is assumed scalar for simplicity. ¢ is the photoabsorption cross section,
w is the frequency of the laser pulse, and c is the light velocity. This is the fundamental
expression for photoabsorption cross sections used for ideal gas in most of theoretical
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studies [2-6] and represents only the properties of isolated atoms or molecules in ideal
gas.

However, that at sufficiently high intensities of the laser and high densities of the
medium the polarizability of the target will be perturbed by the fields of other ions or
atoms in the vicinity [7-10]. This impact of the surrounding medium on the photoab-
sorption spectrum is interesting in many respects [11-15]. A derivation of photoabsorp-
tion cross section for an atom embedded in a dielectric in which the atom and the nearby
oscillators of the dielectric mutually interact via the electrodynamic field is needed. It
is known from the Beer-Lambert’s law that the number density of the medium signifi-
cantly affects the measured cross-sections [16-21]. The photoabsorption cross section ¢ at
photon energy w is determined by the Beer-Lambert’s law,

a(w):%m(I—;) 2)

where I, is the intensity of the incident light, I is the attenuated intensity of the transmit-
ted light, [ is the transmitted length of light, and N is the number density of the system.
Unless indicated atomic units are used throughout.

The experimental determination of accurate absolute values of photoabsorption cross
sections is a difficult procedure using Beer-Lambert’s law. One of the most troublesome
problems encountered in atomic beam experiments is the accurate determination of the
density of the atomic beam. In order to describe the response of a bulk material (high den-
sity), the effective permeability is needed. This can be found by averaging the effective
dipole field over a large region. The results, known as the Clausius-Mossotti equation, or
the Lorentz-Lorenz formula, can be used to relate the bulk effective permeability to the
single atomic polarizability [16].

The functions chosen to relate the polarizability of the discrete dipoles to the dielec-
tric properties of the bulk material have been developed in history [19-21]. The Clausius-
Mossotti relation provides an exact function for the particular case of an infinite cubic lat-
tice of dipoles in the dc limit, where the size of the dipoles divided by the radiation wave-
length approaches zero [19]. Numerous schemes for modifying the Clausius-Mossotti
relation have been proposed to improve the accuracy the coupled-dipole method for re-
alistic, finite-sized scattering geometries [20]. Recently, Draine and Goodman developed
an expression for polarizability of an infinite array of polarizable points so that the array
exhibits the same dispersion relation as a continuum with dielectric constant €. Draine
and Flatau claimed in 1994 that this representation yields the best accuracy to date of
these expressions for dipole polarizability [21].

A problem is that the electronic structure of these condensed system is not accurately
known. Great effort are made to improve this description and the role of the spectro-
scopies. The data of the photoabsorption cross section is not enough, however, the avail-
able data will contain the influence effect model of the state of aggregation. Using the
limited available data, in the present work, an algebraic method is developed to study
the local field effect on the photoabsorption cross section in any media.
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2 Algebraic models of the local field

In order to identify the influence of the state of aggregation on the observable properties
of matter, Eq. (1) is not enough. That is, the photoabsorption cross sections ¢ of atoms
in molecules or in solid should be expressed by the dielectric constant which related
to the microscopic properties of atoms of these “macroscopic medium” based on Beer-
Lambert’s law [11]

a(w) — \g\liz‘] A /€/2+€//2_€/ (3)

and another different formula for the photoabsorption cross section corrected for the
presence of a medium using the Born-Oppenheimer approximation [12].

2 3
r(w)= [E <%> ] &g—cwlba(w) (4)

where [, (w) represents the square of the matrix element of emission transition from the
initial quantum state a to the final state b, w is the photon energy, N is the number density
of the system, c is the speed of light, n and e(=¢’+i€”), are the index of refraction and
the dielectric constant respectively. The factor (E,/E)? describes the fact that the emitted
electron is located in the medium of which the effective field E, may differ from the
average macroscopic electric field E. Because the Eq. (4) is dependent not only on the
properties (1,€) of the system but also on the external electric field E which is not the
property of the system, it is not usually been used in theoretical calculations.

In order to deduce the general expression of the relative permittivity (dielectric con-
stant) of a medium to its number density and mean dynamic polarizability, some models
have been reviewed. For the special case, such as ideal gases, the dielectric constant
without local field effects may be expressed as

€e=1+4+4nNua. (5)

For polarized atoms/molecules arranged in cubic crystals, the relation between polar-
izability and the dielectric function can be obtained using the well-known Clausius-
Mossotti model which represents the interactions of the polarized particles in the crystals.

4t Nw

=T iaNa/3

(6)
This formula is found to work well for a wide class of dielectric liquids and gases. But
it is the virtual cavity model, i.e., the local field, is modified by the presence of the cav-
ity, but the modification of the field outside the cavity is disregarded. Hence the local
field introduced in this way is not exactly the field that couples to the atom in reality.
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On the contrary, the Glauber-Lewenstein model defines a more accurate relationship for
dielectric constant and polarizability as

(e—1)(2e+1)

3 =47Na/3 (7)

which is a real cavity model in which the modification of the fields outside and inside the
cavity are taken into account in a consistent way. Recent experiments have been reported
that the real cavity model may be favored.

Although the CM model is sufficient for quantities of ideal gas, it may still be crude
for condensed system. Therefore we must look for a general model for complex dielec-
tric constant. Since the classical CM model for cubic crystal only include induced dipole
effect, if one adds induced multipole contributions and the overlapping effects of elec-
tron charge in the model, some small contributions in terms of power should be added.
Therefore, Eq. (5) may be generalized exactly as

€i=14+x 8)

where x =47 Na. Egs. (6) and (7) may also be expressed in series expansion respectively
as

1, 1
€m=1+x+0+ -2+ ——x )

3 9 3n—1
and

1, 15 1, 55 1.,
egl:1+x+§x _§x _ﬁx —i—ﬁx —ﬁx +--- (10)

Therefore, the dielectric constant € may be generalized as
e:eo+elx—|—ezx2—|—egx3—|—~-~—|—ejxj—|—~-~ (11)

where the coefficient ¢g =1 and other coefficient ¢; may have different value for these
different models. The dielectric functions of condensed system of Eq. (11) can be simply
expressed as

e(w)= ie]-xj(w) (12)
j=0

where the coefficients ¢; are almost not vary for a wide frequency region for a given
condensed system. For many condensed systems, a subset [¢(w)] and the dynamic po-
larizabilities a(w) of the m energies can be obtained through experimental measurement.
Therefore, one can construct a equations by rewritting Eq. (12) in a matrix form

D=PE (13)
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where the solution matrix E and the dielectric functions matrix D are

€(wr) e
€(wy) e

D= : . E=| : (14)
€(wm) e;j

and the matrix element of the 1 x 8 coefficient matrix P is P,,; = (47Na(wy,))/. Theoreti-
cally one may use all m known energies of the subset above to generate m coefficients by
solving equations of Eq. (12) using standard algebraic methods without any approxima-
tion. However, the coefficient matrix E calculated in this way will be largely dependent
on the selections of the subset, and the results will not be reliable.

The further questions at hand are: how does one obtain reliable ¢; from such obtained
accurate dielectric constants and polarizabilities of atoms? As one know that the prop-
erty of the atom which buildups the condensed system usually varies with the energies
of photon. However, For a given structure of the condensed system, the model which
presents the interactions effects of atoms will vary with the photon energies very small,
almost not vary with the photon energy. So, one can consider that the model of local
field calculated for a given photon energies regions will apply properly to almost all the
photon energies regions.

In this work, an alternative algebraic approach extended from [22] is proposed to
evaluate the coefficients. Since the atomic/molecular dipole polarizability is complex
valued, the real part €’ and the imaginary part €” of the dielectric function e(w) may be
expressed in general as

00 j

€ = Ye (47TN\/172—|—§2) cosjf (15)
j=0
© i

e = Y (4an/172+§2> sinjé (16)
j=0

where  =arctan <%) , €j is the coefficient which maybe represent the collective influence

effects of macroscopic matter. For Glauber-Lewenstein model and under the condition

1 1 1 5 1
le| >1, the values ofejareeg=e;=1,e2=73,3=—75, 4= —57, e5= g7 and e = — g, etc.

Because the initial €’ will have different value for different set of particle polarizability
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of ideal gas for given photon energy w, and density N of condensed system,

0 )
€(w)) = e; <47TN\/;72(w1)+§2(w1)> cosjf
=0

]

€ (wp) = ie} (47rN\/172(w2) +§2(w2)>]cosj9
=0

e (wn) = ) e (47TN\/172(wm)—i—gz(wm))]cost

j=0

They can be rewritten in matrix form
A=AFE'

where the A matrix and the solution (unknown) E matrix respectively are

€' (wr) e
€' (w>) &
A= : , E=| :
€ (wn) ¢

The elements of the coefficient matrix A are

Apj= (47IN\/172(wm) +§2(wm)>jcosj6

(17)

(18)

(19)

(20)

The solution vector E can then be obtained by solving Eq. (18) iteratively using standard

algebraic method.

On the other hand, the initial €” also has the same matrix form as above,

IT1=BE"

where the I'T matrix and the solution (unknown) E matrix respectively are

€' (wr) ef
€’ (wy) ey

1= : , E'=]
/!

€' (wm) e’

(21)

(22)
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The elements of the coefficient matrix B are

Byj= (47IN\/172(wm)+§2(wm)>]sinj6. (23)

Then, the other solution vector E can also be obtained by solving Eq. (21) iteratively using
standard algebraic methods.

In order to reduce the reliability on the selections of the subset, There are two method
to be used in this work. On one hand, According to Eq. (12), the calculated coefficients e;

and e;’ must be equal. So the best solution vector E our of the N sets of solutions should
best satisfy the followings requirements.

E'=[" (24)

where the E’ and E” are calculated by Eq. (18) and Eq. (21) using the same subset sepa-
rately. On the other hand, for all the coefficients calculated from all sets of data, one must
average these coefficients and uses the average to represent the real coefficient.

Since accurate experimental dielectric constant expressed as the series expansion of
atomic polarizability to unlimited order include most important physics such as the
atom-atom interaction, the dipole-dipole interaction, and since these carry all local field
information, the expression obtained using the AM should best reproduce the subset and
correctly generate other dielectric functions of other energies, which may be difficult to
obtain experimentally.

3 Algorithm and Implementation

Our experience show that it is reasonable enough to use the first eight powers of Eq.
(12) for j=0,1,2,...,7. This means that one should choose 8 of the m known energies at
a time should be known to solve Eq. (12). There are C5, groups of energies that can be
chosen. Usually it is enough to select N (far less than C%)) groups of energies out of the
m energies of the subset to find the best set of the dielectric. On the other hand, the
matrix P may both small and very large matrix elements for j > 7 such that the algebraic
calculations of these elements performed using computers with 32-digit precision may
introduce notable numerical errors in dielectric constants. Matrix calculations involving
such matrix elements would produce non-negligible errors. For these reasons, we choose
the series expansions of 8 [22-24].

If there are n(n > 3) sets of polarizabilities and dielectric constants, In order to obtain
the physically accepted local field models, an alternative algebraic method is suggested
as follows [22-24]:

(a) Choose 3 of the n known energies at a time to solve Eq. (18) and Eq. (21) separately.
Usually it is enough in this step to select some groups of energies out of the n energies
of the subset to find the best set of dielectric constant which consistent with the Eq. (24).
Then one can obtain some sets of the coefficients, eg,eq,e5.
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Figure 1: Comparison of the total photoabsorption cross sections for copper under several models.

(b) Choose 4 of the n known energies at a time solve Eq. (18) and Eq. (21) separately.
In this step, perhaps one can obtain the coefficient eg,e1,e2,e3 which consistent with the
Eq. (24).

(c) As the same way, choose m of the n known energies at once time, one can get the
coefficients eg,e1,e2,€3, ..., Once the requirements in Eq. (24) are not satisfied, the final
results are eg,ey,63,€3,...,6,—1. and the equation

e(w)=eg+e1x+erx®+e3x>+---+e,x" (25)

is the final algebraic model of the local field of the given condensed system.

Once the requirements in Eq. (24) are satisfied, the AM approach generates physi-
cally well-behaved local field models. As an example, Fig. 1 shows the comparison of
the copper photoabsorption cross sections among the ideal gas experimental results. The
CM model solid calculations and the present AM results under three conditions. These
theoretical results are calculated from the same atomic polarizabilities which are calcu-
lated from the ideal gas experimental data using Eq. (1). The dielectric constants used in
AM model are calculated from the ideal gas data. Under the same conditions, the present
AM method reproduces almost the same results with the ideal gas and solid CM one re-
spectively. All of these theoretical photoabsorption cross sections will be convergent to
the gas experimental results.

In the ideal gas number density, the theoretical photoabsorption cross section of AM
model are not considerably different from those obtained from the ideal gas experiments.
When the number density increases larger than that of solid state in the AM model, the
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AM result show the same variation with the number density as the CM model. This
indicates that the present AM model not only can reproduce the CM model, but can
represent the same local field effect in the media. Compared with the results obtained
in the CM model and the AM model, the present algebraic method shows more correct
behaviour that is dependent on actual experimental condition.

4 Discussion and Summary

This study proposes an alternative algebraic method to study accurate local filed model
based on an accurate limited experimental/theoretical input data set. The AM generates
accurate local field effect using a standard algebraic approach without any mathematical
and or physical approximations. The accuracy of the AM constants and local field factor
is uniquely dependent on the quality of the input experimental/theoretical data. One
may always select N groups of energies out of the m known energies of a subset of the full
energy dielectric functions for a condensed system and solve linear equations to obtain
N sets of coefficients.

In the present work, the behaviour of the variation of the photoabsorption cross sec-
tion of atomic copper with number density has been reproduced. The present study not
only gives a new algebraic method to study the condensed photoabsorption process of
atoms in special condition, but also can obtain the accurate models of the local field in
the condensed.
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