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Abstract. We study the transport through weakly open rectangular billiards by a new
semiclassical approach within the framework of the Fraunhofer diffraction. Based on
a Dyson equation for the semiclassical Green’s function, the transmission amplitude
can be expressed as the sum over all classical trajectories connecting the entrance and
the exit leads. We find that the peak positions of the transmission power spectrum not
only correspond to classical trajectories but associate with a lot of nonclassical trajec-
tories and the contributions to the power spectrum of the transmission amplitude for
the first mode are largely depending on the classical trajectories with small incident
angles showing a good agreement with the diffracted angular distribution within the
framework of the diffractive scattering effect at the lead openings.
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1 Introduction

During the recent few decades, mesoscopic physics has evolved into a greatly progress-
ing and fascinating field of physics [1, 2]. Remarkable advances in the fabrication of
submicron semiconductor microstructures have made it possible to produce the meso-
scopic devices in the experiment. Mesoscopic devices, whose dimensions are interme-
diate between microscopic and macroscopic systems, exhibit both classical and quantum
signatures [3]. Two-dimensional open quantum billiards has extensively served as model
systems to study the ballistic transport through the mesoscopic microstructures [4].

∗Corresponding author. Email address: yhzhang@sdnu.edu.cn (Y. -H. Zhang)

http://www.global-sci.org/jams 225 c©2015 Global-Science Press



226 G. -P. Zhao, X. -J. Cai, et al. / J. At. Mol. Sci. 6 (2015) 225-233

Semiclassical theory is widely used to describe and analyze the quantum transport
property in mesoscopic systems. Several semiclassical methods [5-11] to quantum trans-
port have been proposed, which provide a link between the classical dynamics of the
electron motion in the billiards and quantum transport. Semiclassical approximations
provide a way to handle quantum mechanics problems by a simplified path integral for-
malism to bridge the gap between quantum mechanics and its classical limit in a very
direct way: each classical trajectory carries an amplitude reflecting its geometric stability
and a phase which contains the classical action and accounts for quantum interference
effect [12-15]. Due to the fact that the width of the leads is comparable to de Broglie
wavelength, several semiclassical approximations were presented on the basis of Kirch-
hoff diffraction [12], Fraunhofer diffraction [13-15], geometric theory of diffraction and
uniform theory of diffraction [16-18].

In this paper, we use a semiclassical approximation within the framework of the
Fraunhofer diffraction to study the transport through a weakly open rectangular mi-
crostructure as depicted in Fig. 1 (a). Starting from a Dyson equation for the semiclas-
sical Green’s function, we formulate the transmission amplitude between the two leads
of the rectangular quantum billiards as for Fig. 1 (b). We investigate the correspondence
between the peak positions of the transmission power spectrum and the classical tra-
jectories according to classical dynamics, and we find that the transmission probability
not only associate with classical trajectories but contain prominent contributions from a
series of nonclassical trajectories due to the diffractive scatterings at the lead openings.
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Figure 1: (a) Scanning electron micrograph of a rectangular device [19]. (b) Rectangular quantum billiards as
the schematic of the rectangular device with length l=3.5, width w=2.0, and the width of the leads d=0.25.
All dimensions are in µm.

The structure of this paper is arranged as follows. In Section 2 we introduce the theo-
retical approach in detail. In Section 3 we use the stationary-phase condition to calculate
the classical trajectories according to the classical dynamics of the electron motion in the
billiards. Numerical results and discussions are given in Section 4, followed by a short
conclusion in the last section.
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2 Transport according to Landauer formula

The conductance g for the transport through the billiards as depicted in Fig. 1(b) is given
by Landauer formula [20] as a function of the electron’s wave number k.
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where tn,m(k) is the transmission amplitude from transverse mode m in the entrance lead
1 to mode n in the exit lead 2, and M is the number of total open modes in the leads.

The m th transverse wave function in the lead with infinitely high potential walls is

φm(y)=
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]
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Due to the quantization of the transverse momentum in the leads, the electron enters
the billiards with the discrete quantized angles

θ1,m =±arcsin
mπ

dk
(3)

and exits the billiards with the discrete quantized angles

θ2,n =±arcsin
nπ

dk
(4)

The transmission amplitude tn,m(k) is customarily expressed as the projection of the
retarded Green’s propagator G(y2,y1,k) onto the transverse wave functions [21]

tn,m(k)=−i
√

kx2 ,nkx1 ,m

∫

dy2

∫

dy1φ∗
n(y2)G(y2,y1,k)φm(y1) (5)

where kx1 ,m=
√

k2−|mπ/d|2(kx2 ,n=
√

k2−|nπ/d|2) is the longitudinal component of the
wave number of the incoming (outgoing) wave function. Here and in the following,
atomic units h̄= |e|=me =1 are used.

Considering the diffractive effect at the lead openings, the electron enters and exits
the billiards no longer with the discrete quantized angles θm but with a continuous dis-
tribution of angles θ.

The transmission amplitudes is modified as

tn,m(k)=−i
√

kx2 ,nkx1 ,m

×
∫

dy2

∫

dy1 ϕ∗
2,n(y2,θ2)G

SC(y2,y1,k)ϕ1,m(y1,θ1) (6)

where ϕ(y,θ) are the diffraction transverse wave function describing the diffractive cou-
pling from mode m in the entrance lead into the billiards and from the billiards into mode
n in the exit lead.
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3 Classical trajectories and semiclassical Green’s function

The motion of the electron after it enters the billiards from the entrance lead and before
it leave from the exit lead is described by classical dynamics.

The semiclassical Green’s function in Eq. (6) is given by

GSC(y2,y1,k)= ∑
t:y1→y2

|Dt(y2,y1,k)|1/2

(2πi)1/2
×exp

[

ı
(

St(y2,y1,k)−π

2
µt

)]

(7)

where the summation extends over all classical trajectories t connecting y1 in the entrance
lead 1 with y2 in the exit lead 2 at energy E= 1

2 k2. Dt(y2,y1,k) is the classical deflection
factor (weighting factor) which is a measure for the divergence of nearby trajectories,
St(y2,y1,k) = kLt(y2,y1) is the action of the trajectory t of length Lt, and µt denotes the
Maslov index of the trajectory t.

The electron entering the billiards with an angle θ for an interval (−π/2,π/2) from
the entrance lead 1, moves freely within the billiards, along a straight line, until it encoun-
ters and bounce several times off the hard-wall boundary where it reflects specularly.

According a simple geometric continuation in the extended zone scheme of the rect-
angular period element as depicted in Fig. 2 (a), the length of the trajectory t connecting
y1 at the centre of the entrance lead 1 with y2 at the centre of the exit lead 2 should satisfy

Lt(a,b)= alcosθ+bwsinθ (8)

where a=1,3,5··· , and b=0,±1,±2,··· . Some of the classical trajectories noticed by (a,b)
with the corresponding values a and b are shown in Fig. 2 (b).

Then the action of the trajectory t can be written as

S(θ)= k(alcosθ+bwsinθ) (9)

We obtain from the stationary phase condition by only considering the derivation of
the classical action with respect to θ equals to zero

S(θ)= k(−alsinθ+bwcosθ)=0. (10)

The “stationary” angles of the trajectory t connecting y1 at the centre of the entrance
lead 1 with y2 at the centre of the exit lead 2 is

θ=arctan
bw

al
. (11)

The electron from a weakly open lead entering the inner of the billiards, makes the
potential of the transverse direction changed. The change of the width of the potential
can be considered as the perturbation at the lead opening approximatively.
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Figure 2: (a) The simple geometric continuation of the rectangular period element. (b) Simple schematic of
some classical trajectories.

The classical action with a Taylor series expansion in the transverse coordinate y is
expanded as [15]

L1(y)= L1+sin(θ1)y+
cos(θ1)

L1
y2+··· (12)

where L1 = L1(y = 0) is the length of the trajectories starting from the centre of the en-
trance lead 1. Keeping the first two terms results in a Fraunhofer diffraction approxima-
tion. Within the framework of the Fraunhofer diffraction, the diffracted transverse wave
function ϕ(y,θ) in lead 1 is expressed as [14, 15]

ϕ(y,θ)=

√

2

d
sin

[

mπ

d
(y+

d

2
)

]

∫ d/2

−d/2
eiksinθydy. (13)

Starting from a Dyson equation for the semiclassical (SC) Green’s function, we get
the new semiclassical (NSC) Green’s function with the diffractive scatterings at the lead
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opening taken into account [15].

GNSC=GSC+GSCVGNSC

=
GSC

1−rGSC
. (14)

In Eq. (13), the diffractive scatterings coefficient in lead 1 is given by [15]

r(θ,θm,k)= k
√

cosθcosθm

∫ d/2

−d/2
ei(ksinθm+ksinθ) (15)

with θ = arctan bW
aL being the “stationary” angles and θm =±arcsin mπ

kd being the discrete
quantized angles of the trajectory t.

4 Numerical results and discussion

In the following, we present the numerical results for the transmission probability from
the first mode of the entrance lead 1 to the first mode of the exit lead 2, and present a
quantitative comparison between the result calculated by the new semiclassical approxi-
mation (NSCA) and that calculated by the standard semiclassical approximation (SSCA).

As depicted in Fig. 3, both results calculated by the new semiclassical approximation
and by the standard semiclassical approximation display strong fluctuations in the trans-
mission probability as a function of the wave number k, but the peak values to describe
the contribution of the classical trajectories to the transmission probability are generally
different.
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Figure 3: Square modulus of transmission amplitude t11(k), calculated by the new semiclassical approximation
(solid curve) and by the standard semiclassical approximation (dashed curve), in a finite interval of k, 2.0≤k≤2.5
in units of π/d.
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Table 1: Comparison between the lengths of the classical trajectories and the corresponding peak positions.

Trajectory shape (1,0) (1,±1) (3,0) (3,±1) (3,±2)

Incident angle 0 ±0.52 0 ±0.19 ±0.36
Trajectory length 3.50 4.03 10.50 10.69 11.24

Peak position 3.5 4.1 10.5 10.7 11.2

Trajectory shape (3,±3) (5,±1) (5,±2) (5,±3) (5,±4)

Incident angle ±0.52 ±0.11 ±0.22 ±0.33 ±0.43
Trajectory length 12.10 17.61 17.95 18.50 19.24

Peak position 12.1 17.6 17.9 18.5 19.2

In order to identify the classical trajectories, we define the length power spectrum as

Pn,m(L)=
∫ kmax

kmin

e−ikLtn,m(k)dk (16)

which is a function of the variable L conjugate to wave number k as the Fourier transfor-
mation of the transmission amplitude tn,m(k) in a finite interval of kmin ≤ k≤ kmax .

In Fig. 4 we present the length power spectrum of the transmission amplitude t1,1(k)
in the finite number of trajectories with the lengths Lt≤20.
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Figure 4: Transmission length power spectrum of the transmission amplitude t1,1(k) in a finite interval of k,
2.0≤ k≤6.0 in units of π/d. The scaled length L corresponds to a fixed area of the billiards region A= lw.

In the following, we present the comparison between the peaks positions of the trans-
mission power spectrum obtained from the new semiclassical approximation and the
corresponding lengths of the classical trajectories connecting y1 at the centre of the en-
trance lead 1 with y2 at the centre of the exit lead 2 according to classical dynamics in
Tab. 1.

Fig. 4 and Tab. 1 display a good correspondence between the lengths of the classi-
cal trajectories and the peaks positions of the transmission length power spectrum. Each
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peak in the power spectrum is accurately identified with a family of classical trajecto-
ries, and the peak height can be used to describe the probability of the classical trajec-
tories that the electron walks along. And the power spectrum contains prominent con-
tributions from a series of nonclassical trajectories which are directly reflected back into
the billiards instead of exiting the lead openings due to the diffraction scatterings effect.
For example, the third peak with the length L(3)(3,0)=10.50 and the sixth peak with the
length L(6)(3,±3)=12.10, are caused by the diffraction scattering effect at the lead open-
ings. These are so-called “ghost paths” [12] or “pseudo paths”[15] which can be auto-
matically attributed to the nonclassical trajectories due to the diffraction scatterings at
the lead openings based on a Dyson equation for the semiclassical Green’s function in
our calculation.

In Fig. 4, the peaks correspond to only a few of classical trajectories with small inci-
dent angles, while there is no peak emerging at classical trajectories with large incident
angles. In order to investigate the reason, on the basis of Fraunhofer diffraction theory,
we present a quantitative description for the angular distribution of the electron injected
from the entrance lead 1 into the billiards by the absolute square of the diffracted angular
distribution function

I(k,θ)=
√

kcosθ

∫ d/2

−d/2
ϕ(y,θ)dy (17)

as a function of θ at a fixed wave number k for the first mode.

Fig. 5 displays that an electron at a fixed wave number k= 4π/d enter the billiards
classical trajectories with the incident angles in a small window of [-0.25π,0.25π] for the
first mode. Hence, there are the classical trajectories with small incident angles largely
contributing to the length power spectrum of the transmission amplitude t1,1(k).
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Figure 5: Angular distribution of the electron injected from the entrance lead 1 into the billiards. Solid line:
|I(θ)|2 at k= 4π/d for the first mode. Dashed line: the discrete quantized angle θ1 =±arcsin π

kd for the first
mode in the standard semiclassical approximation.
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5 Conclusion

Within a new semiclassical approximation on the basis of the Fraunhofer diffraction, we
have analyzed the power spectrum of the transmission amplitude for the first mode.
We find there is an excellent numerical agreement between the peaks positions of the
power spectrum and the corresponding lengths of the classical trajectories, and find that
the peak positions of the transmission power spectrum not only correspond to classical
trajectories but associate with a lot of nonclassical trajectories due to the diffractive scat-
terings at the lead openings. The contributions to the length power spectrum of the trans-
mission amplitude for the first mode are largely depending on the classical trajectories
with small incident angles, which shows a good agreement with the diffracted angular
distribution of the electron injected from the entrance lead 1 into the billiards.
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