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Abstract. The recently formulated entangled trajectory molecular dynamics (ETMD) theory
is applied to the collinear hydrogen exchange reaction. Thereaction probability is calculated
for one- and two-dimensional of collinear H+H2 model. It is found that although the results of
ETMD are not in good agreement with quantum mechanics simulations, the numerical trend is
consistent with each other.
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1 Introduction

Quantum-mechanical effects are essential in many chemical reactions, such as zero-point energy,
interference, tunneling and nonadiabatic behavior. Time-dependent quantum wavepacket methods
are widely used to study molecular dynamics. Traditional methods of solving the time-dependent
Schrödinger equation are based on basis sets of functions,spatial grids or discrete variable rep-
resentation scale exponentially with the system size, and therefore these methods are not feasible
for systems beyond eight or so dimensions [1]. At the same time, classical molecular dynamics is
intensively used to study complex systems, but it is incapable of description quantum-mechanical
effects. It is, as a long-standing goal in this area, the useful to develop semiclassical methods which
can both favorable scaling with respect to system size and accurate description of the quantum phe-
nomena. And, considerable progress has been made over the last few decades in the development
of trajectory-based approaches [2–8]. The methodology of entangled trajectory molecular dynam-
ics (ETMD), where Wigner distribution function is represented as a trajectory ensemble, is also
developed and is successfully applicable to several models[6–8,11–13].

The Wigner transform of the quantum Liouville equation gives equivalently representations of
quantum mechanical and serves as the basis for the ETMD method, where the Wigner distribution
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function represents as an ensemble of trajectories. The non-local quantum character enters this
method through the interactions between the ensemble trajectories, which involves as the distribu-
tion function exists in the equations of entangled trajectories.

Collinear hydrogen exchange reaction is one benchmark model of chemical reactions. This
system has been investigated by different approaches, and the reaction probability and rate constant
for the elementary reaction have been calculated using classical [14,15], semi-classical [16,17] and
quantum methods [18-20]. The application the entangled trajectory molecular dynamics method
(ETMD) to the standard collinear chemical reaction, where quantum effects are especially signif-
icant, is encouraging . In this letter the collinear H+H2 exchange reaction is studied using the
ETMD method in Wigner phase space.

The Wigner function, corresponding to the wave functionψ(q;t), can be written as follows
[21]:

ρ(q,p;t)=

(

1
2πh̄

)n∫

dyψ∗(q+y/2;t)ψ(q−y/2;t)e
i
h̄ p·y, (1)

where all integrals are from−∞ to +∞ unless otherwise noted.
ETMD method is based on solving the quantum Liouville equation using a trajectory ensemble

with non-classical terms in time evolution. The equations of motion for the entangled trajectories
can be defined as follows as [6,7,11,12]

q̇k =
pk

m
,

ṗk =
1

ρ(q,p)

∫

dξξξΘk(q,p−ξξξ)ρ(q,ξξξ), (2)

where

Θk(q,ξξξ−p)=
1

(2πh̄)n

∫

dy
V+

k −V−k
yk

e−iy·(ξξξ−p)/h̄. (3)

Thek=n component of the vectorΘ is given by

Θn(q,ξξξ−p)=
1

(2πh̄)n

∫

dy×















[V(q+y/2)−V(q−y/2)]−
n−1
∑

k=1

[

V+
k −V−k

]















×
e−

i
h̄ y·(ξξξ−p)

yn
, (4)

whereV±k =V(q1,··· ,qk±yk/2,··· ,qn) andk=1,··· ,n−1.
In the following, we illustrated the ETMD method by calculating the reaction probability of

one-dimensional and two-dimensional model which mimic collinear hydrogen exchange reaction.
There are few different sampling method, such as, normal sampling of a multidimensional Gaus-
sian or simply use a density cutoff in a uniform sampling, to sample initial values of Wigner
function. In our numerical calculation, we sample the initial values of the trajectories from the
Gaussian distribution according to the same properties. These initial values are the “rectangle”
shape in the phase space. Actually, it is one of the methods toavoid the rectangle by evolving these
initial points under the Fokker-Planck equation. Many approaches to the problem of constructing
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Figure 1: Transmission probability for one-dimensional model of collinear hydrogen exchange reaction as a func-
tion of initial wave packet energy, ETMD and EQ results.

a smooth (positive) distribution function from a finite set of N sampled points have been devel-
oped. In our simulations, we employ the adaptive kernel density estimation method [7,8,11-13,22]
to construct a smooth functionρ(q1,q2,p1,p2;t) from the the instantaneous trajectory ensemble at
each step in the time evolution.

We first compute the energy-resolved transmission probabilities for the Eckart barrier mim-
icking the collinear hydrogen exchanged reaction in one dimension. The potential can be written
as

V =Dcosh−2(Zx). (5)

In mass-scaled units (scaled bymH/2), the parameters of the barrier,D=16 andZ=1.3624 [23].
The initial Gaussian wavepacket,

ψ(0)=

(

2α
π

)1/4

exp
(

−α(x−q0)
2+ip0(x−q0)

)

, (6)

is located on the left of the Eckart barrier. The choice of initial parameters as{α=6.0,q0=−2.0},
and the initial energy of wavepacketE =α/2+p2

0/2. We calculate the transmission probability
of the wavepacket to the right of the barrier as the funtion ofthe wavepacket initial energy. The
exact quantum (EQ) transmission probability is defined as the integral|ψ(q,t)|2 from q‡ to +∞.
While in the ETMD method the probability is defined as the fraction of trajectories withq> q‡,
whereq‡ is the barrier position. As shown in Fig. 1, the transmissionprobabilities using the
ETMD method are in good agreement with the exact quantum predictions. And increasing the
mean energy increases the probability transfer across the barrier, both in ETMD and EQ methods.

As an example of two dimensional case of this typical system,we calculate the transmission
probability of the two-dimensional model for collinear hydrogen reaction. The dynamics is gov-
erned by the two-dimensional Hamiltonian, which in mass-scaled Jacobi coordinates takes the
form

H=−
1
2µ

(

∂2

∂R2
+
∂2

∂r2

)

+V(R,r), (7)
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Figure 2: The wave packet transmission probability for two-dimensional model of collinear hydrogen exchange
reaction as a function of initial wave packet energy, ETMD and EQ results.

and described the system in Jacobi coordinates can reduce conceptual and computational efforts.
We use the Wall-Porter potential surface [24] due to the simple analytical form and compare the
exact quantum method work on this potential [25]. And the potential surface symmetrics with
respect toφ0=arctan(r/R)=π/6.

The initial wave packet can be written as

ψ(0)=

√

2
π
(α1α2)

1/2e−α1(R−R0)2−α2(r−r0)2+ip0(R−R0), (8)

where R is the distance betweenHA and the diatomic, and r is the distance betweenHB andHC.
Values of the parameters in atomic units (scaled by the reduced mass of the diatomicmH/2=1)
are R0 = 4.5, r0 = 1.3, α1 = 4.0, α2 = 9,73, andp0 = [−15,−1].The wave packet transmission
probability for two-dimensional model of collinear hydrogen exchange reaction are show in Fig. 2.
The numerical results show that the tendency of transmission probability based on ETMD method
is consistent well with the exact quantum results, and the exact quantum results are from Ref.
[25]. It is found with the increase of wave packet initial total energy, the reaction probabilities
increase to the max quantity and then decreases to small probabilities. And we also know the
wave packet with high initial total energy can pass over the symmetric of the potential to the
reactant domain at the beginning, but many members of the trajectory ensemble reflect back by
the potential barrier with time evolution, and the transmission probability is converged to a small
quantity finally. The difference between the quantum and entangled trajectory probabilities due to
the positive approximated ETMD method cannot capture full quantum dynamics.

In summary, we extend the entangled trajectory molecular dynamics method to collinear hy-
drogen exchange reaction. We calculated the transmission probabilities versus initial wave packet
energy, and compared with exact quantum results. Numericalsimulations show that the ETMD re-
sult tendency is in good agreement with exact quantum results. The entangled trajectories motion
equations are derived from the Wigner function, continuityprinciple and normalized conservation.
The Wigner representation can be faithfully describe the quantum mechanics. This means that the
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entangled trajectories equation is valid in the framework of non-relativistic quantum mechanics. In
our simulations, we construct a smooth (positive) approximation based on a Gaussian kernel to the
Wigner function from a finite set ofN sampled points using the adaptive kernel density estimation
method. The entangled trajectories equation emphasizes the nonlocality of quantum mechanics
via Wigner function in the entangled trajectories equations. And the interactions between the en-
semble members make the motion of entangled trajectories quite different from the corresponding
classical trajectories. However, this method cannot capture the full quantum dynamics due to the
exact Wigner function can become negative. Therefore, there is a big difference between ETMD
and EQ methods. In future work, we plan to construct entangled trajectory functions which con-
tained the negative value of the Wigner function.
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