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Abstract. The uniform electron gas placed between two reservoirs is used as a model
system for molecular junctions under an external bias. The energetics of the electron
gas are calculated by generalizing the Thomas-Fermi-Dirac (TFD) model to nonequilib-
rium cases. We show that when the bias voltage is not zero, the first Hohenberg-Kohn
(HK) theorem breaks down, and energies of the electron gas can be determined by the
total electron density together with the density of nonequilibrium electrons, support-
ing the dual-mean-field (DMF) theory recently proposed by us [J. Chem. Phys. 139,
(2013) 191103]. The generalization of TFD functionals to DMF ones is also discussed.
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1 Introduction

Building electronic devices on the basis of single molecules has drawn dramatic atten-
tion in past two decades. [1] On the theoretical side, the ab initio method that combines
the density functional theory (DFT) and nonequilibrium Green’s functions’ (NEGF) tech-
niques has proven to be powerful in describing electron quantum transport at molecular
scale, [2] and has achieved great success in understanding and designing molecular-scale
electronic devices. [3–10] In this method, the mean-field potential obtained from DFT is
used to calculate electronic structures of molecular junctions with or without an exter-
nal bias. In our recent paper [11], we have shown that when a finite external bias is
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present, the properties of a molecular junction can not be determined by the total elec-
tron density alone, and a dual-mean-field (DMF) theory is proposed to incorporate the
bias-induced nonequilibrium effects. One of the key results of the DMF theory is that
the current-carrying electrons experience a different effective mean-field potential from
the equilibrium electrons do. In this paper, we present detailed analysis of energetics of
the uniform electron gas (UEG) placed between two reservoirs. Our calculations clearly
show that the first Hohenberg-Kohn (HK) theorem that is the basis of DFT breaks down
for the system under study when the external bias is not zero, providing a strong support
for the DMF theory [11].
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Figure 1: The uniform electron gas is sandwiched by two reservoirs. A battery maintains the chemical potentials,
µl and µr, in the left and right reservoirs, respectively. The bias voltage acrossing the uniform electron gas is
defined by (µl−µr)/e. We assume µl >µr.

2 The generalized Thomas-Fermi-Dirac model

The model is shown in Fig. 1, where an uniform electron gas is placed between two reser-
voirs. A battery is connected to the system to maintain the chemical potentials µl and µr

for the left and right reservoirs respectively. The bias voltage accrossing the system can
then be defined as Vb = (µl−µr)/e. When Vb is not zero, the uniform electron gas is in
a nonequilibrium state. The nonequilibrium distribution is as follows: Electrons com-
ing from the left reservoir obeys the distribution fFD(µl), and electrons coming from the
right reservoir obeys the distribution fFD(µr), where fFD is the equilibrium Fermi-Dirac
distribution function. In Fig. 2, we schematically show the distribution in momentum

space. By defining two Fermi vectors,
h̄2k2

f r

2me
=µr and

h̄2k2
f l

2me
=µl , the kinetic and exchange

energies of the uniform electron gas can then be analytically calculated in terms of two
Fermi vectors by generalizing the Thomas-Fermi-Dirac (TFD) model to nonequilibrium
cases [12].

The kinetic energy density can be worked out as follows.
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Figure 2: Non-equilibrium distribution in momentum space for the generalized Thomas-Fermi-Dirac model. a)
The division of the momentum space into Ω1 and Ω2 for calculating the kinetic energy density. b) The division
of the momentum space into Ω3 and Ω4 for calculating the exchange energy density. c) The momentum space
is defined in terms of of two Fermi wavevectors k f l and k f r.
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The exchange energy density can also be analytically calculated as demonstrated in
our previous paper [13]. Here we show the final result

ex(k f r,k f l)=−
1

16π3

[

−
(

k2
f l−k2

f r

)2
ln
(

k f r+k f l

)

+k4
f rln

(

k f r

)

+

(

k4
f l−2k2

f rk2
f l

)

ln
(

k f l

)

+k4
f r+k3

f rk f l

−
1

2
k2

f rk2
f l+k f rk3

f l+
3

2
k4

f l

]

. (2)

Using the relationship ρt =
1

6π2

(

k3
f r+k3

f l

)

where ρt is the total electron density, and

also the definitions of two Fermi vectors, ρt and the bias voltage Vb can be calculated in
terms of k f r and k f l . Then the kinetic energy density (Eq. 1) and exchange energy density
(Eq. 2) can be expressed as functions of ρt and Vb. We plot the ratio of energy densities be-
tween the generalized TFD model and the equilibrium TFD model in Fig. 3a and 3b. Note

that in equilibrium TFD model, kTFD(ρt)=
1

10π2 (3π2ρt)
5/3 and eTFD

x (ρt)=− 1
4π3

(

3π2ρt

)4/3
.

These figures (Fig. 3a, 3b) clearly suggest that the kinetic and exchange energies of the
UEG under a finite bias cannot be uniquely determined by the total electron density
alone, supporting the DMF theory [] we proposed. Note that at low biases around 1
V, the error of equilibrium TFD model can be very significant.

Defining the nonequilirium electron density ρn =
1

6π2

(

k3
f l−k3

f r

)

and the nonequilib-

rium index η as the ratio between ρn/ρt , the kinetic and exchange energy densities can
be rewritten in DMF format as Eq. 3 and 4. The DMF exchange energy density shown
here (Eq. 4) is the same as the one presented in our previous paper [11]
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Figure 3: (color online) The kinetic and exchange energy densities of a uniform electron gas connected with two
reservoirs. a) and b) show the ratio between non-equilibrium energy densities calculated from the generalized
TFD model and the corresponding equilibrium ones. Clearly, the ratio depends on both electron density and
the bias voltage. c) and d) show the correction factor as a function of non-equilibrium index η for kinetic and
exchange energy densities.
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In above equations (Eq. 3 and 4), η̃≡
(

1−η

1+η

)1/3

. Both DMF kinetic and exchange energy

densities are in the format of the equilibrium TFD energy multiplied by a correction factor
which is a function of η. When η = 0, DMF energy densities reduce to equilibrium TFD
ones. When η = 1, the correction factor for the kinetic energy is around 1.6, and the
correction factor for the exchange energy is around 0.95. The correction factor (the ratio
between DMF energy and equilibrium TFD one) for the kinetic (exchange) energy density
as a function of η is shown in Fig. 3c (3d).
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3 Conclusion

In conclusion, in this paper, we present a detailed analysis for the energetics of the uni-
form electron gas under a finite bias. We show that when the bias is not zero, the prop-
erties of the electron gas cannot be uniquely determined by the total electron alone. The
kinetic and exchange energy densities of the system are functions of total electron den-
sity and the bias voltage. We then define a so-called nonequilibrium electron density,
and show that the energetics of the nonequilibrium uniform electron gas are function-
als of the total electron density and the nonequilibrium electron density, supporting the
DMF theory proposed in an earlier paper.
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