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Abstract. The general formalism of the Modified orbital atomic theory (MAOT) for the
Rydberg series of atoms and ions is presented. Energy resonances of the 2s22p4(1D2)ns,
nd, 2s22p4(1S0)ns,nd and 2s2 p5(3P2)np Rydberg series originating from the 2s22p5

2P1/2 metastable and from the 2s22p5 2P3/2 ground state of Ne+ are tabulate apply-
ing the MAOT formalism. Analysis of the present results is achieved in the framework
of the standard quantum defect expansion formula. Comparison is done with the ex-
isting experimental and theoretical data.

PACS: 31.15.bu - 31.15.vj - 32.80.Zb - 32.80.Ee

Key words: Modified atomic orbital theory (MAOT); Electron correlation calculations for atoms
and ions; Rydberg series

1 Introduction

Photoionization of ions is seen to be a fundamental process of importance in many high-
temperature plasma environments such as those in stars and nebulae [1] and those in
inertial-confinement fusion experiments [2]. Quantitative measurements of photoion-
ization of ions provide precision data on ionic structure, and guidance to the develop-
ment of theoretical models of multielectron interactions [3]. These measurements are per-
formed mainly using synchrotron radiations such as ASTRID (Aarhus STorage RIng in
Denmark) [4], SOLEIL (Source Optimisée de Lumière d’Energie Intermédiaire du LURE
(Laboratoire pour l’Utilisation du Rayonnement Electromagntique) in France [5], ALS
(Advanced Light Source) in USA [3] and Spring 8 in Japon [6]. The development of these
synchrotron light sources has provide high accurate experimental data for benchmark-
ing state-of-the-art theoretical methods of calculations. Among these methods are the
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Hartree-Fock multi-configurationnal (MCDF) method [7, 8], the Quantum Defect The-
ory [9], the R-matrix approach [10] widely used for international collaborations such as
the Opacity Project [11, 12] or the Iron Project [13], the Screening constant by unit nuclear
charge (SCUNC) formalism [14, 15]. As far as various ions of great importance for plasma
diagnostics are concerned, those of the neon element are one of the prominent candidates
due to their frequent use in tokomaks as a diagnostic element for probing plasma [16]. In
addition, neon is known to be the sixth most abundant element in the universe and then
is of great interest in astrophysics in connection with the role of neon ions in the interpre-
tation of astronomical data from stellar objects such as gaseous nebulas. At ultraviolet
wavelengths in the range 300-90 Å, corresponding to a photon energy range of 41 - 138
eV, radiation can photoionize the ground states of several ionization stages of neon such
as Ne+, Ne2+, Ne3+, and Ne4+, leaving the residual ion in one of several excited states [3].
These ions and those of carbon (C2+, C3+, C4+), of nitrogen (N2+, N3+, N4+) and of oxy-
gen (O2+, O3+, O4+) are known to contribute to the opacity in the atmospheres of the cen-
tral stars of planetary nebulas [17, 18]. Using the Advanced Light Source (ALS) devices,
Covington et al., [3] presented both high-resolution absolute measurements and theoret-
ical calculations of Ne+ at photon energies ranging from the photoionization threshold
to 70 eV. These experiments were focused on the 2s22p4(1D2)ns,nd, 2s22p4(1S0)ns,nd and
2s2 p5(3P2)np Rydberg series originating from both 2s22p5 2P1/2 metastable and 2s22p5

2P3/2 ground state of Ne+. Very recently, Faye et al., [15] used the Screening constant by
unit nuclear charge (SCUNC) method to report high lying energy positions of the pre-
ceding series. In general, the availability of high-resolution measurements data on ionic
species provides great opportunities to verify the accuracy of theoretical predictions or
the limitations of a given quantum mechanics model. For this purpose, the General for-
malism of the Modified orbital atomic theory (MAOT) [19-22] for the Rydberg series of
atoms and ions is presented and applied to the photoionization of Ne+ considering the
same above Rydberg states. Section 2 presents the theoretical procedure adopted in this
work. In Section 3, we present and discuss the results obtained, compared to available
literature data.

2 Theory

2.1 Brief description of the MAOT formalism

In the framework of the Modified Atomic Orbital Theory (MAOT), total energy of a (νℓ)-
given orbital is expressed in the form [19, 20]

E(νℓ)=−
[Z−σ(ℓ)]2

ν2
. (1)

For an atomic system of several electrons M, the total energy is given by (in Rydberg):

E=−
M

∑
i=1

[Z−σi(ℓ)]
2

ν2
i

.
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With respect to the usual spectroscopic notation (Nℓ,nℓ′)2S+1Lπ, this equation becomes

E=−
M

∑
i=1

[Z−σi(
2S+1Lπ)]2

ν2
i

. (2)

In the photoionisation of atoms and ions, energy resonances are generally measured rel-
atively to the E∞ converging limit of a given (2S+1LJ)nl - Rydberg series. For these states,
the general expression of the energy resonance En is given by

En=E∞−
1

n2

{

Z−σ1(
2S+1LJ)−σ2(

2S+1LJ)×
1

n
−σα

2 (
2S+1LJ)

×(n−m)×(n−q)∑
k

1

fk(n,m,q,s)

}2

. (3)

In this equation, m and q(m<q) denote the principal quantum numbers of the (2S+1LJ)nl
- Rydberg series of the considered atomic system used in the empirical determination of
the σi(

2S+1LJ) - screening constants, s represents the spin of the nl- electron (s=1/2), E∞

is the energy value of the series limit generally determined from NIST atomic database,
En denotes the corresponding energy resonance and Z represents the nuclear charge of
the considered element. The only problem that one may face by using the MAOT formal-

ism is linked to the determination of the ∑
k

1

fk(n,m,q,s)
-term. The correct expression of

this term is determined iteratively by imposing general Eq. (3) to give accurate data with
a constant quantum defect values along all the considered series. The value of α is gen-
erally fixed to 1 and or 2 during the iteration. The standard quantum defect expansion is
given as follows

En =E∞−
RZ2

core

(n−δ)2
. (4)

In this equation, R, E∞, Zcore and δ are the Rydberg constant, the converging limit, the
electric charge of the core ion and the quantum defect, respectively.

2.2 Energy resonances of the 4s24p4(1D2)ns,nd and 4s24p4(1S0)ns,nd Rydberg
series of Ne+

Using Eq. (3), the energy positions of the 4s24p4(1D2)ns,nd and 4s24p4(1S0)ns,nd Ryd-
berg series of Ne+ are given by (in Rydberg units)

• For the 2P0
j → (1D2)ns,nd transitions (j=3/2 or 1/2)

En =E∞−
1

n2

{

Z−σ1(
2P0

j ,1 D2)−σ2(
2P0

j ,1 D2)×
1

n
−σ2(

2P0
j ,1 D2)×(n−m)×(n−q)

[ 1

(n+q−m+s+1)3
+

1

(n+q−m+s+2)4
+

1

(n+q−m+s+3)5

]

}2

. (5)
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• For the 2P0
j → (1S0)ns,nd transitions (j=3/2 or 1/2)

En =E∞−
1

n2

{

Z−σ1(
2P0

j ,1S0)−σ2(
2P0

j ,1S0)×
1

n
−σ2(

2P0
j ,1S0)×(n−m)×(n−q)2

[ 1

(n+q+s)4
+

1

(n+q−m+s+2)4
+

1

(n+m−q−s−1)5

]

}2

. (6)

• For the 2P0
3/2→ (3P2)np transitions

En =E∞−
1

n2

{

Z−σ1(
2P0

3/2,1 P2)−σ2(
2P0

3/2,1 P2)×
1

n
−σ2(

2P0
3/2,1 P2)×(n−m)×(n−q)2

[ 1

(n+q−m+s)4
+

1

(n+q−m+s−1)4
+

1

(n+m−q−s)5

]

}2

. (7)

The uncertainties (∆σi) in the screening constants and those in the energy resonances
(∆E) are determined as follows.

∆σ=

√

(σ−σ+)2+(σ−σ−)2

2
, (8)

∆En =
|En(σ1,σ2)−En(σ

+
1 ,σ+

2 )|+|En(σ1,σ2)−En(σ
−
1 ,σ−

2 )|

2
. (9)

If E
exp
n denotes the experimental energy position and ∆E

exp
n the associated uncertainty,

one can get the σ±
1 ,σ±

2 - fitting parameters from the following relation

En(σ
±
1 ,σ±

2 )=E
exp
n ±∆E

exp
n . (10)

For sake of more clarifications, let us move on calculating the uncertainties (∆σi) in the
screening constants and those in the energy resonances (∆E) for the (1D2)ns,nd (j=3/2)
Rydberg series. From the ALS measurements of Covington et al., [3], we get (in eV)
Eexp[(1D2)7s,7d]=42.636±0.005(m=7) and Eexp[(1D2)8s,8d]=43.047±0.005(q=8). Using
E∞ = 44.167, Eexp[(1D2)7s,7d]= 42.636, Eexp[(1D2)8s,8d]= 43.047 and 1 Ry= 13.60569 eV
for energy conversion, Eq. (5) gives

σ1=8.074663042; σ2=−2.959672873. (11)

For the σ±
1 , σ±

2 - fitting parameters we get taking into account Eq. (10)

{

E7(σ
+
1 ,σ+

2 )=42.636+0.005,

E8(σ
+
1 ,σ+

2 )=43.047+0.005,

{

E7(σ
−
1 ,σ−

2 )=42.636−0.005,

E8(σ
−
1 ,σ−

2 )=43.047−0.005.



210 I. Sakho / J. At. Mol. Sci. 5 (2014) 206-216

Using these data, Eq. (5) provides

{

σ+
1 =8.088834019,

σ+
2 =−3.032007413,

{

σ−
1 =8.060539735,

σ−
2 =−2.887628206.

(12)

Using the results (11) and (12), we obtain from Eq. (8)

∆σ1 =0.014, ∆σ2 =0.072.

The fitting parameters are then expressed with the correct digits as follows

σ1=8.075±0.014, σ2 =−2.960±0.072. (13)

As far as the uncertainties in the energy resonances are concerned, they are obtained from
Eq. (9) using (11) and (12) for n=7 and n=8. The calculations for the other Rydberg series
are of similar. The results found using the ALS data of Covington et al. [3] are quoted in
Table 1.

Table 1: Screening constants values obtained using Eqs. (5), (6) and (7). The En -ALS resonance energies
for the (1D2,1 S0)ns,nd series are calibrated to ±0.005 eV and those of the (1P2)ns series are estimated to be
±0.010 eV. The energy limits are taken from [25].

Transitions Levels m q En E∞ σ1 σ2

2P◦
3/2→

1 D2ns,nd
(1D2)7s,7d 7 - 42.636

44.167 8.075±0.014 −2.960±0.072
(1D2)8s,8d - 8 43.047

2P◦
1/2→

1 D2ns,nd
(1D2)7s,7d 7 - 42.539

44.070 8.083±0.014 −3.017±0.072
(1D2)8s,8d 8 42.951

2P◦
3/2→

1 S0ns,nd
(1S0)5s,5d 5 - 44.383

47.875 8.107±0.007 −3.201±0.027
(1S0)6s,6d - 6 45.650

2P◦
1/2→

1 S0ns,nd
(1D2)5s,5d 5 - 44.287

47.778 8.102±0.007 −3.174±0.027
(1D2)6s,6d 6 45.552

2P◦
3/2→

3 P2np
(3P2)3p 3 - 56.490

66.292 8.158±0.006 −2.114±0.014
(3P2)4p 4 61.515

3 Results and discussion

Tables 2-6 present comparisons of the present results with the Advanced Light Source
(ALS) experimental data of Covington et al., [3] and with the Screening constant by unit
nuclear charge (SCUNC) calculations of Faye et al., [15]. The energy resonances obtained
are analyzed using the standard quantum-defect expansion formula given by Eq. (4).
For all the Rydberg series investigated, it is seen that the present calculations agree well
with the both experimental data [3] and theoretical values [15]. The present quantum
defect is almost constant along each series up to n = 20 and beyond decreases slowly.
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Table 2: Energy resonances (E) and quantum defect (δ) for the 2s22p4(1D2)ns,nd Rydberg series observed
in the photoionization spectra originating from the 2s22p5 2P◦

3/2 ground state of Ne+. The present results
(MAOT) are compared to the Advanced Light Source (ALS) data of Covington et al., [3] and to the SCUNC
calculations of Faye et al., [15].

MAOT SCUNC ALS MAOT SCUNC ALS
n E(eV) δ

7 42.6364 (50) 42.6336 (50) 42.636 (5) 1.04 1.04 1.04
8 43.0473 (50) 43.0452 (50) 43.047 (5) 1.03 1.03 1.03
9 43.3106 (45) 43.3083 (46) 43.311 (5) 1.03 1.04 1.03
10 43.4900 (40) 43.4886 (41) 43.494 (5) 1.03 1.04 1.01
11 43.6181 (35) 43.6178 (36) 43.627 (5) 1.04 1.05 0.96
12 43.7130 (31) 43.7134 (32) 43.723 (5) 1.05 1.05 0.93
13 43.7852 (27) 43.7861 (28) 43.796 (5) 1.06 1.05 0.89
14 43.8415 (24) 43.8427 (25) 43.851 (5) 1.07 1.05 0.88
15 43.8862 (21) 43.8875 (23) 43.896 (5) 1.08 1.04 0.83
16 43.9224 (19) 43.9237 (20) 43.932 (5) 1.08 1.04 0.78
17 43.9521 (17) 43.9533 (18) 43.963 (5) 1.09 1.04 0.67
18 43.9767 (16) 43.9778 (17) 43.986 (5) 1.09 1.04 0.66
19 43.9973 (14) 43.9983 (15) 44.007 (5) 1.09 1.04 0.56
20 44.0148 (13) 44.0156 (14) 44.025 (5) 1.09 1.04 0.42
21 44.0298 (12) 44.0304 (13) 44.041 (5) 1.09 1.04 0.22
22 44.0426 (11) 44.0432 (12) 44.053 (5) 1.08 1.04 0.15
23 44.0538 (10) 44.0542 (11) 44.063 (5) 1.07 1.04 0.12
24 44.0635 (9) 44.0638 (10) 44.073 (5) 1.07 1.03 -0.06
25 44.0721 (9) 44.0722 (9) 44.080 (5) 1.06 1.03 -0.01
26 44.0796 (8) 44.0797 (9) 1.05 1.03
27 44.0863 (8) 44.0863(8) 1.04 1.03
28 44.0922 (7) 44.0922 (8) 1.02 1.03
29 44.0975 (7) 44.0974(7) 1.01 1.03
30 44.1023 (6) 44.1021(7) 0.99 1.03
...
∞ 44.1670

This explain why the calculations are limited to n=30. The good agreement between the
present calculations and the high-resolution ALS measurements of Covington et al., [3]
may demonstrate the accuracy of the MAOT predictions and subsequently its validity
to investigated Rydberg series of atoms and ionic species. In addition, for some reso-
nances, the ALS energy resonances and quantum defects have not been well resolved
and this may probably due to interference between series. For example, it is the case
of the 2s22p4(1D2)ns,nd Rydberg series originating from the 2s22p5 2P◦

1/2 ground state as
quoted in Table 3 for n=12,15,18,20,21,22,23, and 24. For these states, it is shown that the
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Table 3: Same as in Table 2 for the 2s22p4(1D2)ns,nd Rydberg series originating from the 2s22p5 2P◦
1/2

metastable state of Ne+.

MAOT SCUNC ALS MAOT SCUNC ALS
n E(eV) δ

7 42.5392 (50) 42.5409 (50) 42.539 (5) 1.04 1.03 1.04
8 42.9511 (50) 42.9524 (50) 42.951 (5) 1.03 1.02 1.03
9 43.2148 (46) 43.2164 (46) 43.215 (5) 1.02 1.02 1.02
10 43.3943 (41) 43.3958 (41) 43.399 (5) 1.03 1.02 0.99
11 43.5224 (36) 43.5238 (36) 43.528 (5) 1.03 1.02 0.98
12 43.6171 (32) 43.6184 (32) 1.04 1.02
13 43.6893 (28) 43.6905 (28) 43.698 (5) 1.04 1.02 0.90
14 43.7455 (25) 43.7466 (25) 43.755 (5) 1.05 1.03 0.86
15 43.7902 (22) 43.7911 (22) 1.05 1.03
16 43.8263 (20) 43.8271 (20) 43.836 (5) 1.06 1.03 0.75
17 43.8559 (18) 43.8565 (18) 43.866 (5) 1.06 1.04 0.67
18 43.8804 (16) 43.8809 (16) 1.06 1.04
19 43.9010 (15) 43.9013 (15) 43.911 (5) 1.05 1.04 0.50
20 43.9185 (14) 43.9186 (14) 1.05 1.04
21 43.9334 (13) 43.9334 (12) 43.944 (5) 1.04 1.04 0.22
22 43.9462 (12) 43.9461 (11) 1.04 1.04
23 43.9573 (11) 43.9571 (11) 1.03 1.04
24 43.9670 (10) 43.9667 (10) 43.976 (5) 1.01 1.04 -0.06
25 43.9755 (9) 43.9752 (9) 1.00 1.05
26 43.9830 (9) 43.9826 (8) 0.99 1.05
27 43.9897 (8) 43.9892 (8) 0.97 1.05
28 43.9956 (8) 43.9951 (7) 0.96 1.05
29 44.0009 (7) 44.0003 (7) 0.94 1.05
30 44.0056 (7) 44.0051 (7) 0.92 1.05
...
∞ 44.0700

present MAOT calculations give confidence to the accuracy of the recent SCUNC predic-
tions [15]. Besides, it should be underlined the excellent agreements between theories up
to n=30. These agreements are due to the fact that the MAOT and SCUNC methods are
both semi-empirical quantum models based on the determination of fitting parameters
using high-resolution measurements that incorporate relativistic effects. But, these two
methods have not the same analytical structure and this may be explained briefly. In the
framework of the SCUNC formalism, the energy resonance of a given Rydberg series is
expressed in the following shape [14, 15, 23]

En =E∞−
Z2

0

n2

{

1−β(Z0,2S+1 LJ,n,s,µ,ν)
}2

. (14)
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Table 4: Same as in Table 2 for the 2s22p4(1S0)ns,nd Rydberg series originating from the 2s22p5 2P◦
3/2 ground

state of Ne+.

MAOT SCUNC ALS MAOT SCUNC ALS
n E(eV) δ

5 44.3826 (50) 44.3846 (50) 44.383 (5) 1.05 1.05 1.05
6 45.6498 (50) 45.6507 (50) 45.650 (5) 1.05 1.05 1.05
7 46.3357 (44) 46.3353 (44) 46.335 (5) 1.05 1.05 1.06
8 46.7467 (37) 46.7470 (37) 46.746 (5) 1.06 1.05 1.06
9 47.0130 (31) 47.0135 (31) 47.014 (5) 1.05 1.05 1.05
10 47.1953 (27) 47.1956 (27) 47.196 (5) 1.05 1.05 1.05
11 47.3254 (23) 47.3255 (23) 47.326 (5) 1.05 1.05 1.04
12 47.4214 (20) 47.4214 (20) 47.425 (5) 1.05 1.04 1.00
13 47.4943 (17) 47.4942 (17) 47.499 (5) 1.04 1.04 0.97
14 47.5509 (15) 47.5508 (15) 1.04 1.04
15 47.5957 (13) 47.5956 (13) 1.04 1.04
16 47.6318 (12) 47.6318 (12) 1.04 1.04
17 47.6614 (11) 47.6613 (11) 1.04 1.04
18 47.6859 (9) 47.6858 (9) 1.04 1.04
19 47.7064 (9) 47.7063 (9) 1.03 1.04
20 47.7237 (8) 47.7236 (8) 1.03 1.04
21 47.7386 (7) 47.7384 (7) 1.03 1.04
22 47.7513 (7) 47.7511 (7) 1.02 1.04
23 47.7624 (6) 47.7622 (6) 1.02 1.04
24 47.7720 (6) 47.7718 (6) 1.01 1.04
25 47.7805 (5) 47.7802 (5) 1.00 1.04
26 47.7880 (5) 47.7877 (5) 0.99 1.04
27 47.7946 (4) 47.7943 (4) 0.98 1.04
28 47.8005 (4) 47.8001 (4) 0.97 1.04
29 47.8058 (4) 47.8054 (4) 0.96 1.04
30 47.8105 (4) 47.8101 (4) 0.95 1.04
... . . . . . . . . .

∞ 47.8750

In Eq. (14), ν and µ (µ> ν) denote the principal quantum numbers of the (2S+1LJ)nl
Rydberg series used in the empirical determination of the fi - screening constants, s rep-
resents the spin of the nl- electron (s=1/2) , E∞ is the energy value of the series limit, En
denotes the resonance energy and Z0 represents the atomic number. The β-parameters
are screening constants by unit nuclear charge expanded in inverse powers of Z0 and
given by

β
(2S+1

LJ ,n,s,µ,ν
)

=
q

∑
k=1

fk

(

1

Z0

)k

. (15)
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Table 5: Same as in Table 2 for the 2s22p4(1S0)ns,nd Rydberg series originating from the 2s22p5 2P◦
1/2 ground

state of Ne+.

MAOT SCUNC ALS MAOT SCUNC ALS
n E(eV) δ

5 44.2867 (50) 44.2834 (50) 44.287 (5) 1.05 1.05 1.05
6 45.5518 (50) 45.5500 (50) 45.552 (5) 1.06 1.06 1.06
7 46.2373 (44) 46.2453 (44) 46.238 (5) 1.06 1.04 1.06
8 46.6482 (37) 46.6514 (37) 46.650 (5) 1.06 1.05 1.05
9 46.9146 (31) 46.9154 (31) 46.918 (5) 1.06 1.06 1.05
10 47.0970 (27) 47.0968 (27) 47.098 (5) 1.06 1.06 1.05
11 47.2273 (23) 47.2268 (23) 47.229 (5) 1.06 1.06 1.04
12 47.3234 (20) 47.3229 (20) 1.06 1.06
13 47.3963 (17) 47.3960 (17) 47.401 (5) 1.06 1.06 0.99
14 47.4530 (15) 47.4528 (15) 47.454 (5) 1.06 1.06 1.04
15 47.4980 (13) 47.4979 (13) 1.06 1.06
16 47.5342 (12) 47.5342 (12) 1.06 1.06
17 47.5638 (11) 47.5639 (11) 1.06 1.06
18 47.5883 (10) 47.5884 (10) 1.06 1.06
19 47.6089 (9) 47.6090 (9) 1.06 1.05
20 47.6263 (8) 47.6264 (8) 1.06 1.05
21 47.6412 (7) 47.6412 (7) 1.06 1.05
22 47.6539 (7) 47.6540 (7) 1.06 1.05
23 47.6650 (6) 47.6651 (6) 1.05 1.05
24 47.6747 (6) 47.6747 (6) 1.05 1.05
25 47.6832 (5) 47.6831 (5) 1.04 1.05
26 47.6907 (5) 47.6906 (5) 1.03 1.05
27 47.6973 (4) 47.6972 (4) 1.03 1.05
28 47.7032 (4) 47.7031 (4) 1.02 1.04
29 47.7085 (4) 47.7084 (4) 1.01 1.04
30 47.7133 (4) 47.7131 (4) 1.00 1.04
...
∞ 47.7780

where fk = fk

(2S+1
LJ ,n,s,µ,ν

)

are parameters to be evaluated empirically.

Let us express Eq. (3) in the same form than Eq. (14). We get

En =E∞−
Z2

n2

{

1−
σ1(

2S+1LJ)

Z
−

σ2(2S+1LJ)

Z
×

1

n
−

σα
2 (

2S+1LJ)

Z

×(n−m)×(n−q)∑
k

1

fk(n,m,q,s)

}2

(16)
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Table 6: Same as in Table 2 for the 2s22p5(1P2)np Rydberg series originating from the 2s22p5 2P◦
3/2 ground

state of Ne+.

MAOT SCUNC ALS MAOT SCUNC ALS
n E(eV) δ

3 56.4876 (100) 56.4888 (100) 56.490 (10) 0.64 0.64 0.64
4 61.5136 (100) 61.5143 (100) 61.515 (10) 0.63 0.62 0.62
5 63.4633 (77) 63.4595 (76) 63.459 (10) 0.61 0.62 0.62
6 64.4120 (58) 64.4173 (58) 64.420 (10) 0.62 0.61 0.61
7 64.9508 (44) 64.9595 (45) 64.956 (10) 0.63 0.61 0.62
8 65.2873 (35) 65.2962 (36) 65.294 (10) 0.64 0.61 0.62
9 65.5117 (28) 65.5196 (29) 65.520 (10) 0.65 0.61 0.60
10 65.6691 (23) 65.6753 (24) 65.673 (10) 0.65 0.61 0.62
11 65.7837 (20) 65.7883 (20) 65.786 (10) 0.65 0.61 0.63
12 65.8697 (17) 65.8728 (17) 65.874 (10) 0.65 0.61 0.59
13 65.9358 (14) 65.9376 (15) 0.64 0.61
14 65.9878 (13) 65.9885 (13) 0.63 0.61
15 66.0293 (11) 66.0292 (11) 0.61 0.61
...
∞ 66.2920

Using Eq. (15), one can rewrite Eq. l(14) in the form

En =E∞−
Z2

n2

{

1−
f1(

2S+1LJ ,n,s,µ,ν)

Z0
−

f2(2S+1LJ ,n,s,µ,ν)

Z2
0

+
q

∑
k=3

fk(
2S+1LJ,n,s,µ,ν)

(

1

Z0

)k}2

. (17)

Comparison of these two formulas shows clearly the differences between the MAOT (16)
and the SCUNC (17) formalisms.

4 Conclusions

The energy positions of the 2s22p4(1D2)ns,nd, 2s22p4(1S0)ns,nd and 2s2 p5(3P2)np Ryd-
berg series originating from the 2s22p5 2P1/2 metastable and from the 2s22p5 2P3/2 ground
state of Ne+ are reported in this paper up to n= 30 applying the MAOT formalism. On
the whole, the present results agree well with the ALS measurements of Covington et
al. [3] and with the Screening constant by unit nuclear charge calculations of Faye et al.,
[15]. As explained by Robicheaux and Geene [24], for halogen atoms, only the very so-
phisticated eigenchannel R-matrix approach has been able to satisfactorily reproduce the
experimental spectra. The very good agreement between the present calculations and
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the ALS measurements, points out that the MOAT formalism can be used fruitfully to
assist experimentalists for the identification of a wealth of resonance structures observed
during the running set up. In addition, one can apply the present MAOT formalism to
investigate the photoionization of other ionic neon species such as Ne2+, Ne3+, and Ne4+

who contribute to the opacity in the atmospheres of the central stars of planetary nebulas.
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