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Abstract. In this paper we consider a geometric inverse problem which requires
detecting an unknown obstacle such as a submarine or an aquatic mine immersed
in a Stokes slow viscous stationary flow of an incompressible fluid, from a single
set of Cauchy (fluid velocity and stress force) boundary measurements. The nu-
merical reconstruction is based on the method of fundamental solutions (MFS) for
the pressure and streamfunction in two dimensions combined with regularization.
Numerical results are presented and discussed.
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1 Introduction

Recently, the inverse geometric problem of detecting an immersed obstacle in a fluid
via non-invasive Cauchy boundary measurements has been addressed in [2]. This
inverse problem belongs to the wider class of inverse problems in fluid mechanics,
namely, the detection of solid bodies such, as submarines or aquatic mines, from
boundary or internal measurements in stationary flows of ideal fluids, see [1], Stokes
fluids, see [3, 12, 14, 22, 26], Oseen fluids, see [21], or Navier-Stokes fluids, see [11].
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Prior to this study, Alves and Martins [5] and Martins and Silvestre [22] recently
considered the application of the MFS for the detection of immersed obstacles in two-
dimensional potential and Stokes flow, respectively. In [22], the authors used the
velocity-pressure formulation of the inverse problem given by

∆u = ∇p, in Ω\D, (1.1a)

∇ · u = 0, in Ω\D, (1.1b)
u = f , on ∂Ω, (1.1c)
t = g, on ∂Ω, (1.1d)
u = 0, on ∂D, (1.1e)

where u is the fluid velocity, p is the fluid pressure, Ω ⊂ R2 is a bounded domain, D ⊂
Ω is the unknown obstacle with Lipschitz boundary ∂D such that Ω\D is connected,

t = Tn, (1.2)

is the stress force,
T = ∇u + (∇u)tr − pI, (1.3)

is the stress tensor, n is the outward unit normal to the boundary, and f and g are
given functions satisfying

∫

∂Ω
f · n ds = 0.

In Eq. (1.1e), the no-slip velocity condition can be replaced by the zero stress force
(traction) boundary condition

t = 0, on ∂D. (1.4)

Note that the solution of the inverse problem (1.1) is unique if

f 6≡ 0,

i.e., the unknown obstacle D is identifiable, see [4].
In recent years, the MFS has been widely used for the solution of inverse obstacle

detection problems [5, 6, 8, 20, 22] due to the simplicity with which it can be imple-
mented and its rapid convergence properties, especially in three dimensions.

In this study, we reformulate the two-dimensional inverse problem (1.1) in terms
of the streamfunction-pressure, see [25]. In this way, in the application of the MFS we
use the much simpler fundamental solutions of the Laplace and biharmonic opera-
tors instead of the more complicated Stokeslets vectorial fundamental solution, [15].
Remark also that the usual streamfunction-vorticity formulation, [23], is not appropri-
ate since the pressure is present, through the stress force t, via (1.3), in the boundary
condition (1.1d).

The rest of the numerical procedure for the object identification follows the reg-
ularized non-linear least-squares minimization employed in [8] and [20] for cavity
identification in electrostatics.
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2 Streamfunction-pressure formulation

The divergence-free velocity condition (1.1b) for incompressible two-dimensional fluid
flow allows for the introduction of the scalar streamfunction ψ given by

u = (u, v) =
(∂ψ

∂y
,−∂ψ

∂x

)
. (2.1)

Some classical manipulation of the momentum Eq. (1.1a) results in the streamfunction-
pressure formulation, see [25],

∆2ψ = 0, ∆p = 0, in Ω\D, (2.2a)
∂p
∂n

= ∆u · n =
∂ω

∂y
n1 − ∂ω

∂x
n2, on ∂Ω ∪ ∂D, (2.2b)

where n = (n1, n2), and
ω = ∆ψ, (2.3)

is the fluid vorticity. Alternatively, instead of the Neumann boundary condition (2.2b)
one could use the Dirichlet boundary condition on the pressure in terms of line inte-
grals

p
(
x(s), y(s)

)
= p0 +

∫

C(s)

[∂ω

∂y
dx− ∂ω

∂x
dy

]
, s ∈ [

0, `(∂D)
]
, (2.4a)

p
(
x1(s), y1(s)

)
= p0 +

∫

C1(s)

[∂ω

∂y
dx− ∂ω

∂x
dy

]
, s ∈ [

0, `(∂Ω)
]
, (2.4b)

where p0 is an arbitrary constant, `(∂D) and `(∂Ω) are the lengths of the closed curves
∂D and ∂Ω, respectively, and

C(s) =
{(

x(t), y(t)
)∣∣t ∈ [0, s]

}
, C

(
`(∂D)

)
= ∂D, (2.5a)

C1(s) =
{(

x1(t), y1(t)
)∣∣t ∈ [0, s]

}
, C

(
`(∂Ω)

)
= ∂Ω, (2.5b)

are their parametrizations. In order to specify p0, one can prescribe p at a given point,
say

(
x1(0), y1(0)

)
, or one can impose that

∫

∂Ω
pds = 0.

In the sequel, we impose

p
(

x1(0), y1(0)
)

= p0 = given. (2.6)

In terms of ψ and p, the boundary conditions (1.1c)-(1.1e) become
(∂ψ

∂y
,−∂ψ

∂x

)
= f , on ∂Ω, (2.7a)

((
2

∂2ψ

∂x∂y
− p

)
n1 +

(∂2ψ

∂y2 −
∂2ψ

∂x2

)
n2,

(∂2ψ

∂y2 −
∂2ψ

∂x2

)
n1

−
(

2
∂2ψ

∂x∂y
+ p

)
n2

)
= g, on ∂Ω, (2.7b)
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(∂ψ

∂y
,−∂ψ

∂x

)
= 0, on ∂D. (2.7c)

In order to obtain a unique solution for ψ, one also needs to specify ψ at one point on
∂Ω and one point on ∂D, say,

ψ
(

x1(0), y1(0)
)

= ψ∂Ω = given, (2.8a)

ψ
(

x(0), y(0)
)

= ψ∂D = given. (2.8b)

3 The method of fundamental solutions (MFS)

Based on the density theorem 2.2 of Bogomolny [7], the two-dimensional biharmonic
streamfunction in (2.2a) may be approximated by

ψN(x, ξ; α, β) = A + B|x|2 +
2N

∑
j=1

[
αjG2(x, ξ j) + β jG1(x, ξ j)

]
, x ∈ Ω\D, (3.1)

where ξ = (ξ j)j=1,N are the singularities located in D, while ξ = (ξ j)j=N+1,2N are the
singularities located outside Ω. Also, in (3.1),

α = (αj)j=1,2N , and β = (β j)j=1,2N ,

are unknown real coefficients to be determined by imposing boundary conditions
(2.7), and

G1(x, ξ j) = log |x− ξ j|, (3.2a)

G2(x, ξ j) = |x− ξ j|2 log |x− ξ j|, (3.2b)

are fundamental solutions of the Laplace and biharmonic operators, respectively. In
(3.1), the constants A and B which account only for the possible occurrence of a couple
of exceptional Γ−contours for the biharmonic equation, see [9], can be taken to be zero,
so that (3.1) simplifies to, see [17]

ψN(x, ξ; α, β) =
2N

∑
j=1

[
αjG2(x, ξ j) + β jG1(x, ξ j)

]
, x ∈ Ω\D. (3.3)

Similarly, based on the density theorem 2.1 in [7], the two-dimensional harmonic pres-
sure in (2.2a) can be approximated as a linear combination of the form

pN(x, ξ; γ) = C +
2N

∑
j=1

γjG1(x, ξ j), x ∈ Ω\D. (3.4)

Avoiding the Γ−contours for the two-dimensional Laplace equation, see [16], one may
take C = 0, so that (3.4) simplifies to

pN(x, ξ; γ) =
2N

∑
j=1

γjG1(x, ξ j), x ∈ Ω\D. (3.5)
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Alternative approximations for the streamfunction based on Fichera’s simple layer
potential representation or the Almansi representation can also be employed, see [18,
19].

3.1 Parametrization of the unknown obstacle and choice
of the boundary collocation and source points

Without loss of generality, we assume that the known outer boundary ∂Ω is a circle of
radius 1 (otherwise one first maps conformally the exterior of Ω onto the exterior of
the unit disk). Then, the outer boundary collocation and source points can be chosen
as

xN+` =
(
cos(ϑ̃`), sin(ϑ̃`)

)
, ` = 1, M, (3.6)

ξN+k =
(

R cos(ϑk), R sin(ϑk)
)
, k = 1, N, (3.7)

where

ϑ̃` =
2π(`− 1)

M
, ` = 1, M,

ϑk =
2π(k− 1)

N
, k = 1, N, and R > 1,

is fixed. We further assume that the unknown obstacle D is a star-shaped domain with
respect to the origin.

∂ D

∂Ω

Ω  D

 n

 n

Figure 1: Geometry of the inverse problem under investigation, the MFS boundary collocation points (o)
and singularities (+).

The more general case in which the center of the star-shaped domain D is un-
known can also be investigated with no major modifications, see [22]. Thus we can
parametrize the boundary ∂D as

x = r(ϑ) cos ϑ, y = r(ϑ) sin ϑ, ϑ ∈ [0, 2π), (3.8)
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where r is a 2π−periodic function. The collocation form of (3.8) in two dimensions
becomes

rk = r(ϑk), k = 1, N, (3.9)

and we choose the inner boundary and source points as

xk = (rk cos ϑk, rk sin ϑk), ξk = ηxk, k = 1, N, (3.10)

where η ∈ (0, 1) is fixed.
The sketch of the problem under investigation illustrating the MFS collocation

points, outward unit normal vectors to the boundary, and sources is shown in Fig.
1.

3.2 Penalized least-squares minimization

The coefficients

(αj)j=1,2N , (β j)j=1,2N , (γj)j=1,2N , and the radii (rj)j=1,N ,

can be determined by imposing the boundary conditions (2.2b) (N + M equations),
(2.6) (1 equation), (2.7a) (2M equations), (2.7b) (2M equations), (2.7c) (2N equations),
(2.8a) (1 equation) and (2.8b) (1 equation), in a least squares sense. We thus have a
total of 5M + 3N + 3 equations in 7N unknowns, which requires

5M + 3 ≥ 4N,

for a unique solution.
The penalized least-squares functional to be minimized is given by

S(α, β, γ, r) =
N+M

∑
j=N+1

∣∣∣∣
(∂ψN

∂y
,−∂ψN

∂x

)
(xj, ξ; α, β)− f (xj)

∣∣∣∣
2
+

N+M

∑
j=N+1

∣∣t(xj, ξ; α, β, γ)

− gε(xj)
∣∣2 +

N

∑
j=1

∣∣∣∣
(∂ψN

∂y
,−∂ψN

∂x

)
(xj, ξ; α, β)

∣∣∣∣
2
+

N+M

∑
j=1

∣∣∣∣
∂pN
∂n

(xj, ξ; γ)

−
(

n1(xj)
∂(∆ψN)

∂y
(xj, ξ; α, β)− n2(xj)

∂(∆ψN)
∂x

(xj, ξ; α, β)
)∣∣∣∣

2

+
(

pN
(
(1, 0), ξ; γ

)− p0

)2
+

(
ψN

(
(1, 0), ξ; α, β

)− ψ∂Ω

)2

+
(

ψN
(
(r1, 0), ξ; α, β

)− ψ∂D

)2
+ λ1

(
|α|2 + |β|2 + |γ|2

)
+ λ2|r|2, (3.11)

where

(i) λ1, λ2 ≥ 0 are regularization parameters to be prescribed in order to stabilize
the numerical solution;
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(ii)

(
n1(xj), n2(xj)

)
=





(cos ϑ̃j, sin ϑ̃j), j = N + 1, N + M,
1√

r2
j + r′2j

(−r′j sin ϑj − rj cos ϑj,

r′j cos ϑj − rj sin ϑj), j = 1, N,

(3.12)

where

r′j = r′(ϑj) ≈
rj+1 − rj−1

ϑj+1 − ϑj−1
, j = 1, N,

with the convention

rN+1 = r1, r0 = rN , ϑN+1 = 0, and ϑ0 = 2π;

(iii) for j = N + 1, N + M,

t1(xj, ξ; α, β, γ) = n1(xj)
(

2
∂2ψN
∂x∂y

(xj, ξ; α, β)− pN(xj, ξ; γ)
)

+ n2(xj)
(∂2ψN

∂y2 − ∂2ψN

∂x2

)
(xj, ξ; α, β), (3.13a)

t2(xj, ξ; α, β, γ) = n1(xj)
(∂2ψN

∂y2 − ∂2ψN

∂x2

)
(xj, ξ; α, β)

+ n2(xj)
(

2
∂2ψN
∂x∂y

(xj, ξ; α, β) + pN(xj, ξ; γ)
)

; (3.13b)

(iv) the stress force data (1.1d) comes from practical measurements which are in-
herently contaminated with noisy errors, and therefore we replace g by gε generated
as

gε(xj) = (1 + ρjε)g(xj), j = N + 1, N + M, (3.14)

where ε represents the percentage of noise and (ρj)j=N+1,N+M are pseudo-random
noisy variables drawn from a uniform distribution on [−1, 1] using the NAG [24] rou-
tine G05DAF. Since the inverse problem under investigation is ill-posed being unstable,
i.e., small errors ε% in the data (3.14) cause large errors in the solution for ∂D, the
regularization term λ2|r|2 has been added in order to achieve stability. Further, the
regularization term

λ1
(|α|2 + |β|2 + |γ|2),

has also been added in order to deal with the ill-conditioned MFS system of equations;
(v)

∂ψN
∂x

(xj, ξ; α, β) =
2N

∑
k=1

αk(xj − ξ1
k)

(
1 + 2 log |xj − ξk|

)
+

2N

∑
k=1

βk
(xj − ξ1

k)
|xj − ξk|2

, (3.15a)
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∂ψN
∂y

(xj, ξ; α, β) =
2N

∑
k=1

αk(yj − ξ2
k)

(
1 + 2 log |xj − ξk|

)
+

2N

∑
k=1

βk
(yj − ξ2

k)
|xj − ξk|2

, (3.15b)

∂pN
∂x

(xj, ξ; α, β) =
2N

∑
k=1

γk
(xj − ξ1

k)
|xj − ξk|2

,
∂pN
∂y

(xj, ξ; α, β) =
2N

∑
k=1

γk
(yj − ξ2

k)
|xj − ξk|2

, (3.15c)

∂2ψN

∂x2 (xj, ξ; α, β) =
2N

∑
k=1

αk

(
1 + 2 log |xj − ξk|+ 2

(xj − ξ1
k)

2

|xj − ξk|2
)

+
2N

∑
k=1

βk
(yj − ξ2

k)
2 − (xj − ξ1

k)
2

|xj − ξk|4
, (3.15d)

∂2ψN

∂y2 (xj, ξ; α, β) =
2N

∑
k=1

αk

(
1 + 2 log |xj − ξk|+ 2

(yj − ξ2
k)

2

|xj − ξk|2
)

+
2N

∑
k=1

βk
(xj − ξ1

k)
2 − (yj − ξ2

k)
2

|xj − ξk|4
, (3.15e)

∆ψN(xj, ξ; α, β) = ωN(xj, ξ; α, β) = 4
2N

∑
k=1

αk
(
1 + log |xj − ξk|

)
, (3.15f)

∂2ψN
∂x∂y

(xj, ξ; α, β) = 2
2N

∑
k=1

[
αk −

βk
|xj − ξk|2

] (xj − ξ1
k)(yj − ξ2

k)
|xj − ξk|2

, (3.15g)

∂pN
∂n

(xj, ξ; γ) = ∇pN · n =
2N

∑
k=1

γk
(xj − ξk) · n(xj)
|xj − ξk|2

, (3.15h)

∂ωN
∂y

n1 − ∂ωN
∂x

n2 = 4
2N

∑
k=1

αk

[ (yj − ξ2
k)n1(xj)− (xj − ξ1

k)n2(xj)
|xj − ξk|2

]
, (3.15i)

where j = 1, N + M, and in the above equations

xj = (xj, yj), and ξk = (ξ1
k , ξ2

k).

(vi) Remark that in the direct problem (when D is known) given by Eqs. (2.2a),
(2.2b), (2.6), (2.7a), (2.7c), (2.8a) and (2.8b), the functional S does not depend on r and
in the expression (3.11), λ2 = 0, and the second term (in the stress force) in the right-
hand side drops out.

The minimization of (3.11) is carried out using the MINPACK routine lmdif which
minimizes the unconstrained sum of squares of nonlinear functions. The constraints

0 < ri < 1, i = 1, N,

are imposed during the iterative procedure by adjustment at each iteration. The Ja-
cobian is calculated internally using forward finite differences and the minimization
process terminates when either a user-specified tolerance is achieved or when a user-
specified maximum number of function evaluations, maxfev, is reached. Thus in some
cases, it is possible that the actual number of function evaluations preformed, nfev, is
less than maxfev. In all numerical experiments carried out we set the tolerance to be
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equal to 10−10. The initial guess for the unknowns has been taken arbitrarily to be

α(0) = β(0) = γ(0) = 0, and r(0) = 0.3.

In principle, one could optimize the values of R and η in (3.7) and (3.10) by treating
them as unknowns in (3.11), but this will further complicate the nonlinearity of the
functional. Therefore, for simplicity, we have decided to fix the values of R and η to
2 and 0.5, respectively. The results obtained with other values of R and η within this
order have been found to be similar.

4 Numerical examples

4.1 Example 1

We first consider an example for which an analytical solution is available in order
to assess the accuracy and stability of the proposed MFS described in Section 3. In
particular, we take

D =
{
(x, y) ∈ R2|x2 + y2 < R2

0 < 1
}

, R0 = 0.6, (4.1)

ψ(x, y) =
1
2

{
c1 log(x2 + y2)− c2(x2 + y2)

}
, (x, y) ∈ Ω\D, (4.2)

p(x, y) = 0, (x, y) ∈ Ω\D. (4.3)

This gives the fluid velocity

u = (u, v) =
( c1y

x2 + y2 − c2y,− c1x
x2 + y2 + c2x

)
, (x, y) ∈ Ω\D, (4.4)

and the vorticity
ω = ∆ψ = −2c2. (4.5)

For any 0 < R0 < 1, the functions (4.2) and (4.3) satisfy problem (2.2a), (2.2b), (2.6)-
(2.8), with

f (x, y) = (c1 − c2)(y,−x) = V(−y, x), (x, y) ∈ ∂Ω, (4.6a)

g(x, y) =
2VR2

0

1− R2
0
(−y, x), (x, y) ∈ ∂Ω, (4.6b)

p0 = 0, ψ∂Ω = − c2

2
, (4.6c)

ψ∂D = −1
2

{
c1 log(R2

0)− c2R2
0
}

, (4.6d)

provided

c1 =
VR2

0

1− R2
0

, and c2 =
V

1− R2
0

, (4.7)
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M=N=16 M=N=32 M=N=48

(a) No noise
M=N=16 M=N=32 M=N=48

(b) Noise 1%
M=N=16 M=N=32 M=N=48

(c) Noise 5%
M=N=16 M=N=32 M=N=48

(d) Noise 10%

Figure 2: Results with no regularization and maxfev=50000 for Example 1.

nfev=100000 nfev=200000 nfev=300000

Figure 3: Results with no regularization for Example 1 with N = M = 64, with noise 10% for various
numbers of function evaluations.

where V is a constant, typically taken to be unity. As one would expect, larger obsta-
cles (with R0 large) are easier to detect than smaller obstacles (with R0 small). This
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example is also physical as it describes the steady incompressible Stokes flow between
two co-axial infinitely long circular cylinders, see [10], in which the inner cylinder D
is fixed while the outer cylinder Ω is rotating with constant angular velocity V. In our
numerical experiments we choose V = 1.

In Figs. 2(a)-2(d), we present the recovered contours obtained with no regulariza-
tion, i.e.,

λ1 = λ2 = 0,

in (3.11), for noise levels of ε = 0, 1%, 5%, 10%, respectively, for

maxfev = 50000, and N = M = 16, 32, 48.

As expected, as the level of noise increases, the recovered contours deteriorate. This is
very clear for N=M=16, but as M=N increases this feature becomes less distinguish-
able. In Fig. 3, we present the recovered contours obtained with N = M = 64, for a
noise level of ε = 10% and nfev = {1, 2, 3} × 105. We observe that increasing nfev
has little effect on the recovered solution. Furthermore, the reason for which one does
not need to use regularization can be attributed to the fact that in Example 1 a simple
circular shape (starting from a similar circular initial guess) is to be retrieved. The next
two examples consider retrieving more complicated shapes for which the instability
of the solution will be more visibly manifested.

4.2 Example 2

In this example we consider the more complicated kite-shaped domain D with its
boundary ∂D given by the radial parametrization

r(ϑ) =
1

3.5

√
(−0.25 + 1.3 cos ϑ + 0.5 cos 2ϑ)2 + 2.25 sin2 ϑ, ϑ ∈ [0, 2π). (4.8)

The Dirichlet fluid velocity boundary data (1.1c) on ∂Ω is taken as, see [22],

u(x, y) = f (x, y) =
3.5
12

(y, x), (x, y) ∈ ∂Ω = ∂B(0, 1). (4.9)

Since in this case no analytical solution is available, the Neumann stress force data
(1.1d) on ∂Ω is simulated by solving the direct problem for the streamfunction ψ and
the pressure p given by Eqs. (2.2a), (2.2b), (2.6) with p0 = 0, (2.7a) with f given by
(4.9), (2.7c), (2.8a) with ψ∂Ω = 0, and (2.8b) with ψ∂D = 0, when ∂D is given by (4.8),
using the MFS with M = N = 96. In order to avoid committing an inverse crime, the
inverse solver is applied using a different number M = N = 64 and these numbers
of source and boundary collocation points are kept fixed in all the remaining figures.
Furthermore, noise is added as in (3.14).
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Figure 4: Results for Example 2, with no noise and no regularization for various numbers of function
evaluations.

Figure 5: Results for Example 2, with noise 5% and no regularization for various numbers of function
evaluations.

In Figs. 4 and 5 we present the numerical results obtained for various numbers
of function evaluations with no noise and noise ε = 5%, respectively, and no regular-
ization. From these figures it can be seen that the most accurate results are obtained
for

nfev = 4× 105, for ε = 0,
nfev = 105, for ε = 5%,

although for other values of nfev the results are still reasonable. It appears that the
number of function evaluations nfev, at which the iteration process should be termi-
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Figure 6: Results for Example 2, with noise 5% and various levels of regularization. The maximum number
of function evaluations was set to maxfev = 106, and, as illustrated, in some cases convergence was reached
for a lower number of nfev.

nated, plays the role of the regularization parameter. Thus it seems that the iterative
minimization procedure employed possesses a regularizing character. That is, if the
iterative process is stopped too early then the numerical solution is over smooth, see
e.g., Fig. 4 for nfev = 105, whilst if it is stopped too late then the numerical solution
becomes unstable, see Fig. 5 for nfev = 106. The compromised, i.e., neither too small
nor too large, suitable nfevopt at which the iterative process should be terminated de-
pends on the amount of noise ε introduced in the input data (3.14), and, as expected,
the value of nfevopt decreases as ε increases. Another way to stabilize the numerical
solution is to include regularization in the functional (3.11); however, as shown in Fig.
6, this appears to have little effect on improving the results of Fig. 5.

4.3 Example 3

We finally consider a bean-shaped cavity D with its boundary ∂D given by the radial
parametrization

r(ϑ) =
1.4 + 1.26 cos ϑ + 0.14 sin 2ϑ

3.5 + 2.625 cos ϑ
, ϑ ∈ [0, 2π). (4.10)
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Figure 7: Results for Example 3, with no noise and no regularization for various numbers of function
evaluations.

Figure 8: Results for Example 3, with noise 5% and no regularization for various numbers of function
evaluations.

This example, which was also considered in [22], is more difficult than the previous
two examples because of the presence of a sharp cusp-like portion mimicking a re-
entrant corner. The same Dirichlet data (4.9) was taken and all the numerical details
are the same as in Example 2. Figs. 7-9 are the analogue of Figs. 4-6, and the same
conclusions can be drawn from these. Furthermore, the numerical results we obtained
are in good agreement with those of [22].



A. Karageorghis, D. Lesnic / Adv. Appl. Math. Mech., 2 (2010), pp. 183-199 197

nfev=857000, λ
1
=λ

2
=0 nfev=822000, λ

1
=λ

2
=10−11 nfev=872000, λ

1
=λ

2
=10−10

nfev=343000, λ
1
=λ

2
=10−9 nfev=701000, λ

1
=λ

2
=10−8 nfev=1000000, λ

1
=λ

2
=10−7

nfev=1000000, λ
1
=λ

2
=10−6 nfev=475000, λ

1
=λ

2
=10−5 nfev=1000000, λ

1
=λ

2
=10−4

Figure 9: Results for Example 3, with noise 5% and various levels of regularization. The maximum number
of function evaluations was set to maxfev = 106, and, as illustrated, in some cases convergence was reached
for a lower number of nfev.

5 Conclusions

A novel iterative numerical method based on a regularized MFS has been developed
for the approximate solution of the inverse obstacle problem for the Stokes equations
in the pressure-streamfunction formulation. The numerical results indicate that ac-
curate and stable reconstructions of the obstacle immersed in the fluid flow can be
produced with the proposed method. The extension of the pressure-vectorial stream-
function MFS formulation to three-dimensions is also possible using the Helmholtz
decomposition theorem, as described in [25]. However, the inverse analysis becomes
more tedious and expensive and is deferred to a future numerical implementation.
Possible areas of future research related to the technique presented in this study in-
clude the detection of multiple and non-smooth obstacles, and multi-phase flows with
unknown interfaces.
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