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Abstract. High order approximations of the vortical flowfield and resulting aero-
dynamic coefficients of complex supersonic vortical flows, are computed using the
Implicit Parabolized Navier-Stokes solver (IMPNS). Third and fifth order Weighted
Essentially Non-oscillating (WENO) schemes for evenly spaced and for stretched
structured meshes are employed for the approximate Riemann solution of the invis-
cid cross flow fluxes. An approximate Riemann solution is obtained using the Os-
her and Solomon solver and the one-equation Spalart-Allmaras turbulence model
is modified for an improved strain-vorticity approximation. Results indicate that
even on much coarser meshes the 5th order PNS-WENO-Spalart-Allmaras approach
may achieve results that are superior to previously published full Navier-Stokes so-
lutions that employ a two-equation RANS model but the additional computational
demand of schemes for non-uniform grids, may not be justifiable for smoothly
varying meshes. The proposed PNS-WENO scheme combination provides a novel
approach that is fast, accurate and robust, and that can substantially reduce numer-
ical dissipation and improve the resolution of the vortical structures.

AMS subject classifications: 65M70, 76M20
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1 Introduction

Three-dimensional supersonic flows are often characterised by strong viscous/invis-
cid interactions which often require a prohibitive number of grid points for compu-
tational analysis. The computational cost of an accurate Navier-Stokes solution can
often be eluded through suitable assumptions applicable to the supersonic problem
under consideration. The Parabolized Navier-Stokes equations (PNS) are an approx-
imate form, which through suitable assumptions reduces the complex nature of the

∗Corresponding author.
URL: http://www.shef.ac.uk/fluids/staff/nq.html
Email: d.defeo@shef.ac.uk (D. M. de Feo), n.qin@sheffield.ac.uk (N. Qin), tjbirch@dstl.gov.uk (T. J. Birch)

http://www.global-sci.org/aamm 399 c©2010 Global Science Press



400 D. M. de Feo, N. Qin and T. J. Birch / Adv. Appl. Math. Mech., 4 (2010), pp. 399-429

Navier-Stokes (NS) equations to a set of mixed parabolic-hyperbolic equations solv-
able through a space marching approach. This technique of solution ultimately pro-
vides considerable savings in computational cost, allowing more resources to be allo-
cated to finer grids for a better resolution of the flowfield.

As constant increases in computing power advance us towards more accurate and
detailed numerical flow solutions, more accurate mathematical models substantially
increase accuracy without the need for grid alterations. Considerable improvements
have been made since the piecewise constant approximation of the original first-order
Godunov scheme and current higher order methods offer large benefits at a very af-
fordable computational cost. High resolution schemes are most often applied on the
full NS equations and from the authors’ research it appears that there is no docu-
mented evidence of orders higher than three ever being applied to the PNS equations.
Vortical flows are significantly degraded down stream and in the absence of signifi-
cant mesh refinement around the vortex structure, the dissipation introduced by most
numerical algorithms is readily manifested through a non-physical loss of vorticity.

The implicit, multizone, space-marching solver, IMPNS [1–3], was originally de-
veloped for the aerodynamic prediction of supersonic viscous flowfields. By em-
ploying 3rd (WENO3) and 5th (WENO5) order weighted non-oscillating schemes for
equally spaced meshes as well as much more complex 3rd (WENO3-SG) and 5th order
(WENO5-SG) formulations for stretched structured grids, the present investigation
attempts to minimize the loss in vorticity introduced through grid and discretization
errors. This results in a highly efficient and robust solver whose accuracy is on par
with more detailed Navier-Stokes solvers but whose savings in terms of memory and
computational time of solution are significant. The present investigation also proposes
a modification to the production constant in the Spalart Allmaras model which is in-
troduced following the strain-vorticity formulation originally put forward by Dacles-
Mariani [4]. Results are obtained for a turbulent tangent ogive-cylinder and found
to be superior to well documented results using a much more complete full Navier-
Stokes approach with more complex turbulence models on much finer grids. Follow-
ing the validation, the flowfield over a more intricate geometry possessing four delta
type fins placed in an ”X” configuration is investigated with the same schemes.

1.1 Reviewing the use of PNS equations and high resolution schemes

The Parabolized Navier Stokes Equations have been applied successfully since the
late 1960’s but the mixed hyperbolic-parabolic equation set still requires that certain
prescribed conditions are met [5]. The conditions require that the inviscid flow in the
region outside the boundary layer remain supersonic throughout and that there is no
streamwise flow reversal. A further constraint stems from the streamwise pressure
gradient which is neglected in many older formulations but may be kept allowing
some upstream influence through the boundary layer provided one of several tech-
niques is applied to avoid the departure solutions that would otherwise unfold.

One of the first uses of the PNS equation was by Rudman and Rubin in 1968 [6],
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who derived the PNS equations using a series expansion technique in order to solve
for the hypersonic laminar flow over the leading edge of a flat plate [5]. Their PNS
formulations completely omitted the streamwise pressure gradient in the momentum
equations and resulted in a set of equations that was purely parabolic in nature. The
first documented use of the streamwise pressure gradient was by Cheng et al. [7], who
employed a very similar PNS formulation to that of Rubin et al., but maintained solu-
tion stability by evaluating this gradient as a source term from the previous marching
plane. Lubard and Heliwell [8] were the first to assume that the viscous streamwise
terms were negligible in comparison to those in the cross flow plane but showed that
if the streamwise pressure gradient was maintained and discretised following their
methodology or that of Cheng et al., stability within the subsonic boundary layer was
maintained only through more dissipative space marching steps. It was not until the
investigations of Vigneron et al. [9], that the optimal required fraction of the stream-
wise pressure gradient was identified. Their investigations present an optimal form
of the PNS equations that ensures stability and maintains solution accuracy. Their as-
sumptions are used in many present day PNS formulations and form part of the PNS
equation set that is solved for by the IMPNS solver.

To the best of the authors’ knowledge, the use of the PNS equations with very
higher order schemes has never been documented, nonetheless, higher order schemes
have been used previously on the full Navier-Stokes equations [10] and are of increas-
ing interest in the computational field.

The first method that attempted to modify Godunov’s piecewise constant ap-
proach was Van Leer’s Monotonic Centered-Upwind Scheme for Systems of Conser-
vation Laws (MUSCL) [11, 12]. This progression to second order remained oscilla-
tion free through the use of non-linear limiters restricting the bounds of extrema but
also reducing the accuracy of the solution when the varying function was not smooth.
Several limiters exist in literature providing different extents on the limits of their con-
finement and the variation of the function they represent but they all reduce the solu-
tion order, usually to first order, whenever their permitted bounds are exceeded. The
MUSCL scheme has become a very popular approach whose versatility has since al-
lowed for accurate results to be achieved on both structured and unstructured meshes.
Nominally higher order MUSCL implementations are now common place, but in or-
der to ensure the Total Variation Diminishing (TVD) condition is maintained, the ap-
proach still reduces its nominal accuracy to first order or less at solution extrema.

It was not until the introduction of Essentially Non Oscillatory schemes (ENO)
by Harten et al. [13, 14], that higher order at flow discontinuities was achieved. The
new family of higher order reconstructions maintained a non-oscillating solution by
employing only the gradients from the smoothest of multiple chosen stencils or poly-
nomials. This highly successful approach was characterized by several conditional
”IF” statements enabling the determination of the most adequate stencil but proved
demanding for parallel computations. The ENO method showed that shock captur-
ing schemes of more than second order accuracy could be constructed, thus paving
the way for research into the development of oscillation free schemes of even higher
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orders of accuracy [15].
In 1994, Liu et al [14,15] first proposed to achieve a convex combination of all of the

interpolating polynomials through the use of proper weightings to create a Weighted
ENO (WENO) scheme. On smoother parts of the flow the method employed linear
weights to create a higher order approximation from lower order stencil combina-
tions. Non-linear weightings based on the smoothness of the varying function within
that stencil, were then employed for the final discontinuous reconstruction. The fifth
order WENO method described by Jiang and Shu [16,17] is a very robust scheme that
can achieve up to third order accuracy at discontinuities, from a nominal fifth order
accuracy on smooth flow. The current investigation follows the prescription of refer-
ence [17] and the resulting scheme has no ”IF” statements and can be efficiently used
in both serial and parallel computations. This weighted approach, allows for very high
orders of accuracy and schemes of up to 11th order have been successfully derived and
implemented [15]. The finite difference based interpolation is readily applied to struc-
tured cells even within a finite volume framework and for highly skewed cells, the
WENO implementation outlined by references [16] and [17] can be formulated from
first principles following the derivation of multiple Lagrange interpolation polynomi-
als on stretched meshes. The tedious derivation is described by Smit et al. [18] who
achieved improved results for the simulation of reverse flow reactors on coarser grids.
The ”weighted” approach is probably the most advanced technique available for CFD
computations [18] and can maintain very high orders of accuracy both at smooth and
discontinuous flow regions, whilst maintaining a robust, accurate and stable solution.

2 The IMPNS solver and solution methodology

The equations relevant to the current study are the PNS equations derived from the
steady Favre or density averaged Navier Stokes equations with no source terms. The
equations are solved using air as a viscous compressible fluid. These equations which
describe the conservation of mass, momentum and energy of a fluid in a uniform
quadrilateral cell with surface area S are given below in integral form for a steady
flow assumption. ∫

S

FndS = 0. (2.1)

The flux vector Fn, can be divided into a viscous and an inviscid contribution to the
total flux, so that

Fn = Finv
n − Fvis

n .

If Finv
n denotes the inviscid flux and n̂ the unit normal vector in the direction the flux

acts, the inviscid contribution is given by

Finv
n = (n̂Tu)Φ + p(0,n̂T, 0)T, (2.2a)

Φ = Q + p(0, 0, 0, 0, 1)T, (2.2b)
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where Q=(ρ, ρu, ρv, ρw, ρE)T is the vector of conservative variables and E is the to-
tal energy per unit mass. Air is used as the working fluid with the ratio of spe-
cific heats, γ, kept constant at 1.4 while the vector of primitive variables is given by
q=(ρ, u, v, w, p)T, whereby the pressure of the system can be evaluated from the spe-
cific energy of the system. The viscous flux vector can be evaluated from the shear
stress tensor, the coefficient of thermal conductivity and the unit normal vector de-
scribing the flux direction at that location

Fvis
n = n̂T




τ




0
î
ĵ
k̂
u




+ k




0
0
0
0
∇T







. (2.3)

The IMPNS solver evaluates the viscous flux term by approximating the gradient of
a flow variable using Gauss’s divergence theorem. Within a finite volume framework,
the viscous gradient is evaluated from the six different contributions of the flow vari-
able around a structured cell. By equating a volume integral to a surface integral the
gradient can then be calculated. Using Einstein summation where δij denotes the Kro-
necker delta function (δij=1, if i=j, else δij=0), µ and µT the dynamic and turbulent
viscosities respectively, the components of the shear stress tensor are evaluated from

τij = Re−1(µ + µT)(∂iuj + ∂jui − 2
3

δij∇Tu), i, j ∈ {1, 2, 3}. (2.4)

In Eq. (2.4), the components of the shear stress tensor are inversely proportional to
the Reynolds number per grid unit, whereby a non-dimensional form of the gas law
is used to evaluate the temperature of the system. By using a non-dimensional form
of Sutherland’s law the dynamic viscosity is subsequently calculated from the tem-
perature. This in turn, is evaluated using the coefficient of thermal conductivity with
the prescribed values of the laminar and turbulent Prandtl numbers for air, which are
given by Pr=0.72 and PrT=0.9, respectively. In the current investigation, all simula-
tions are turbulent and the Spalart-Allmaras model [19] is used to evaluate the turbu-
lent viscosity, µT, from the modified turbulent viscosity, which the model originally
solves for. The IMPNS solver employs only structured grid cells typically labelled
(i, j, k) which define six rectangular sides corresponding to two constant surfaces in
three body fitted coordinate systems denoted ξ, η and ζ. If sξ , sη and sζ , represent
the areas of the rectangular surfaces normal to the body fitted ξ, η and ζ systems, the
integral vector form of the continuity, momentum and energy equations (2.1) can then
be expressed over a hexahedral cell.

[
Fξsξ

]i+ 1
2 ,j,k

i− 1
2 ,j,k

+
[
Fηsη

]i,j+ 1
2 ,k

i,j− 1
2 ,k

+
[
Fζsζ

]i,j,k+ 1
2

i,j,k− 1
2

= 0. (2.5)

Following common finite volume convention, cell interfaces with normals in the ξ, η
or ζ direction are denoted by half index values, so for the ξ direction, the (i + 1/2, j,
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k) interface would lie between cells (i, j, k) and (i + 1, j, k). To obtain the PNS form
of the above equation set, the first term in the set must be altered. The viscous term
in the ξ-direction is assumed to be negligible in comparison to the viscous terms in
the cross-flow, η and ζ directions. This leads to a simplified equation set which only
requires the stable evaluation of a streamwise inviscid flux while the cross-flow fluxes
remain unchanged, except for neglected streamwise contributions of the viscous flux
derivatives [20].

[
Finv

ξ sξ

]i+ 1
2 ,j,k

i− 1
2 ,j,k

+
[
Fηsη

]i,j+ 1
2 ,k

i,j− 1
2 ,k

+
[
Fζsζ

]i,j,k+ 1
2

i,j,k− 1
2

= 0. (2.6)

In order to solve the PNS equations with a single space marching sweep, the flow
outside the boundary layer must remain supersonic without streamwise separation.
The equations are then reduced to a fully parabolized set by suppressing a fraction of
the streamwise pressure gradient in the subsonic regions of the boundary layer. The
flux resulting from the reduced streamwise pressure gradient is evaluated using the
approximation due to Vigneron et al. [9]. This results in the final form of the PNS
equations solved by the multi-block solver and given by Eq. (2.7).

[
Fvig

ξ sξ

]i+ 1
2 ,j,k

i− 1
2 ,j,k

+
[
Fηsη

]i,j+ 1
2 ,k

i,j− 1
2 ,k

+
[
Fζsζ

]i,j,k+ 1
2

i,j,k− 1
2

= 0. (2.7)

If ξ̂ is the unit vector in the ξ direction and σvig is a constant that varies between 0 and 1,
the new flux assumption by Vigneron et al. can be evaluated using Eq. (2.8), whereby
the velocity vector u=(u, v, w)T denotes the three velocity components existing in 3-
dimensional flow.

Fvig
ξ (Q) = Finv

ξ −
[
1−min

{
1,

σvigγ(mTξ̂)2

1 + (γ− 1)(mTξ̂)2

}]
p




0
ξ̂
0


 , (2.8)

where m = u/c.
The final numerical approach can best be summarized by considering each term

in Eq. (2.7) individually. In the first part of the equation the term Fvig
ξ is given by the

Vigneron type flux described in Eq. (2.8). The inviscid flux term is evaluated using
Steger-Warming [21] (SW) Flux Vector Splitting. The SW inviscid flux is a fairly dissi-
pative function but its dissipation helps maintain a stable PNS approach. The method
effectively splits the flux function into the respective left and right components and
each component is evaluated from their respective conservative variables. The con-
servative variables are evaluated using a straightforward second order extrapolation
from the cell center. The extrapolation is not limited in any way, as this would result
in an approach that would very likely become unstable as well as introduce further in-
accuracy in the streamwise approximation. The second order extrapolations are given
respectively by Eqs. (2.9a) and (2.9b)

QL
i+ 1

2
=

3
2

Qi − 1
2

Qi−1, (2.9a)
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QR
i+ 1

2
=

3
2

Qi+1 − 1
2

Qi+2. (2.9b)

The second and third terms in Eq. (2.7), effectively solve for the cross-flow components
of the flow and are given by the difference between the inviscid and viscous fluxes.
The higher order WENO formulations are applied directly only on the inviscid com-
ponents. These fluxes are evaluated using the Osher-Solomon inviscid flux function
which is described in detail in Section 2.2. This demanding flux function introduces
minimal dissipation into its approximate Riemann solution but requires an accurate
estimate of the left and right states of the conservative variables. The proposed WENO
interpolations are thus employed for the left and right conservative variable approxi-
mations. The WENO methodology is applied on the primitive variables and the inter-
polated result is used to obtain the conservative variables that are then, in turn, used
to calculate the Osher-Solomon flux function. The viscous cross-flow gradients are in-
stead evaluated using Gauss’ divergence theorem that equates the flow variables over
the cell volume to flow variable differences across the respective cell surfaces. The
integral form of the relevant approximation is given in Eq. (2.10) for a flow variable ϕ,
where ϕ represents any of the variables of the vector of primitive variables q.

∫

V
(∇φ)dV =

∫

S
(φn̂)dS. (2.10)

The discrete form of the equation is given in Eq. (2.11) and is expressed by considering
the surface values over a structured cell, where B, F, R, L, U and D denote the back,
front, right, left, upper and lower surfaces of an arbitrary cell and V, its volume.

∇θ|C = V−1
(
[θsξ ]BF + [θsη ]RL + [θsζ ]UD

)
. (2.11)

2.1 Temporal discretization

All calculations were performed under a steady flow assumption and an explicit
pseudo time discretization was employed to ensure full temporal convergence at each
streamwise station. For a truly steady flow, the pseudo time approach allows for the
discretized governing equations to approach their steady state as time approaches in-
finity, thus allowing the pseudo time term to vanish. If V is the volume of the cell in
question and the first term represents the pseudo time derivative, the PNS equations
can be expressed as

∂Q
∂τ

V
∣∣∣
i,j,k

+
[
Fvig

ξ sξ

]i+ 1
2 ,j,k

i− 1
2 ,j,k

+
[
Fηsη

]i,j+ 1
2 ,k

i,j− 1
2 ,k

+
[
Fζsζ

]i,j,k+ 1
2

i,j,k− 1
2

= 0. (2.12)

If the above equation set is expressed over all the cells in a particular block, the for-
mulation can be simplified as

∂Q
∂τ

+ R(Q) = 0. (2.13)



406 D. M. de Feo, N. Qin and T. J. Birch / Adv. Appl. Math. Mech., 4 (2010), pp. 399-429

A second order explicit discretization is employed so that the updated vector of con-
servative variables is given by

Qn+1 = Qn − ∆τR(Qn). (2.14)

To avoid using restrictively small pseudo time steps and in order to maximise the
size of the time step while respecting the stability restriction imposed by the explicit
approach, the time step is evaluated from the Courant-Friedrichs-Lewy number (CFL)
and the speed of propagation of information.

∆τ =CFL
(

Uξsξ + Uηsη + Uζsζ + c(sξ + sη + sζ)

+ 2(ρV)−1γ(γ− 1)M2
∞k(s2

ξ + s2
η + s2

ζ)
)−1

. (2.15)

2.2 Inviscid cross-flow flux approximation

The inviscid fluxes were evaluated using the approximate Riemann solver of Osher-
Solomon [12]. The solver can provide an accurate and robust method to evaluate the
inviscid flux function at the interface of cells. Providing good results in compressible
flows both at shear layers and shocks, the scheme computes integral paths in order to
approximate the inviscid flux at the interface. The flux function is evaluated using the
equation given below for a standard cell and an approximation in the ξ, direction

FOS
ξ+ 1

2
=

1
2

[
Fξ(QL) + Fξ(QR)−

∫ QR

QL

∣∣∣∂Fξ

∂Q

∣∣∣dQ
]
. (2.16)

The Osher-Solomon scheme requires the evaluation of four further intermediate terms
as well as the fluxes which are all evaluated from the left and right vectors of conser-
vative variables. These are all used to formulate new intermediate flux terms which
are then employed to evaluate the flux at the interface according to sixteen different
conditions. In a finite volume solver, the left and right states describe the primitive or
conservative variables to the left and right of the six sides that form a structured cell.
In the IMPNS solver the primitive variables are interpolated from the cell centered
average values to only four of the six sides that map a structured cell. In the solver,
the four sides will define the flow in the cross flow directions while the remaining
two upstream and downstream flow paths, are dealt with differently in order to en-
sure the PNS conditions are satisfied. The more diffusive approximate Riemann solver
of Steger and Warming is used in these flow directions and maintains a stable space
marching solution. Higher order WENO approximations are only applied in the cross
flow paths in order to obtain an accurate approximation of the left and right primitive
states, which are subsequently used to evaluate all the terms required to compute the
Osher-Solomon flux function. The intermediate terms required for final evaluation of
the Osher-Solomon inviscid flux function are then evaluated using

ψL = UL
n +

2
γ− 1

cL, ψR = UR
n −

2
γ− 1

cR, (2.17a)
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cLI =
γ− 1

2

(
ψL − ψR

1 + exp([zR − zL]/[2γ])

)
, cRI = exp

(zR − zL

2γ

)
cLI, (2.17b)

and

ULI
n = URI

n =
ψR + αψL

1 + exp([zR − zL]/[2γ])
, (2.18a)

zLI = zL, zRI = zR, ULI
t1 = UL

t1, (2.18b)

URI
t1 = UR

t1, ULI
t2 = UL

t2, URI
t2 = UR

t2. (2.18c)

The tangential velocities Ut1, Ut2 are calculated depending on the value of the scalar
coefficients of the unit normal vector of the surface in question.

n1 > 0.2 or n1 < −0.2, Ut1 = n1v− n2u, Ut2 = n1w− n3u,
n2 > 0.2 or n2 < −0.2, Ut1 = n2u− n1v, Ut2 = n2w− n3v,
Any other condition, Ut1 = n3v− n2w, Ut2 = n3u− n1w.

The normal velocity is then evaluated from

Un = n̂Tu = n1u1 + n2u2 + n3u3. (2.19)

Once the left and right states have been evaluated the intermediate states ”I” and
”S” can then be denoted by QRI, QRS, QLI, QLS and used to compute intermediate flux
terms used for the final Osher-Solomon flux approximation. Following the implemen-
tation of the scheme outlined in [22], the new fluxes can be approximated through the
following assumptions

FL = F(QL), FLS = F(QLS), FLI = F(QLI),

FRI = F(QRI), FRS = F(QRS), FR = F(QR).

The Osher-Solomon flux is then computed according to the conditions set out in Table
1. For a more complete description of the approximate Riemann solver the reader is
referred to reference [22].

Table 1: Intermediate states and associated Osher-Solomon flux.

UL ≤ cL UL > cL UL ≥ cL UL > cL

FOS
ξ+ 1

2
UR ≥ −cR UR ≥ −cR UR < −cR UR < −cR

cLI ≤ ULI
n FLS FL FLS − FRS + FR FL − FRS + FR

0 ≤ ULI
n < cLI FLI FL − FLS + FLI FLI − FRS + FR FL − FLS + FLI − FRS + FR

−cRI < ULI
n < 0 FRI FL − FLS + FRI FRI − FRS + FR FL − FLS + FRI − FRS + FR

ULI
n ≤ −cRI FRS FL − FLS + FRS FR FL − FLS + FR
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3 3rd and 5th order WENO reconstructions on uniform grids

WENO reconstructions have become a very popular method of avoiding the stability
issues associated with high order supersonic flow approximations. The method fol-
lows the prescription of reference [17] and involves forming a convex combination of
three separate stencils that are weighted according to how smooth the flow is in each
stencil of cells. Linear weights, Crj, are chosen to ensure the resulting reconstruction
assembled from lower order interpolation polynomials remains (2k − 1) order accu-
rate in smooth regions of the flow, where k denotes the number of lower order sten-
cils. WENO methods have become very well documented and extensively validated
for a variety of complex flows and several modifications focusing around the smooth-
ness parameters, offer arguable improvements over the original scheme (see [23]). The
original baseline scheme is given below for third and fifth order reconstructions.

A WENO type reconstruction from cell average values, q̄, can be formulated using
Lagrange interpolation to form a new set of polynomials with the constants Crj, as the
resulting basis functions.

q̂i+ 1
2 ,r =

k−1

∑
j=0

crjq̄i−r+j, q̃i− 1
2 ,r =

k−1

∑
j=0

c̃rjq̄i−r+j, (3.1)

where r = 0, · · · , k− 1 and c̃rj = cr−1,j.
For a third order WENO reconstruction on a grid with uniform spacing for the left

and right non-weighted interpolations we have

q̂−
i+ 1

2 ,0
=

1
2

q̄i +
1
2

q̄i+1, q̃+
i− 1

2 ,0
=

3
2

q̄i − 1
2

q̄i+1, (3.2)

q̂−
i+ 1

2 ,1
= −1

2
q̄i−1 +

3
2

q̄i, q̃+
i− 1

2 ,1
=

1
2

q̄i−1 +
1
2

q̄i. (3.3)

Similarly, for a fifth order accurate WENO reconstruction of the left state

q̂−
i+ 1

2 ,0
=

1
3

q̄i +
5
6

q̄i+1 − 1
6

q̄i+2, (3.4a)

q̂−
i+ 1

2 ,1
= −1

6
q̄i−1 +

5
6

q̄i +
1
3

q̄i+1, (3.4b)

q̂−
i+ 1

2 ,2
=

1
3

q̄i−2 − 7
6

q̄i−1 +
11
6

q̄i. (3.4c)

The right state stencils and constants are then mirrored as

q̃+
i− 1

2 ,0
=

11
6

q̄i − 7
6

q̄i+1 +
1
3

q̄i+2, (3.5a)

q̃+
i− 1

2 ,1
=

1
3

q̄i−1 +
5
6

q̄i − 1
6

q̄i+1, (3.5b)

q̃+
i− 1

2 ,2
= −1

6
q̄i−2 +

5
6

q̄i−1 +
1
3

q̄i. (3.5c)
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The right state can be seen as a mirrored version of Eqs. (3.4). The third order La-
grangian basis functions are given as

c−
i+ 1

2 ,0
=

2
3

, c−
i+ 1

2 ,1
=

1
3

, c̃+
i− 1

2 ,0
=

1
3

, c̃+
i− 1

2 ,1
=

2
3

, (3.6)

and the fifth order basis functions are

c−
i+ 1

2 ,0
=

3
10

, c−
i+ 1

2 ,1
=

3
5

, c−
i+ 1

2 ,1
=

1
10

, (3.7a)

c̃+
i− 1

2 ,0
=

1
10

, c̃+
i− 1

2 ,1
=

3
5

, c̃+
i− 1

2 ,1
=

3
10

. (3.7b)

Spurious oscillations are avoided through a very efficient choice of the non-linear
weighting parameter which allows the scheme to remain stable and robust in case of
extreme gradients. The smoothness parameters were designed to minimize the total
variation of the reconstruction and to measure the sum of the squares of the L2-norm
of the derivatives of the interpolation polynomial as an indicator for smothness [17],
as given below in Eq. (3.8).

ISi,r =
k−1

∑
l

∫ x
i+ 1

2

x
i− 1

2

∆x2l−1
(∂lqr(x)

∂lx

)2
dx. (3.8)

For a third order WENO reconstruction, Eq. (3.8) results in two smoothness estimators
defined as

ISi,0 = (q̄i+1 − q̄i)
2 , (3.9a)

ISi,1 = (q̄i − q̄i−1)
2 . (3.9b)

Similarly, for a fifth order accurate WENO reconstruction from Eq. (3.8), three smooth-
ness estimators can be derived.

ISi,0 =
13
12

(q̄i − 2q̄i+1 + q̄i+2)
2 +

1
4

(3q̄i − 4q̄i+1 + q̄i+2)
2 , (3.10a)

ISi,1 =
13
12

(q̄i−1 − 2q̄i + q̄i+1)
2 +

1
4

(q̄i−1 − q̄i+1)
2 , (3.10b)

ISi,2 =
13
12

(q̄i−2 − 2q̄i−1 + q̄i)
2 +

1
4

(q̄−2i − 4q̄i−1 + 3q̄i)
2 . (3.10c)

The nonlinear weights are then formulated using

ωr = αr

(k−1

∑
s=0

αs

)−1
, where αr =

cr

(ε + ISr)2 . (3.11)

A convex combination is then formed giving the following reconstructions for the left
and right primitive states

q−
i+ 1

2
=

k−1

∑
r=0

ωr q̂i+ 1
2 ,r, (3.12a)

q+
i− 1

2
=

k−1

∑
r=0

ω̃r q̃(r)
i− 1

2
. (3.12b)
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Provided computationally inexpensive slope limiters are used, the implementation
of a 3rd order WENO scheme is slightly more expensive than the popular 3rd order
MUSCL type extrapolation but the WENO methodology, unlike the MUSCL, should
maintain an order of accuracy above unity even in the presence of strong shocks.

4 3rd and 5th order WENO reconstructions on non-uniform
grids

A WENO approximation for a non-uniform grid can be reconstructed by first creating
a non weighted Lagrange type interpolation polynomial of the primitive variable of
interest, q, around a quadrilateral cell i. Following the procedure of Shu et al. [17],
and the detailed prescription of the methodology for non-uniform grids, described by
Smit et al. [18], a non-weighted unique polynomial can be formed using

qr(x)
∣∣
i=

k−1

∑
j=0

{ k

∑
m=j+1

[( k

∑
p=0
p 6=m

k

∏
q=0

q 6=m,p

(x− xi−r+q− 1
2
)
)( k

∏
p=0
p 6=m

(xi−r+m− 1
2

− xi−r+p− 1
2
)
)−1]

(xi−r+j+ 1
2
− xi−r+j− 1

2
)q̄i−r+j

}
. (4.1)

Due to the space marching nature that the PNS equations impose in the streamwise
approximations, these interpolations are only being applied in the crossflow plane.
This implies that for a six faced cuboid only four are of interest because two pertain
to the upstream and downstream directions. The interpolation is therefore from the
cell center to the face center in the cross flow plane and cell sizes must be taken into
account. Denoting cell centers by full index values, while assuming the cell’s length is
set in the streamwise plane, the coordinates of interest are those describing the cross-
flow cell width and height. Assuming the crossflow plane is described by the ξ and η
coordinate system and ζ describes the streamwise coordinate direction with ”k” as its
index, the coordinates are therefore xi−1/2,j,k, xi+1/2,j,k, yi−1/2,j,k, yi+1/2,j,k, and xi,j−1/2,k,
xi,j+1/2,k, yi,j−1/2,k, yi,j+1/2,k and the resulting average width and height are given by
Eqs. (4.2) and (4.3).

dξ = ξi+ 1
2 ,j,k − ξi− 1

2 ,j,k =
((

xi+ 1
2 ,j,k − xi− 1

2 ,j,k
)2 + (yi+ 1

2 ,j,k − yi− 1
2 ,j,k)

2
) 1

2
, (4.2)

dη = ηi,j+ 1
2 ,k − ηi,j− 1

2 ,k =
((

xi,j+ 1
2 ,k − xi,j− 1

2 ,k
)2 + (yi,j+ 1

2 ,k − yi,j− 1
2 ,k)

2
) 1

2
. (4.3)

For simplicity the resulting WENO methodology implemented into the IMPNS solver
is only described for one of the cross flow coordinate systems, but the methodology in
the other directions can be expanded by replacing the ”i” index with ”j”. The resulting
lower order left states required for a third order reconstruction are

q̂−
i+ 1

2 ,0
=

( xi+ 3
2
− xi+ 1

2

xi+ 3
2
− xi− 1

2

)
q̄i +

( xi+ 1
2
− xi− 1

2

xi+ 3
2
− xi− 1

2

)
q̄i+1, (4.4a)
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q̂−
i+ 1

2 ,1
=

(
1 +

xi+ 1
2
− xi− 1

2

xi+ 1
2
− xi− 3

2

)
q̄i −

( xi+ 1
2
− xi− 1

2

xi+ 1
2
− xi− 3

2

)
q̄i−1. (4.4b)

The right states are

q̂+
i− 1

2 ,0
=

(
1 +

xi+ 1
2
− xi− 1

2

xi+ 3
2
− xi− 1

2

)
q̄i −

( xi+ 1
2
− xi− 1

2

xi+ 3
2
− xi− 1

2

)
q̄i+1, (4.5a)

q̂+
i− 1

2 ,1
=

( xi− 1
2
− xi− 3

2

xi+ 1
2
− xi− 3

2

)
q̄i−1 +

( xi+ 1
2
− xi− 1

2

xi+ 1
2
− xi− 3

2

)
q̄i. (4.5b)

The linear weights are

c−
i+ 1

2 ,0
=

xi+ 1
2
− xi− 3

2

xi+ 3
2
− xi− 3

2

, c−
i+ 1

2 ,1
=

xi+ 3
2
− xi+ 1

2

xi+ 3
2
− xi− 3

2

, (4.6a)

c+
i− 1

2 ,0
=

xi− 1
2
− xi− 3

2

xi+ 3
2
− xi− 3

2

, c+
i− 1

2 ,1
=

xi+ 3
2
− xi− 1

2

xi+ 3
2
− xi− 3

2

. (4.6b)

The smoothness measures are evaluated using the baseline formulation of reference
[17] and given in Eq. (3.8), which are then derived for a non-uniform grid approxima-
tion so that

ISi,r =
k−1

∑
m=1

[((
xi+ 1

2
− xi− 1

2

)2m−1
) ∫ x

i+ 1
2

x
i− 1

2

(∂m(
qr(x)

)
i

∂m(x)

)
dx

]
. (4.7)

For a 3rd order scheme this results in

ISi,0 = 4
((

xi+ 1
2
− xi− 1

2

)(
q̄i+1 − q̄i

)

xi+ 3
2
− xi− 1

2

)2
, (4.8a)

ISi,1 = 4
((

xi+ 1
2
− xi− 1

2

)(
q̄i − q̄i−1

)

xi+ 1
2
− xi− 3

2

)2
. (4.8b)

The formulation for a fifth order WENO reconstruction on a non-uniform grid is com-
plex and computationally demanding. The methodology remains the same and is still
derived from three standard Lagrange polynomials. The left state and the correspond-
ing stencil’s Lagrange polynomial approximations are given below in Eqs. (4.9):

q−
i+ 1

2 ,0
= q̄i+1 +

( xi+ 3
2
− xi+ 1

2

xi+ 5
2
− xi− 1

2

)( xi+ 5
2
− xi+ 1

2

xi+ 3
2
− xi− 1

2

)
(q̄i − q̄i+1)

−
( xi+ 3

2
− xi+ 1

2

xi+ 5
2
− xi− 1

2

)( xi+ 1
2
− xi− 1

2

xi+ 5
2
− xi+ 1

2

)
(q̄i+2 − q̄i+1), (4.9a)

q−
i+ 1

2 .1
= q̄i +

( xi+ 1
2
− xi− 1

2

xi+ 3
2
− xi− 3

2

)( xi+ 1
2
− xi− 3

2

xi+ 3
2
− xi− 1

2

)
(q̄i+1 − q̄i)
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−
( xi+ 1

2
− xi− 1

2

xi+ 3
2
− xi− 3

2

)( xi+ 3
2
− xi+ 1

2

xi+ 1
2
− xi− 3

2

)
(q̄i−1 − q̄i), (4.9b)

q−
i+ 1

2 ,2
= q̄i−1 +

( xi+ 1
2
− xi− 1

2

xi− 1
2
− xi− 5

2

)( xi+ 1
2
− xi− 3

2

xi+ 1
2
− xi− 5

2

)
(q̄i−2 − q̄i−1)

+
(

1 +
xi+ 1

2
− xi− 1

2

xi+ 1
2
− xi− 3

2

+
xi+ 1

2
− xi− 1

2

xi+ 1
2
− xi− 5

2

)
(q̄i − q̄i−1). (4.9c)

Similarly for the mirrored right stencils

q+
i− 1

2 ,0
= q̄i+1 +

(
1 +

xi+ 1
2
− xi− 1

2

xi+ 3
2
− xi− 1

2

+
xi+ 1

2
− xi− 1

2

xi+ 5
2
− xi− 1

2

)
(q̄i − q̄i+1)

+
( xi+ 1

2
− xi− 1

2

xi+ 5
2
− xi− 1

2

)( xi+ 3
2
− xi− 1

2

xi+ 5
2
− xi+ 1

2

)
(q̄i+2 − q̄i+1), (4.10a)

q+
i− 1

2 ,1
= q̄i +

( xi+ 1
2
− xi− 1

2

xi+ 3
2
− xi− 3

2

)( xi+ 3
2
− xi− 1

2

xi+ 1
2
− xi− 3

2

)
(q̄i−1 − q̄i)

−
( xi+ 1

2
− xi− 1

2

xi+ 3
2
− xi− 3

2

)( xi− 1
2
− xi− 3

2

xi+ 3
2
− xi− 1

2

)
(q̄i+1 − q̄i), (4.10b)

q+
i− 1

2 ,2
= q̄i−1 +

( xi− 1
2
− xi− 3

2

xi+ 1
2
− xi− 5

2

)( xi− 1
2
− xi− 5

2

xi+ 1
2
− xi− 3

2

)
(q̄i − q̄i−1)

−
( xi− 1

2
− xi− 3

2

xi+ 1
2
− xi− 5

2

)( xi+ 1
2
− xi− 1

2

xi− 1
2
− xi− 5

2

)
(q̄i−2 − q̄i−1). (4.10c)

The linear weights are evaluated according to the size of each of the three stencil

c−
i+ 1

2 ,0
=

( xi+ 1
2
− xi− 5

2

xi+ 5
2
− xi− 5

2

)( xi+ 1
2
− xi− 3

2

xi+ 5
2
− xi− 3

2

)
, (4.11a)

c−
i+ 1

2 ,1
=

( xi+ 1
2
− xi− 5

2

xi+ 5
2
− xi− 5

2

)( xi+ 5
2
− xi+ 1

2

xi+ 5
2
− xi− 3

2

)( xi+ 5
2
− xi− 3

2

xi+ 3
2
− xi− 5

2

+ 1
)

, (4.11b)

c−
i+ 1

2 ,2
=

( xi+ 3
2
− xi+ 1

2

xi+ 5
2
− xi− 5

2

)( xi+ 5
2
− xi+ 1

2

xi+ 3
2
− xi− 5

2

)
. (4.11c)

The linear weights for the right state will include one stencil further to the right and
will exclude the stencil furthest to the left employed for the left states.

c+
i− 1

2 ,0
=

( xi− 1
2
− xi− 3

2

xi+ 5
2
− xi− 5

2

)( xi− 1
2
− xi− 5

2

xi+ 5
2
− xi− 3

2

)
, (4.12a)

c+
i− 1

2 ,1
=

( xi− 1
2
− xi− 5

2

xi+ 5
2
− xi− 5

2

)( xi+ 5
2
− xi− 1

2

xi+ 5
2
− xi− 3

2

)( xi+ 5
2
− xi− 3

2

xi+ 3
2
− xi− 5

2

+ 1
)

, (4.12b)
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c+
i− 1

2 ,2
=

( xi+ 3
2
− xi− 1

2

xi+ 5
2
− xi− 5

2

)( xi+ 5
2
− xi− 1

2

xi+ 3
2
− xi− 5

2

)
. (4.12c)

The resulting smoothness parameters are

ISi,0 = 4
( xi+ 1

2
− xi− 1

2

xi+ 5
2
− xi− 1

2

)2
{( q̄i+2 − q̄i+1

xi+ 5
2
− xi+ 1

2

)2[
10

(
xi+ 1

2
− xi− 1

2

)2

+
(

xi+ 3
2
− xi− 1

2

) (
xi+ 3

2
− xi+ 1

2

) ]
+

(q̄i+2 − q̄i+1) (q̄i − q̄i+1)(
xi+ 5

2
− xi+ 1

2

) (
xi+ 3

2
− xi− 1

2

)

×
[
20

(
xi+ 1

2
− xi− 1

2

)2
+ 2

(
xi+ 3

2
− xi− 1

2

) (
xi+ 3

2
− xi+ 1

2

)

+
(

xi+ 5
2
− xi− 1

2

) (
2xi+ 3

2
− xi+ 1

2
− xi− 1

2

) ]
+

( q̄i − q̄i+1

xi+ 3
2
− xi− 1

2

)2

×
[
10

(
xi+ 1

2
− xi− 1

2

)2
+

(
xi+ 5

2
+ xi+ 3

2
− 2xi− 1

2

)

×
(

xi+ 5
2
+ xi+ 3

2
− xi+ 1

2
− xi− 1

2

) ]}
, (4.13a)

ISi,1 = 4
( xi+ 1

2
− xi− 1

2

xi+ 3
2
− xi− 3

2

)2
{( q̄i−1 − q̄i

xi+ 1
2
− xi− 3

2

)2[
10

(
xi+ 1

2
− xi− 1

2

)2

+
(

xi+ 3
2
− xi− 1

2

) (
xi+ 3

2
− xi+ 1

2

) ]
+

(q̄i+1 − q̄i) (q̄i−1 − q̄i)(
xi+ 3

2
− xi− 1

2

) (
xi+ 1

2
− xi− 3

2

)

×
[
20

(
xi+ 1

2
− xi− 1

2

)2 −
(

xi+ 3
2
− xi+ 1

2

) (
xi− 1

2
− xi− 3

2

)

−
(

xi+ 3
2
− xi− 1

2

) (
xi+ 1

2
− xi− 3

2

) ]
+

( q̄i+1 − q̄i
xi+ 3

2
− xi− 1

2

)2

×
[
10

(
xi+ 1

2
− xi− 1

2

)2
+

(
xi− 1

2
− xi− 3

2

) (
xi+ 1

2
− xi− 3

2

) ]}
, (4.13b)

ISi,2 = 4
( xi+ 1

2
− xi− 1

2

xi+ 1
2
− xi− 5

2

)2
{( q̄i−2 − q̄i−1

xi− 1
2
− xi− 5

2

)2[
10

(
xi+ 1

2
− xi− 1

2

)2

+
(

xi+ 1
2
− xi− 3

2

) (
xi− 1

2
− xi− 3

2

) ]
+

(q̄i − q̄i−1) (q̄i−2 − q̄i−1)(
xi+ 1

2
− xi− 3

2

) (
xi− 1

2
− xi− 5

2

)

×
[
20

(
xi+ 1

2
− xi− 1

2

)2
+ 2

(
xi+ 1

2
− xi− 3

2

) (
xi− 1

2
− xi− 3

2

)

+
(

xi+ 1
2
− xi− 5

2

) (
xi+ 1

2
+ xi− 1

2
− 2xi− 3

2

) ]
+

( q̄i − q̄i−1

xi+ 1
2
− xi− 3

2

)2

×
[
10

(
xi+ 1

2
− xi− 1

2

)2
+

(
2xi+ 1

2
− xi− 5

2
− xi− 3

2

)

×
(

xi+ 1
2
+ xi− 1

2
− xi− 3

2
− xi− 5

2

) ]}
. (4.13c)
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5 The Spalart Allmaras model for vortex dominated flows

The Spalart-Allmaras model [19] is a low Reynolds number turbulence model that was
originally designed for incompressible wall bounded flows. The model has grown
in popularity largely due to its simplicity, versatility and accuracy. The model only
involves one transport equation for a modified form of the turbulent viscosity and
despite its original formulation for incompressible wall bounded flows, slight modi-
fications allow it to be accurately used for compressible, unbounded flows. Various
constants and the Boussinesq hypothesis that uses the turbulent viscosity to link tur-
bulent stresses to mean deformation rates, ensure its closure. A general transport
equation is formed for the modified turbulent viscosity, ν̃, which for a compressible
formulation is directly proportional to the standard eddy viscosity through

µT = ρν̃ fv1. (5.1)

In the model, the modified turbulent viscosity is directly proportional to the kinematic
viscosity through a viscous damping function fv1, defined by

fv1 = χ3(χ3 + C3
v1)

−1, (5.2)

where χ = ν−1ν̃.
For the IMPNS code the general transport equation needs to be expressed in a

form solvable using the finite volume method. The solver uses pseudo time marching
with an explicit forward difference to solve the turbulence model’s transport equation
and then explicitly updates the new approximated value of the modified turbulent
viscosity. The finite volume form of the transport equation solved by the solver is
given by

∫∫∫

v
Dt(ρν̄)− Re−1σ−1 [∇(µ + ρν̄)∇ν̄] dV

=
∫∫∫

v

[
Cb1S̃ρν̄ + Re−1(σ−1Cb2ρν̄2 − Cw1 fwρd−2ν̄2)

]
dV. (5.3)

The last term in the general transport equation represents the destruction of the mod-
ified eddy viscosity where d, is the distance to the closest wall and Cw1 is a model
constant. The wall damping term, fw, is given by Eq. (5.4) and the model constants
needed to close the equation set are given by Eq. (5.4) below.

fw = g
[ 1 + C6

w3

g6 + C6
w3

] 1
6
, (5.4)

where g = r + Cw2(r6 − r), and r = min
{

ν̄/(S̃κ2d2 + 10−15), 10
}

.
In the baseline model the closure coefficient are given as

κ = 0.41, σ =
2
3

, Cb1 = 0.1355, (5.5a)

Cb2 = 0.622, Cw2 = 0.3, Cw3 = 2, (5.5b)

Cv1 = 7.1, Cw1 = κ−2Cb1 + σ−1(1 + Cb2). (5.5c)
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The third term in the general transport equation corresponds to the production term.
If S̃ is a scalar measuring the deformation tensor the new production term can be
created from

S̃ = Sprod + Re−1ν̃κ−2d−2 fv2. (5.6)

A second damping factor, fv2, is given by

fv2 = 1− χ(χ fv1 + 1)−1. (5.7)

If the mean rate of strain of a fluid element is defined as

Sij =

√
1
2
(∂jui + ∂iuj)(∂jui + ∂iuj). (5.8)

The mean rate of rotation of an element is

Ωij =

√
1
2
(∂iuj − ∂jui)(∂iuj − ∂jui). (5.9)

This leads to the definition of the deformation tensor which was first documented
by Dacles-Mariani et al. [4] , following a private communication with the original
developers of the model and expressed as

Sprod ≡
∣∣Ωij

∣∣ + Cprod min
{

0,
∣∣Sij

∣∣− ∣∣Ωij
∣∣} . (5.10)

A sensitivity study was performed to investigate the effects of alterations to the pa-
rameter on the resulting vorticity magnitude of a vortex dominated flowfield. Results
indicated that for this type of flow, alterations to the production term led to improve-
ments in the vortex capturing and general predictive capabilities of the model. In
the standard model, Sprod is directly proportional to the vorticity [19] and the second
term in Eq. (5.10) was effectively zero. This assumption is valid for a wall bounded
flow because in such flows vorticity is generated at the wall and that is where most
turbulence is found. The above formulation was in fact originally aimed at improv-
ing the computed modified turbulent viscosity through adjustments in the production
term [4]. The idea stems from the fact that vortices tend to be well organised and the
randomness of turbulence cannot persist, especially at the vortex core where it would
be suppressed by pure rotation. The above formulation allows the turbulent viscosity
to be reduced in the vortex core where the vorticity is far greater than the strain rate.
In Eq. (5.10) the Cprod term was originally given a maximum value of 2 but the con-
stant required adjustments depending on the numerical diffusion of the problem [4].
Following the sensitivity study, the Cprod constant is given a value of 7.0 in an attempt
to match the diffusivity of the more vortex dominated flows being investigated.

6 Case I. supersonic flow over a parabolic ogive cylinder

The ONERA B2 has a parabolic ogive cylinder profile with an 80mm diameter and
consists of a 15.5 diameter long geometry [24]. The ogive possesses a 12 calibre cylin-
der extended by a 3 calibre nose of circular cross-section and its meridian line is a
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Figure 1: Fine computational mesh employed for the B2 tangent ogive flow problem.

circle which is tangent to the cylinder. The turbulent flowfield was analysed with the
Spalart-Allmaras model and cross-flow separation on the leeward side of the body led
to the creation of vortical structures which increased in magnitude with streamwise
distance. The structured computational mesh is illustrated in Fig. 1 and consisted of 61
streamwise, 85 radial and 73 circumferential cells creating a fine mesh of 356832 cells.
Five grids were used to assess the grid convergence properties of the problem. Coarse
meshes were produced by reducing by a third the number of radial and circumferen-
tial cells but in order to reduce the influence of the PNS assumptions the number of
streamwise cells was maintained constant 60 on all of the grids.

The demanding test case requires adequate resolution of a highly vortical cross-
flow separated flowfield as well as accurate resolution of the resulting shock pattern.
Both the third and the fifth order WENO schemes for smooth and stretched meshes
have successfully resolved the well organized vortical structure with a good approx-
imation of the surface pressures and the resulting aerodynamic coefficients. Fig. 1
illustrates the full revolved mesh following reflection across the plane of symmetry
while Table 2 illustrates the experimental conditions replicated for the computations.

Surface pressure estimates are presented in Figs. 2a to 2c at a streamwise location
corresponding to x/D=9. Estimates of the surface pressure coefficient around the
body’s circumference at the station of interest are presented for three progressively
coarser meshes. Results are also compared to documented results by d’Espiney et

Table 2: Experimental conditions employed for the ogive cylinder problem [24].

Parameter Freestream Value
Incidence, α 100
Mach Number, M 2.0
Total Pressure, P0 120kPa
Total Temperature, T0 300 K
Reynolds number (Diameter based) 1.2E-6
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(a)

(b)

(c)

Figure 2: (a) Surface pressure coefficient at x/D = 9, evaluated using all the schemes on the 60× 38× 33
grid. (b) Surface pressure coefficient at x/D = 9, evaluated using all the schemes on the 60× 57× 49 grid.
(c) Surface pressure coefficient at x/D = 9, evaluated using all the schemes on the finest 60× 85× 73 grid.

al. [24], at ONERA in France, who used a full 3-dimensional, finite volume, Navier-
Stokes solver with the approximate Riemann solver of Roe, Harten’s entropy fix and
a MUSCL type primitive variable extrapolation limited with the Van-Albada flux lim-
iter. The turbulent model used by d’Espiney et al., was the k− ε model which solves
for the transport of turbulent kinetic energy per unit mass and its dissipation. Figs. 2a
to 2c below illustrate the computed surface pressure coefficients on the three grids at
the furthest station considered (x/D=9).

In vortex dominated flows, the inevitable numerical viscosity inherent in most
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schemes, most often predicts a less energetic vortex that does not persist as the equiv-
alent experimental measurements indicate. This often requires adaptive or very fine
meshes particularly at the previously unknown location of the vortex core. It is very
interesting to note that the results by d’Espiney et al. [24], which employ a more com-
plete model of the governing equations, a more detailed turbulence model on a very
fine grid with more than 370000 cells, cannot match the accuracy of the 5th order
WENO-PNS methods using the Spalart-Allmaras model on only 74000 cells. In the
original publication by d’Espiney et al. [24], solution times are not detailed, but from
the authors’ experience, similar simulations on a standard desktop PC, typically take
in the order of a day or more. The current WENO5-PNS solution using the SA model
on 74000 cells took approximately 64 minutes.

From the figures above, it can be seen that on the coarsest mesh the 3rd order
schemes are at worst as good as the ONERA 3-dimensional Navier-Stokes approxi-
mations but the 5th order estimates produce superior results at all stations even on a
grid that is five times coarser. On the two finest grids, the third order schemes produce
results that very accurately approach the experimental curve particularly on the last
streamwise station considered. As all the results from all the schemes on the finest grid
are expected to be grid converged, only small differences are seen in the pressure es-
timates. The very small change seen in the WENO5 and WENO5-SG pressure curves
produced on the medium 60× 57× 43 compared to the finer 60× 85× 73 grid, indicate
that the fifth order results are grid converged earlier than their 3rd order counterparts.
This implies that as the solution times in Table 3, demonstrate, the same results can
be obtained on coarser meshes thus saving further computational expense. The com-
putational surface pressure estimates presented only give an accurate estimate of the
surface pressure field which is largely dictated by the resulting flowfield away from
the surface. For an accurate estimate of the primary and secondary separation or reat-
tachment points a full description of the skin friction pattern is required. The surface
pressure estimates can give an approximate indication of these locations since primary
separation is usually expected prior to the large vortex induced suction peak seen in
all the figures. Figs. 3a to 3d illustrate the wall shear stress patterns on the geometry’s
surface computed by the four schemes.

From the experimental skin friction measurements at x/D=5 it can be seen that the
primary separation point was found to be at ∼135◦ across the azimuthal plane. The
skin friction patterns in Figs. 3a to 3d show very little discrepancy with experiment
and both the third and fifth order approximations are within ∼2◦ of the experimental
angle at which primary separation occurs. The best result is seen with the WENO5
scheme (Fig. 3c) which appears to exactly match the experimental angle. Generally,
all schemes except the WENO5 appear to underpredict this location but the discrep-
ancy seen, appears very small even with the lower order methods. At x/D=7 the
primary separation point predicted by the experiment is shifted to an azimuthal angle
of ∼117◦ while secondary separation is seen around ∼140◦. The skin friction pat-
terns show a large separation at this location and all schemes appear to accurately
predict this location within one or two degrees. The smallest discrepancy is again
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(a)

(b)

(c)

(d)

Figure 3: (a) Change in skin friction patterns with axial distance and azimuthal angle obtained using the
WENO3 scheme. (b) Change in skin friction patterns with axial distance and azimuthal angle obtained
using the WENO3-SG scheme. (c) Change in skin friction patterns with axial distance and azimuthal angle
obtained using the WENO5 scheme. (d) Change in skin friction patterns with axial distance and azimuthal
angle obtained using the WENO5-SG scheme.

seen with the standard WENO5 scheme which more closely correlates with the exper-
iment. The secondary separation computed by all schemes also correlates very well
with the experimental measurement and the largest discrepancy of under ∼2◦ is seen
by the more computationally demanding stretched grid formulations the WENO3-SG
and WENO5-SG schemes (Figs. 3b and 3d) which are also the most complete out of
all the schemes being tested. Experimental measurements at x/D=9 indicate primary
separation occurs at ∼100◦ while secondary separation occurs around an azimuthal
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Table 3: The tabulated results indicate the time taken in seconds to solve for the B2 flowfield on the
60× 38× 33 cell grid as well as the time taken to complete 1000 explicit iterations in pseudo time.

Time taken (s) WENO3 WENO3dx WENO5 WENO5dx
Time for Problem 3254.6 3720.4 3842.8 10202.9
1000 Iterations 6.96 7.93 8.18 11.89

angle of ∼150◦. From the skin friction patterns it can be seen that all schemes at this
location can accurately capture the location of the primary separation line with almost
negligible error. The location of the secondary separation point, however, is underpre-
dicted by all schemes by almost ∼5◦. The smallest discrepancy is seen by the WENO5
scheme (Fig. 3c) which underpredicts the angle of secondary separation by only a
few degrees. Throughout the rest of the geometry, the skin friction diagrams show
that the 5th order schemes show a very good correlation with both the experimental
measurements of the primary and secondary separation lines. The closest approxi-
mation to the experiment was manifested by the WENO5 computation, which best
approximated the experimental primary and secondary separation lines throughout
the length of the body.

Table 3 illustrates the resulting time taken by each numerical algorithm, to solve
for the B2 flowfield on the coarse grid of 60 × 38 × 33 cells. It must be noted that
solution times for each scheme, in complex 3-dimensional cases, are not solely pro-
portional to the mesh density but also the physics of the problem as well as the mesh
refinement, which both affect convergence rates. A further issue to take into account
is the numerical dissipation that coarser grids induce in the solution which effectively
accelerates the convergence rate. This in turn, as defined by a Taylor series approxi-
mation, will accelerate convergence differently with different numerical schemes. For
each numerical approach, this results in a non-linear variation of a scheme’s conver-
gence rate with respective changes in mesh density. For these reasons, the time taken
will not necessarily vary proportionally on a different grid and will be different for
a different problem. In order to differentiate the contributions of the problem to the

Table 4: Axial force coefficient computed with three grids and all the schemes being investigated.

Normal Force Coefficient, CxGRID
WENO3 WENO3-SG WENO5 WENO5-SG

Coarse 0.217 0.216 0.217 0.216
Medium 0.222 0.221 0.222 0.221
Fine 0.224 0.224 0.224 0.224

Table 5: Percentage difference resulting from a comparison with the experimental measurement of
Cx = 0.215.

% Discrepancy in CxGRID
WENO3 WENO3-SG WENO5 WENO5-SG

Coarse 1.004 0.503 1.046 0.416
Medium 3.287 2.878 3.194 2.720
Fine 3.951 4.001 3.849 3.874
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Table 6: Normal force coefficient computed with three grids and all the schemes being investigated.

Normal Force Coefficient, CxGRID
WENO3 WENO3-SG WENO5 WENO5-SG

Coarse 0.849 0.856 0.842 0.850
Medium 0.840 0.842 0.834 0.837
Fine 0.834 0.836 0.826 0.829

Table 7: Percentage difference resulting from a comparison with the experimental measurement of
Cz = 0.890.

% Discrepancy in CxGRID
WENO3 WENO3-SG WENO5 WENO5-SG

Coarse 4.575 3.835 5.421 4.489
Medium 5.654 5.403 6.326 6.007
Fine 6.307 6.015 7.191 6.867

solution period made by the algorithm, the physics and the grid, tabulated results in
Table 3 also state the respective time taken per iteration. The test was run on an Intel
Celeron desktop system, running at 1.8GHz with 2 Gb of RAM on an Ubuntu 8.04
platform running in 64bit mode. The Fortran compiler was version 10.1.021 of Intel’s
64bit Fortran 90 compilers.

The resulting improvements in the vorticity field estimate evaluated with each of
the schemes, ultimately must translate into improved estimates of the aerodynamic
coefficients. Table 4 illustrates the computed axial force coefficient computed with all
the schemes on the three grids considered. Table 5, illustrates the resulting percentage
discrepancy estimated from the experimental axial force coefficient of Cx = 0.215.

From Table 5 it can be seen that the axial force error varies substantially with each
grid and all schemes indicate that as the grid is refined the solutions progressively
deviates from the experimental measurement. A smaller discrepancy is seen by the 5th

order schemes which generally outperform the lower order methods on all three of the
set cases. As expected, the best results appear to be those from the standard WENO5
and the WENO5-SG scheme for stretched grids. The schemes for non-uniform grids
perform very well on the coarse cases but on the finer meshes the result is not seen
to vary much from the baseline formulation. A similar result was also obtained by
Smit et al. [18], who achieved marked improvements modeling reverse flow reactors
on coarser grids.

Table 6 presents tabulated computational approximations of the normal force co-
efficient on three grids while the error that results from a comparison with the ex-
perimental measurement is evaluated in Table 7. From the tabulated results it can
be seen that all the schemes produce a larger discrepancy in the normal force coef-
ficient than in the axial force approximation. The tabulated results also illustrate a
similar trend for the approximation of the normal force coefficient and as the grid is
refined, the computed estimate deviates further from the experimental measurement.
All schemes can approximate the normal force coefficient within a 3% to 7% discrep-
ancy and the schemes for non-uniform grids can offer only marginal improvements
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Figure 4: Flowfield produced using the WENO3
scheme with 372300 structured cells.

Figure 5: Flowfield produced using the WENO3-
SG scheme with 372300 structured cells.

Figure 6: Flowfield produced using the WENO5
scheme with 372300 structured cells.

Figure 7: Flowfield produced using the WENO5-
SG scheme with 372300 structured cells.

from the baseline formulations.
Figs. 4 to 7 illustrate the full flowfields produced by all the schemes on the finest

grid. The figures illustrate normalised pressure contours on the body’s surface and the
conical shock formation that originates from its apex. The surfaces are mapped by the
separation and reattachment lines that define the cross flow topology and small vari-
ations in the primary separation line seen running down the length of the geometry
are visible with each scheme. Contours of normalised vorticity define the symmetric
vortex patterns while an increase in the resulting vorticity is clearly visible towards
the last downstream stations evaluated with the 5th order schemes.

7 Case II. supersonic flow over an ogive-cylinder with an
X-delta fin configuration

The following validation problem is for the finned RAE B1A tangent ogive body [25].
The geometry has been used extensively for validation studies by defense research
laboratories in the United States, United Kingdom, Canada and Australia, to assess
the predictive capabilities of six Navier-Stokes codes [26]. Experimental investiga-
tions undertaken at DERA and NASA produced data for finned and body-alone ge-
ometries that was used for detailed computational comparison [27]. Experimental
data and the resulting axial, normal and pitching moment coefficients employed in
the present investigation were supplied by DSTL for an incidence of 14◦. The turbu-
lent, three-dimensional supersonic flow problem is investigated for a freestream Mach
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Figure 8: Wind tunnel model used for experimental analysis of the B1AWX at NASA Langley.

number of 2.5 and a 16 diameter long geometry consisting of a cubic profiled, 3 caliber
ogive nose, of 3.7 inches in diameter possessing four delta wing fins positioned in an
X configuration. The computational grid was provided by Dstl and was found to be
sufficiently fine to produce results that were within the asymptotic range of conver-
gence. The half mesh was created using a single block with 81 streamwise cells and 91
cells in both the radial and circumferential directions to produce a grid of 648000 cells.

For computational efficiency only half the geometry was simulated by imposing
a symmetry boundary condition on the y-axis corresponding to the pitching plane.
The complex geometry consists of 6 streamwise sections with multiple cross-flow
blocks to form an eleven block geometry with a total of 2204672 cells on the half
domain. The forebody was created using a revolved block of 57 streamwise, 65 ra-
dial and 65 circumferential cells followed by 3 cross flow blocks that made up the
next streamwise section. Moving clockwise, the three cross-flow blocks were of sizes
25 × 109 × 33, 25 × 109 × 65 and 25 × 109 × 33 cells in the streamwise, radial and
circumferential directions respectively. The 3rd streamwise section also consisted of
three cross-flow blocks of sizes 21× 157× 33, 21× 157× 65 and 21× 157× 33 cells
while the 4th streamwise section possessed cross-flow blocks of sizes 19× 189× 33,
19× 189× 65 and 19× 189× 33. The last downstream section was a single revolved
block of 45× 145× 129 cells that completed a structured computational domain that
for accurate computation of the cross-flow vortices, was carefully refined in close

Table 8: Experimental and computational conditions employed for the turbulent B1A flow problem [19].

Parameter Value
Incidence, α 14◦
Freestream Mach Number, M∞ 2.5
Temperature, T∞ 136.89K
Wall Temperature, Tw 308K
Reynolds Number (Diameter), ReD 1.123E6
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Table 9: Axial, Cx, and normal, Cz, coefficients computed using the SA model with the new constant
Cprod = 7.0 and the four higher order schemes.

Axial, Normal and Pitching Moment Coefficients, Cx, Cz, Cm
WENO3 WENO3-SG WENO5 WENO5-SG

Cx 0.2955 0.2816 0.2804 0.2797
Cz 4.2220 4.113 4.1471 4.1454

Table 10: Comparison with experiment and resulting percentage error in the axial, Cx, and normal, Cz force
coefficients using the PNS-WENO approaches.

Associated % Discrepancy
WENO3 WENO3-SG WENO5 WENO5-SG

% Cx 8.227 12.556 12.906 13.132
% Cz 1.184 1.411 0.597 0.637

vicinity to the fins and at the surface boundary. The boundary conditions employed,
were the same as the geometries previously investigated and a convergence tolerance
of 5 orders of magnitude ensured convergence through a fully explicit approach.

A side view and an axonometric projection of the full geometry following reflec-
tion in the plane of symmetry are illustrated in Figs. 9 and 10 respectively and in order
to avoid cell cluttering, only the main features of the mesh are shown. Results ob-
tained using all the schemes with the Spalart-Allmaras turbulence model and a model
constant of Cprod = 7.0 are presented and compared to the experimental aerodynamic
coefficients given as Cx = 0.322 and Cz = 4.172.

Axial and Normal force coefficients and their resulting experimental percent devi-
atiations are presented in Tables 9 and 10 for all the higher order methods.

From evaluated axial and normal force coefficients, it appears that schemes that
accurately approximate the axial force are not as accurate in the normal force predic-
tion and vice versa. For this problem, the 3rd order schemes perform very well in
the axial force estimate but their accuracy is much lower for the normal force predic-
tion. The WENO5 and WENO5-SG are not very accurate in the axial force prediction
but outshine the other schemes in their estimate of the normal force. The result is

Figure 9: Side view of the 5 streamwise blocks
that make up the computational mesh.

Figure 10: 3-Dimensional axonometric projection
of the full computational mesh around the X finned
B1A geometry.
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Figure 11: Change in surface pressure coefficient at x/D = 5.5 obtained using the 4 schemes and the
Spalart-Allmaras model with Cprod = 7.0. Results are compared to those obtained by the zonal approach of
Sahu et al..

surprising considering the surface pressure results of Fig. 11 below and the obvious
superiority expected of the WENO5 and WENO5-SG schemes. From Fig. 11 it can be
seen that at x/D=5.5, the schemes best predict the azimuthal angle where the initial
pressure reversal occurs as well as the magnitude of the pressure drop in the region

Figure 12: Normalised pressure and vorticity contours computed for the X-type B1A geometry using the
WENO3-SG scheme. Computed separation and reattachment lines have been mapped along the geometry’s
length.

Figure 13: Normalised pressure and vorticity contours computed for the X-type B1A geometry using the
WENO5-SG scheme. Computed separation and reattachment lines have been mapped along the geometry’s
length.
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of the primary vortex. Fig. 11 illustrates the circumferential surface pressure distri-
bution at a streamwise station of x/D=5.5, as well as the results obtained by Sahu et
al. [27], using a half mesh of 3.2 million cells with a zonal approach and the Baldwin-
Lomax turbulence model. In comparison, at this streamwise station, the superiority
of all schemes tested is unquestionable in all respects. Despite the result of the inte-
grated force parameters the 5th order WENO5 and WENO5dx schemes also appear to
outshine the lower order approaches at all the flowfield positions of interest.

Figs. 12 and 13 illustrate the complex vortical flowfield and conical shock pat-
tern computed using the WENO3-SG and WENO5-SG schemes. Filled contours of
normalised static pressure describe the conical shock and surface fields while filled
contours of normalised vorticity describe the complex vorticity pattern that develops
along the body’s surface. Separation and reattachment lines map the surface of the
body where a well defined separation line can be seen coming from the body’s apex.

The fifth order scheme, as was verified by experiment, also predicts a higher vor-
ticity towards the end of the geometry where dissipation usually causes a lower esti-
mation of its computed magnitude.

8 Conclusions

Results from the single block ONERA B2 solutions initially demonstrated that the
IMPNS solver can obtain a very good approximation of the flowfield using any of
the four schemes considered. The 5th order WENO methodology offers a consider-
able improvement over the lower order reconstructions and both the magnitude and
the rapid changes in pressure seen in the vortex peaks are captured more accurately
on coarse meshes, thus reflecting the more rapid grid convergence properties of the
fifth order methods. Surface wall shear stress estimates on a slender body of revo-
lution indicate that the computed positions of the primary and secondary separation
lines on the ogive-cylinder test case has been improved with the inclusion of a fifth
order interpolation scheme. Strong shock formations and their interactions with vor-
tices and control surfaces have been successfully captured and the schemes employed
have proven to be robust and stable. The vortical dissipation typically seen down-
stream of missile type flowfields has been considerably decreased, resulting in small
improvements in the prediction of the aerodynamic coefficients of interest. Even on
much coarser grids, an improved formulation of the Spalart-Allmaras constant dictat-
ing the turbulent viscosity in vortex dominated flowfields, coupled with a high order
approximation of the cross-flow, has obtained results that are closer to the experi-
mental measurements through a PNS approach than documented 3-dimensional full
Navier-Stokes simulations.

3rd and 5th order WENO formulations for stretched grids yield improved results on
coarser grids but on fine grids their improvements are only marginal. These schemes
are very complex and very computationally demanding, furthermore, the reduced nu-
merical diffusion they impart appears to reduce their robustness and stability. Their
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use in a fast and efficient PNS approach may not be justifiable when the speed, ac-
curacy and robustness of their much simpler formulations for constant cell sizes are
taken into account. More generally it can be seen that the present flowfields are dom-
inated by cross flow gradients and the PNS equations and implied assumptions do
not appear to affect the benefits of the higher order WENO methodology. The current
investigation indicates that the vortex capturing abilities of a PNS solver can be signif-
icantly improved with the inclusion of a higher order cross flow scheme and this can
offer considerable improvement to the resolution of the underlying flow physics.

Appendix

Nomenclature

c Speed of sound
Cm Pitching moment coefficient
Cp Pressure coefficient
Cx Axial force coefficient
Cz Normal force coefficient
i, j, k Grid cell integers ( ξ, η, ζ directions)
ξ, η, ζ Body fitted coordinate system
ε Small parameter used to avoid division by zero (1.0E-6)
E Specific energy
Fn Vector of Fluxes
k Coefficient of thermal conductivity
n̂ unit normal vector
Q Vector of conservative variables
q Vector of primitive variables
sξ , sη , sζ Surfaces areas in ξ̂, η̂, ζ̂ directions respectively
τij Shear stress tensor
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