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Abstract. The present problem is concerned with the study of deformation of a ro-
tating generalized thermoelastic medium under the influence of gravity. The com-
ponents of displacement, force stress and temperature distribution are obtained
in Laplace and Fourier domain by applying integral transforms. These compo-
nents are then obtained in the physical domain by applying a numerical inversion
method. Some particular cases are also discussed in context of the problem. The
results are also presented graphically to show the effect of rotation and gravity in
the medium.
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1 Introduction

Generalized thermoelasticity theories have been developed with the objective of re-
moving the paradox of infinite speed of heat propagation inherent in the conventional
coupled dynamical theory of thermoelasticity in which the parabolic type heat con-
duction equation is based on fourier’s law of heat conduction. This newly emerged
theory which admits finite speed of heat propagation is now referred to as the hy-
perbolic thermoelasticity theory [9], since the heat equation for rigid conductor is
hyperbolic-type differential equation.

There are two important generalized theories of thermoelasticity. The first is due
to [23]. The second one is known as the theory with two relaxation times or the theory
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of temperature-rate-dependent thermoelasticity. [26], in a review of the thermody-
namics of thermoelastic solid, proposed an entropy production inequality, with the
help of which he considered restrictions on a class of constitutive equations. A gener-
alization of this inequality was proposed in [21]. Green and Lindsay (G-L) obtained
another version of the constitutive equations. These equations were also obtained
independently and more explicitly by Suhubi in [42]. This theory contains two con-
stants that act as relaxation times and modify all the equations of the coupled theory,
not only the heat equations. The classical Fourier law violated if the medium under
consideration has a centre symmetry.

Barber and Martin-Moran in [5] discussed Green’s functions for transient thermoe-
lastic contact problems for the half-plane. Barber in [6] studied thermoelastic displace-
ments and stresses due to a heat source moving over the surface of a half plane. Sherief
in [41] obtained components of stress and temperature distributions in a thermoelas-
tic medium due to a continuous source. Dhaliwal et al. [20] investigated thermoelas-
tic interactions caused by a continuous line heat source in a homogeneous isotropic
unbounded solid. Chandrasekharaiah and Srinath in [10] studied thermoelastic in-
teractions due to a continous point heat source in a homogeneous and isotropic un-
bounded body. Sharma et al. [33] investigated the disturbance due to a time-harmonic
normal point load in a homogeneous isotropic thermoelastic half-space. Sharma and
Chauhan [34] discussed mechanical and thermal sources in a generalised thermoelas-
tic half-space. Sharma et al. [37] investigated the steady-state response of an applied
load moving with constant speed for infinite long time over the top surface of a ho-
mogeneous thermoelastic layer lying over an infinite half-space. Deswal and Choud-
hary [18] studied a two-dimensional problem due to moving load in generalized ther-
moelastic solid with diffusion. The dynamic interaction of thermal and mechanical
fields in solids has great practical applications in modern aeronautics, astronautics,
nuclear reactors and high-energy particle accelerators, for example.

Some researchers in the past have investigated different problem of rotating me-
dia. Chand et al. [11] presented an investigation on the distribution of deforma-
tion, stresses and magnetic field in a uniformly rotating homogeneous isotropic, ther-
mally and electrically conducting elastic half space. Many authors [12, 17, 31] studied
the effect of rotation on elastic waves. [30] studied the effect of rotation and relax-
ation times on plane waves in generalized thermo-visco-elasticity. [43] investigated
the interfacial waves in a rotating anisotropic elastic half space. Sharma and his co-
workers [36,38–40] discussed effect of rotation on different type of waves propagating
in a thermoelastic medium. Othman and Song [28, 29] discussed the effect of rota-
tion in magneto-thermoelastic medium. Othman in [28] investigated plane waves in
generalized thermo-elasticity with two relaxation times under the effect of rotation.

In classical theory of elasticity the gravity effect is generally neglected. The effect
of gravity in the problem of propagation of waves in solids, in particular on an elastic
globe, was first studied by Bromwich in [8]. Subsequently, investigation of the effect
of gravity was considered by Love in [24] who showed that the velocity of Rayleigh
waves is increased to a significant extent by the gravitational field when wavelengths
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are large. De and Sengupta in [14–16] studied the effect of gravity on surface waves,
on the propagation of waves in an elastic layer and Lamb’s problem on a plane. Sen-
gupta and Acharya [32] studied the influence of gravity on the propagation of waves
in a thermoelastic layer. Dey et al. [19] derived the velocities of longitudinal and trans-
verse waves in an initially stressed medium. Das et al. [13] investigated surface waves
under the influence of gravity in a non-homogeneous elastic solid medium. Abd-
Alla and Ahmed in [1] investigated Rayleigh waves in an orthotropic thermoelastic
medium under gravity field and initial stress. Abd-Alla and Ahmed [2] discussed
wave propagation in a non-homogeneous orthotropic elastic medium under the influ-
ence of gravity. Ailawalia and Narah [4] depicted the effects of rotation and gravity
in generalized thermoelastic medium. Recently Abd-Alla [3] presented the influences
of rotation, magnetic field, initial stress and gravity on Rayleigh waves in a homoge-
neous orthotropic elastic half-space.

In the present investigation we have obtained the expressions for displacement,
force stress and temperature distribution in a rotating generalized thermoelastic
medium under the influence of gravity by applying Laplace and Fourier transforms.
Such types of problems in the rotating medium are very important in many dynamical
systems. Some particular cases are also derived from the present investigation.

2 Formulation of the problem

We consider a homogeneous generalized thermoelastic half-space rotating uniformly
with angular velocity ~Ω = Ωn̂, where n̂ is a unit vector representing the direction of
the axis of rotation. All quantities considered are functions of the time variable t and of
the coordinates x and z. The displacement equation of motion in the rotating frame has
two additional terms [31]: centripetal acceleration, ~Ω× (~Ω× ~u) due to time varying
motion only and 2~Ω× ~u, where ~u = (u1, 0, u3) the dynamic displacement vector and
angular velocity is ~Ω = (0, Ω, 0). These terms do not appear in non-rotating media.

We consider normal source acting at the plane surface of generalized thermoelastic
half space under the influence of gravity. A rectangular coordinate system (x, y, z)
having origin on the surface z = 0 and z-axis pointing vertically into the medium is
considered.
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3 Basic equations and their solutions

For a two dimensional problem (xz-plane) all quantities depend only on space coor-
dinates x, z and time t. The field equations and constitutive relations in generalized
linear thermoelasticity with rotation under the influence of gravity and without body
forces and heat sources are [22, 23, 25, 31]:
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Using Eqs. (3.1d)-(3.1f) in Eqs. (3.1a)-(3.1b), we obtain
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Introducing dimensionless variables defined by
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in Eqs. (3.1c), (3.2a) and (3.2b), we obtain the equations of motion in dimensionless
form.

We define displacement potentials q and ψ which are related to displacement com-
ponents u1 and u3 as
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in the resulting dimensionless equations, and then applying the Laplace and Fourier
transform defined by

f̄ (x, z, p) =
∫ ∞

0
f (x, z, t)e−ptdt, (3.5a)
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Eliminating T̃ and ψ̃ from Eqs. (3.6a)-(3.6c), we obtain
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The solutions of Eq. (3.7) satisfying the radiation conditions that q̃, ψ̃, T̃ → 0 as z → ∞
are

q̃ = D1e−q1z + D2e−q2z + D3e−q3z, (3.9a)
ψ̃ = a∗1 D1e−q1z + a∗2 D2e−q2z + a∗3 D3e−q3z, (3.9b)
T̃ = b∗1 D1e−q1z + b∗2 D2e−q2z + b∗3 D3e−q3z, (3.9c)

where q2
i are the roots of Eq. (3.7) and a∗i , b∗i are coupling constants defined by
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for i = 1, 2, 3.
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4 Boundary conditions

The boundary conditions at the plane surface z = 0 are,

(i) t33 = −F(x, t), (ii) t31 = 0, (iii) T = 0. (4.1)

Using Eqs. (3.1d)-(3.1f), (3.3) and (3.4), in the boundary conditions (4.1), we obtain
the boundary conditions in the dimensionless form. On suppressing the primes and
applying the Laplace and Fourier transform defined by (3.5a) and (3.5b) on the di-
mensionless boundary conditions and using (3.9a)-(3.9c), in the resulting transformed
boundary conditions, we get the transformed expressions for displacement, force
stress, and temperature distribution in a rotating generalized thermoelastic medium
under the influence of gravity as
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)

∆
, ũ3 =
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where
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ki = b•i , i = 1, 2, 3, m = 1, 2, 3, bi = a•i qi − iξ, li = −(a•i iξ + qi). (4.3d)

5 Particular cases

Neglecting angular velocity (i.e., ~Ω = 0), we obtain transformed components of dis-
placement, stress forces and temperature distribution in a non-rotating generalized
thermoelastic medium under the influence of gravity as
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where
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The roots q′2i are given by the sixth degree equation
[
∆6 − A•∆4 + B•∆2 − C•

]
q̃ = 0.

Neglecting gravitational effect (i.e., g = 0) the expressions for displacements, force
stresses and temperature distribution in a rotating thermoelastic medium reduce to
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In this case the roots q′′2i are given by the equation
[
∆6 − A1∆4 + B1∆2 − C1

]
q̃ = 0. (5.4)

Neglecting both angular velocity and gravitational effect (i.e., Ω = g = 0), we get
the expressions for displacement, force stresses and temperature distribution in non-
rotating thermoelastic medium as
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]
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∆(3)
2 =

−∆(3)
1 k′′′1
k′′′2

, ∆(3)
3 = −F̃(ξ, p)[s′′′1 k′′′2 − k′′′1 s′′′2 ], (5.6b)

A2 = c1 + c′2 + c3, B2 = c1c′2 + c3ξ2, (5.6c)

q′′′21,2 =
A2 ±

√
A2

2 − 4B2

2
, q′′23 = ξ2 +

p2ρc2
0

µ
, (5.6d)

l•1,2 =
q′′21,2 − c′2
1 + ϑ0 p

, r′′′1,2 = q′′′21,2 −
λξ2

ρc2
0
− (1 + ϑ0 p)l•1,2, (5.6e)

r′′′3 = −iξq′′′3

(
1− λ

ρc2
0

)
, s′′′1,2 =

2iξµq′′′1,2

ρc2
0

, s′′′3 =
(q′′′23 + ξ2)µ

ρc2
0

, k′′′1,2 = l•1,2, (5.6f)

b′′′1,2 = −iξ, b′′′3 = q′′′3 , l′′′1,2 = −q′′′1,2, l′′′3 = −iξ. (5.6g)

6 Types of sources

6.1 Concentrated source

For a concentrated source we take

F(x, t) = δ(x)δ(t), such that F̃(ξ, p) = 1. (6.1)

6.2 Continuous source

For a continuous source acting along the interface, we have

F(x, t) = δ(x)H(t), such that F̃(ξ, p) =
1
p

. (6.2)
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6.3 Distributed sources

6.3.1 Uniformly distributed source

The solution due to a uniformly distributed source in normal direction is obtained by
setting

F(x, t) = φ(x)δ(t) and F̃(ξ, p) = φ̃(ξ), (6.3)

where

φ(x) =

{
1, if |x| 6 a,
0, if |x| > a,

in Eq. (4.1). The Fourier transform with respect to the pair (x, ξ) for the case of a uni-
form strip load of unit amplitude and width 2a applied at the origin of the coordinate
system (x = z = 0) in a dimensionless form after suppressing the primes becomes

φ̃(ξ) =
[2 sin(ξa)

ξ

]
, ξ 6= 0. (6.4)

6.3.2 Linearly distributed source

The solution due to a linearly distributed source in normal direction is obtained by
substituting

φ(x) =

{
1− |x|

a , if |x| 6 a,
0, if |x| > a,

(6.5)

in Eq. (4.1). The Fourier transform of φ(x), in dimensionless form after suppressing
the primes is

φ̃(ξ) =
2[1− cos(ξa)]

ξ2a
. (6.6)

The expressions for the components of displacement, force stress and temperature
distribution are obtained as in Eqs. (4.2a)-(4.2b), (5.1a)-(5.1b), (5.3a)-(5.3b) and (5.5a)-
(5.5b), by replacing φ̃(ξ) as [2 sin(ξa)/ξ] and 2[1− cos(ξa)]/(ξ2a), in the case of a
uniformly distributed force and linearly distributed force in Eqs. (4.3d), (5.2), (5.4) and
(5.6) for load in normal direction.

6.4 Moving source

In case of a source moving along the x-axis with uniform velocity U at the plane sur-
face z = 0, we have

F(x, t) = H(t)δ(x−Ut), (6.7)

where

F̃(ξ, p) =
1

p− iξU
.
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7 Special cases of thermoelastic theory

The equations of the coupled thermoelasticity (C-T theory) for a rotating media are
obtained when

n∗ = n1 = 1, t1 = τ0 = ϑ0 = 0. (7.1)
The equations in this case are

(λ + 2µ)
∂2u1

∂x2 + µ
∂2u1

∂z2 + (λ + µ)
∂2u3

∂x∂z
+ ρg

∂u3

∂x
− υ

∂T
∂x

= ρ
[∂2u1

∂t2 −Ω2u1 + 2Ω
∂u3

∂t

]
, (7.2a)

µ
∂2u3

∂x2 + (λ + 2µ)
∂2u3

∂z2 + (λ + µ)
∂2u1

∂x∂z
− ρg

∂u1

∂x
− υ

∂T
∂z

= ρ
[∂2u3

∂t2 −Ω2u3 − 2Ω
∂u1

∂t

]
, (7.2b)

K∗∇2T = ρCE
∂T
∂t

+ υT0
∂

∂t
(∇ · ~u). (7.2c)

For Lord-Shulman (L-S theory),

n∗ = n1 = n0 = 1, t1 = ϑ0 = 0, τ0 > 0. (7.3)

The equations for L-S theory are same as (7.2a) and (7.2b) and the heat conduction
equation is

K∗∇2T = ρCE

( ∂

∂t
+ τ0

∂2

∂t2

)
T + υT0

( ∂

∂t
+ τ0

∂2

∂t2

)
(∇ · ~u). (7.4)

For Green-Lindsay (G-L theory),

n∗ = n1 = 1, n0 = 0, t1 = 0, ϑ0 > τ0 > 0, (7.5)

where ϑ0, τ0 are the two relaxation times. The equations of motion for G-L theory are
same as (3.2a)-(3.2b) and the heat conduction equation is

K∗∇2T = ρCE

( ∂

∂t
+ τ0

∂2

∂t2

)
T + υT0

∂

∂t
(∇ · ~u). (7.6)

The equations of the generalized thermoelasticity for a rotating media, without
energy dissipation (the linearlized GN theory of type II) are obtained when

n∗ > 0, n1 = 0, n0 = 1, t1 = ϑ0 = 0, τ0 = 1. (7.7)

Eqs. (3.2a) and (3.2b) is the same and Eq. (3.1c) takes the form

K∗∇2T = ρCE
∂2T
∂t2 + υT0

∂2e
∂t2 , (7.8)

where n∗ is constant which has the dimension of [1/s] and

n∗k∗ = K′ =
CE(λ + 2µ)

4
,

is a characteristic constant of this theory.
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8 Numerical results, inversion and discussions

For numerical computations the values of relevant parameters are taken at T0 = 23◦C

λ = 9.4× 1011 dyne/cm2, µ = 4.0× 1011 dyne/cm2,

ρ = 1.74 gm/cm3, CE = 0.23 cal/gm◦C,

υ = 1.78× 10−5 dyne/cm2◦C, K• = 0.6× 10−2 cal/cms◦C.

The computations are carried out for U < c0 on the surface z = 1.0 (in case of moving
source). The graphically results for normal displacement u3, normal force stress t33
and temperature distribution T are shown in Figs. 1-12 for

(a) Thermoelastic solid with rotation and under the influence of gravity (TESRG) by solid
line (——–).

(b) Thermoelastic solid without rotation and under the influence of gravity (TESWRG) by
solid line with centered symbol (*—*—*).

(c) Thermoelastic solid with rotation and without gravity (TESR) by dashed line (- - - - - -).

(d) Thermoelastic solid without rotation and without gravity (TES) by solid line with cen-
tered symbol (*- - -*- - -*).

These graphical results represent the solutions obtained by using generalized theory
with one relaxation time (L-S theory for τ0 = 0.03) by taking Ω = 0.5 at t = 1.0.

The transformed displacements, microrotation and stresses are functions of z, the
parameters of Laplace and Fourier transforms p and ξ respectively, and hence are of
the form f̃ (ξ, z, p). To get the function in the physical domain, first we first invert
the Fourier transform and then Laplace transform by using the method applied by
Sharma and Kumar [35].

8.1 Concentrated source

The values of normal displacement for a non-rotating thermoelastic medium under
the influence of gravity increase sharply in the range 0 ≤ x ≤ 2.0 and then oscillate
uniformly. The variations of normal displacement (for g = 0) are similar in nature for
both rotating and non-rotating medium with difference in magnitude. These varia-
tions of normal displacement are shown in Fig. 1.

Under the influence of gravity, the values of normal force stress first decreases in
the range 0 ≤ x ≤ 2.0 and then oscillate uniformly. Also the values of normal force
stress for a thermoelastic medium without rotation and independent of gravitational
force lie in a very short range. These variations of normal force stress are shown in
Fig. 2. It could be observed from Fig. 3 that the variations of temperature distribution
are very similar to the variation of normal force stress with difference in magnitude.
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Figure 1: Variation of normal displacement u3 with distance x due to concentrated source.

Figure 2: Variation of normal force stress t33 with distance x due to concentrated source.

Figure 3: Variation of temperature distribution T with distance x due to concentrated source.

8.2 Continuous source

It is significant to observe that gravity play an important role on the variations of all
the quantities when a continuous source is applied on the surface of the solid. From
Figs. 4, 5 and 6 depicting the variations of normal displacement, normal force stress
and temperature distribution, it is seen that the variations are highly oscillatory in
nature for thermoelastic medium (with or without rotation), when the effect of gravity
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Figure 4: Variation of normal displacement u3 with distance x due to continuous source.

Figure 5: Variation of normal force stress t33 with distance x due to continuous source.

Figure 6: Variation of temperature distribution T with distance x due to continuous source.

is neglected whereas the values of all these quantities lie in very short range when we
consider the effect of gravity.

8.3 Uniformly distributed source

The variations obtained for different quantities on application of uniformly dis-
tributed source are similar in nature to the variations obtained on application of con-
centrated source. However the magnitudes of the quantities differ in both cases. These
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Figure 7: Variation of normal displacement u3 with distance x due to uniformly distributed source.

Figure 8: Variation of normal force stress t33 with distance x due to uniformly distributed source.

Figure 9: Variation of temperature distribution T with distance x due to uniformly distributed source.

variations are shown in Figs. 7, 8 and 9.

8.4 Moving source

When a source is moving on the surface of thermoelastic medium, the variations of
thermoelastic medium are more oscillatory, if we neglect the effect of gravity. These
variations under the effect of gravity are similar in nature to some extent for both ro-
tating and non-rotating medium. These variations on application of a moving source
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Figure 10: Variation of normal displacement u3 with distance x due to moving source.

Figure 11: Variation of normal force stress t33 with distance x due to moving source.

Figure 12: Variation of temperature distribution T with distance x due to moving source.

may be observed from Figs. 10, 11 and 12 respectively for normal displacement, nor-
mal stress and temperature distribution.

9 Conclusions

The effect of gravity, rotation and the source acting in the medium plays significant
role in the study of deformation of a body; when a concentrated or a distributed source
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is applied in the medium, the variations of the quantities are smooth in nature which
exactly is not the case for a continuous source and moving source; on the application
of continuous source or moving source the variations of all the quantities shown in
the graphical results are more oscillatory in nature when the effect of gravity is ne-
glected; the variations of the quantities are similar in nature for different theories of
thermoelasticity with difference in magnitude.

Nomenclature

λ, µ, Lame’s constants
ρ Density
~u Displacement vector
tij Stress tensor
τ0, ϑ0 Thermal relaxation times
υ = (3λ + 2µ)αt Linear thermal expansion
e = div~u Dilatation
g Acceleration due to gravity
K∗ Coefficient of thermal conductivity
CE Specific heat
T Temperature distribution
T0 Reference temperature
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